time.c (7314B)
1// SPDX-License-Identifier: GPL-2.0 2/* 3 * linux/arch/parisc/kernel/time.c 4 * 5 * Copyright (C) 1991, 1992, 1995 Linus Torvalds 6 * Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King 7 * Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org) 8 * 9 * 1994-07-02 Alan Modra 10 * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime 11 * 1998-12-20 Updated NTP code according to technical memorandum Jan '96 12 * "A Kernel Model for Precision Timekeeping" by Dave Mills 13 */ 14#include <linux/errno.h> 15#include <linux/module.h> 16#include <linux/rtc.h> 17#include <linux/sched.h> 18#include <linux/sched/clock.h> 19#include <linux/sched_clock.h> 20#include <linux/kernel.h> 21#include <linux/param.h> 22#include <linux/string.h> 23#include <linux/mm.h> 24#include <linux/interrupt.h> 25#include <linux/time.h> 26#include <linux/init.h> 27#include <linux/smp.h> 28#include <linux/profile.h> 29#include <linux/clocksource.h> 30#include <linux/platform_device.h> 31#include <linux/ftrace.h> 32 33#include <linux/uaccess.h> 34#include <asm/io.h> 35#include <asm/irq.h> 36#include <asm/page.h> 37#include <asm/param.h> 38#include <asm/pdc.h> 39#include <asm/led.h> 40 41#include <linux/timex.h> 42 43int time_keeper_id __read_mostly; /* CPU used for timekeeping. */ 44 45static unsigned long clocktick __ro_after_init; /* timer cycles per tick */ 46 47/* 48 * We keep time on PA-RISC Linux by using the Interval Timer which is 49 * a pair of registers; one is read-only and one is write-only; both 50 * accessed through CR16. The read-only register is 32 or 64 bits wide, 51 * and increments by 1 every CPU clock tick. The architecture only 52 * guarantees us a rate between 0.5 and 2, but all implementations use a 53 * rate of 1. The write-only register is 32-bits wide. When the lowest 54 * 32 bits of the read-only register compare equal to the write-only 55 * register, it raises a maskable external interrupt. Each processor has 56 * an Interval Timer of its own and they are not synchronised. 57 * 58 * We want to generate an interrupt every 1/HZ seconds. So we program 59 * CR16 to interrupt every @clocktick cycles. The it_value in cpu_data 60 * is programmed with the intended time of the next tick. We can be 61 * held off for an arbitrarily long period of time by interrupts being 62 * disabled, so we may miss one or more ticks. 63 */ 64irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id) 65{ 66 unsigned long now; 67 unsigned long next_tick; 68 unsigned long ticks_elapsed = 0; 69 unsigned int cpu = smp_processor_id(); 70 struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu); 71 72 /* gcc can optimize for "read-only" case with a local clocktick */ 73 unsigned long cpt = clocktick; 74 75 /* Initialize next_tick to the old expected tick time. */ 76 next_tick = cpuinfo->it_value; 77 78 /* Calculate how many ticks have elapsed. */ 79 now = mfctl(16); 80 do { 81 ++ticks_elapsed; 82 next_tick += cpt; 83 } while (next_tick - now > cpt); 84 85 /* Store (in CR16 cycles) up to when we are accounting right now. */ 86 cpuinfo->it_value = next_tick; 87 88 /* Go do system house keeping. */ 89 if (IS_ENABLED(CONFIG_SMP) && (cpu != time_keeper_id)) 90 ticks_elapsed = 0; 91 legacy_timer_tick(ticks_elapsed); 92 93 /* Skip clockticks on purpose if we know we would miss those. 94 * The new CR16 must be "later" than current CR16 otherwise 95 * itimer would not fire until CR16 wrapped - e.g 4 seconds 96 * later on a 1Ghz processor. We'll account for the missed 97 * ticks on the next timer interrupt. 98 * We want IT to fire modulo clocktick even if we miss/skip some. 99 * But those interrupts don't in fact get delivered that regularly. 100 * 101 * "next_tick - now" will always give the difference regardless 102 * if one or the other wrapped. If "now" is "bigger" we'll end up 103 * with a very large unsigned number. 104 */ 105 now = mfctl(16); 106 while (next_tick - now > cpt) 107 next_tick += cpt; 108 109 /* Program the IT when to deliver the next interrupt. 110 * Only bottom 32-bits of next_tick are writable in CR16! 111 * Timer interrupt will be delivered at least a few hundred cycles 112 * after the IT fires, so if we are too close (<= 8000 cycles) to the 113 * next cycle, simply skip it. 114 */ 115 if (next_tick - now <= 8000) 116 next_tick += cpt; 117 mtctl(next_tick, 16); 118 119 return IRQ_HANDLED; 120} 121 122 123unsigned long profile_pc(struct pt_regs *regs) 124{ 125 unsigned long pc = instruction_pointer(regs); 126 127 if (regs->gr[0] & PSW_N) 128 pc -= 4; 129 130#ifdef CONFIG_SMP 131 if (in_lock_functions(pc)) 132 pc = regs->gr[2]; 133#endif 134 135 return pc; 136} 137EXPORT_SYMBOL(profile_pc); 138 139 140/* clock source code */ 141 142static u64 notrace read_cr16(struct clocksource *cs) 143{ 144 return get_cycles(); 145} 146 147static struct clocksource clocksource_cr16 = { 148 .name = "cr16", 149 .rating = 300, 150 .read = read_cr16, 151 .mask = CLOCKSOURCE_MASK(BITS_PER_LONG), 152 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 153}; 154 155void start_cpu_itimer(void) 156{ 157 unsigned int cpu = smp_processor_id(); 158 unsigned long next_tick = mfctl(16) + clocktick; 159 160 mtctl(next_tick, 16); /* kick off Interval Timer (CR16) */ 161 162 per_cpu(cpu_data, cpu).it_value = next_tick; 163} 164 165#if IS_ENABLED(CONFIG_RTC_DRV_GENERIC) 166static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm) 167{ 168 struct pdc_tod tod_data; 169 170 memset(tm, 0, sizeof(*tm)); 171 if (pdc_tod_read(&tod_data) < 0) 172 return -EOPNOTSUPP; 173 174 /* we treat tod_sec as unsigned, so this can work until year 2106 */ 175 rtc_time64_to_tm(tod_data.tod_sec, tm); 176 return 0; 177} 178 179static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm) 180{ 181 time64_t secs = rtc_tm_to_time64(tm); 182 int ret; 183 184 /* hppa has Y2K38 problem: pdc_tod_set() takes an u32 value! */ 185 ret = pdc_tod_set(secs, 0); 186 if (ret != 0) { 187 pr_warn("pdc_tod_set(%lld) returned error %d\n", secs, ret); 188 if (ret == PDC_INVALID_ARG) 189 return -EINVAL; 190 return -EOPNOTSUPP; 191 } 192 193 return 0; 194} 195 196static const struct rtc_class_ops rtc_generic_ops = { 197 .read_time = rtc_generic_get_time, 198 .set_time = rtc_generic_set_time, 199}; 200 201static int __init rtc_init(void) 202{ 203 struct platform_device *pdev; 204 205 pdev = platform_device_register_data(NULL, "rtc-generic", -1, 206 &rtc_generic_ops, 207 sizeof(rtc_generic_ops)); 208 209 return PTR_ERR_OR_ZERO(pdev); 210} 211device_initcall(rtc_init); 212#endif 213 214void read_persistent_clock64(struct timespec64 *ts) 215{ 216 static struct pdc_tod tod_data; 217 if (pdc_tod_read(&tod_data) == 0) { 218 ts->tv_sec = tod_data.tod_sec; 219 ts->tv_nsec = tod_data.tod_usec * 1000; 220 } else { 221 printk(KERN_ERR "Error reading tod clock\n"); 222 ts->tv_sec = 0; 223 ts->tv_nsec = 0; 224 } 225} 226 227 228static u64 notrace read_cr16_sched_clock(void) 229{ 230 return get_cycles(); 231} 232 233 234/* 235 * timer interrupt and sched_clock() initialization 236 */ 237 238void __init time_init(void) 239{ 240 unsigned long cr16_hz; 241 242 clocktick = (100 * PAGE0->mem_10msec) / HZ; 243 start_cpu_itimer(); /* get CPU 0 started */ 244 245 cr16_hz = 100 * PAGE0->mem_10msec; /* Hz */ 246 247 /* register as sched_clock source */ 248 sched_clock_register(read_cr16_sched_clock, BITS_PER_LONG, cr16_hz); 249} 250 251static int __init init_cr16_clocksource(void) 252{ 253 /* 254 * The cr16 interval timers are not synchronized across CPUs. 255 */ 256 if (num_online_cpus() > 1 && !running_on_qemu) { 257 clocksource_cr16.name = "cr16_unstable"; 258 clocksource_cr16.flags = CLOCK_SOURCE_UNSTABLE; 259 clocksource_cr16.rating = 0; 260 } 261 262 /* register at clocksource framework */ 263 clocksource_register_hz(&clocksource_cr16, 264 100 * PAGE0->mem_10msec); 265 266 return 0; 267} 268 269device_initcall(init_cr16_clocksource);