cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

time.c (7314B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 *  linux/arch/parisc/kernel/time.c
      4 *
      5 *  Copyright (C) 1991, 1992, 1995  Linus Torvalds
      6 *  Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
      7 *  Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
      8 *
      9 * 1994-07-02  Alan Modra
     10 *             fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
     11 * 1998-12-20  Updated NTP code according to technical memorandum Jan '96
     12 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
     13 */
     14#include <linux/errno.h>
     15#include <linux/module.h>
     16#include <linux/rtc.h>
     17#include <linux/sched.h>
     18#include <linux/sched/clock.h>
     19#include <linux/sched_clock.h>
     20#include <linux/kernel.h>
     21#include <linux/param.h>
     22#include <linux/string.h>
     23#include <linux/mm.h>
     24#include <linux/interrupt.h>
     25#include <linux/time.h>
     26#include <linux/init.h>
     27#include <linux/smp.h>
     28#include <linux/profile.h>
     29#include <linux/clocksource.h>
     30#include <linux/platform_device.h>
     31#include <linux/ftrace.h>
     32
     33#include <linux/uaccess.h>
     34#include <asm/io.h>
     35#include <asm/irq.h>
     36#include <asm/page.h>
     37#include <asm/param.h>
     38#include <asm/pdc.h>
     39#include <asm/led.h>
     40
     41#include <linux/timex.h>
     42
     43int time_keeper_id __read_mostly;	/* CPU used for timekeeping. */
     44
     45static unsigned long clocktick __ro_after_init;	/* timer cycles per tick */
     46
     47/*
     48 * We keep time on PA-RISC Linux by using the Interval Timer which is
     49 * a pair of registers; one is read-only and one is write-only; both
     50 * accessed through CR16.  The read-only register is 32 or 64 bits wide,
     51 * and increments by 1 every CPU clock tick.  The architecture only
     52 * guarantees us a rate between 0.5 and 2, but all implementations use a
     53 * rate of 1.  The write-only register is 32-bits wide.  When the lowest
     54 * 32 bits of the read-only register compare equal to the write-only
     55 * register, it raises a maskable external interrupt.  Each processor has
     56 * an Interval Timer of its own and they are not synchronised.  
     57 *
     58 * We want to generate an interrupt every 1/HZ seconds.  So we program
     59 * CR16 to interrupt every @clocktick cycles.  The it_value in cpu_data
     60 * is programmed with the intended time of the next tick.  We can be
     61 * held off for an arbitrarily long period of time by interrupts being
     62 * disabled, so we may miss one or more ticks.
     63 */
     64irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id)
     65{
     66	unsigned long now;
     67	unsigned long next_tick;
     68	unsigned long ticks_elapsed = 0;
     69	unsigned int cpu = smp_processor_id();
     70	struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
     71
     72	/* gcc can optimize for "read-only" case with a local clocktick */
     73	unsigned long cpt = clocktick;
     74
     75	/* Initialize next_tick to the old expected tick time. */
     76	next_tick = cpuinfo->it_value;
     77
     78	/* Calculate how many ticks have elapsed. */
     79	now = mfctl(16);
     80	do {
     81		++ticks_elapsed;
     82		next_tick += cpt;
     83	} while (next_tick - now > cpt);
     84
     85	/* Store (in CR16 cycles) up to when we are accounting right now. */
     86	cpuinfo->it_value = next_tick;
     87
     88	/* Go do system house keeping. */
     89	if (IS_ENABLED(CONFIG_SMP) && (cpu != time_keeper_id))
     90		ticks_elapsed = 0;
     91	legacy_timer_tick(ticks_elapsed);
     92
     93	/* Skip clockticks on purpose if we know we would miss those.
     94	 * The new CR16 must be "later" than current CR16 otherwise
     95	 * itimer would not fire until CR16 wrapped - e.g 4 seconds
     96	 * later on a 1Ghz processor. We'll account for the missed
     97	 * ticks on the next timer interrupt.
     98	 * We want IT to fire modulo clocktick even if we miss/skip some.
     99	 * But those interrupts don't in fact get delivered that regularly.
    100	 *
    101	 * "next_tick - now" will always give the difference regardless
    102	 * if one or the other wrapped. If "now" is "bigger" we'll end up
    103	 * with a very large unsigned number.
    104	 */
    105	now = mfctl(16);
    106	while (next_tick - now > cpt)
    107		next_tick += cpt;
    108
    109	/* Program the IT when to deliver the next interrupt.
    110	 * Only bottom 32-bits of next_tick are writable in CR16!
    111	 * Timer interrupt will be delivered at least a few hundred cycles
    112	 * after the IT fires, so if we are too close (<= 8000 cycles) to the
    113	 * next cycle, simply skip it.
    114	 */
    115	if (next_tick - now <= 8000)
    116		next_tick += cpt;
    117	mtctl(next_tick, 16);
    118
    119	return IRQ_HANDLED;
    120}
    121
    122
    123unsigned long profile_pc(struct pt_regs *regs)
    124{
    125	unsigned long pc = instruction_pointer(regs);
    126
    127	if (regs->gr[0] & PSW_N)
    128		pc -= 4;
    129
    130#ifdef CONFIG_SMP
    131	if (in_lock_functions(pc))
    132		pc = regs->gr[2];
    133#endif
    134
    135	return pc;
    136}
    137EXPORT_SYMBOL(profile_pc);
    138
    139
    140/* clock source code */
    141
    142static u64 notrace read_cr16(struct clocksource *cs)
    143{
    144	return get_cycles();
    145}
    146
    147static struct clocksource clocksource_cr16 = {
    148	.name			= "cr16",
    149	.rating			= 300,
    150	.read			= read_cr16,
    151	.mask			= CLOCKSOURCE_MASK(BITS_PER_LONG),
    152	.flags			= CLOCK_SOURCE_IS_CONTINUOUS,
    153};
    154
    155void start_cpu_itimer(void)
    156{
    157	unsigned int cpu = smp_processor_id();
    158	unsigned long next_tick = mfctl(16) + clocktick;
    159
    160	mtctl(next_tick, 16);		/* kick off Interval Timer (CR16) */
    161
    162	per_cpu(cpu_data, cpu).it_value = next_tick;
    163}
    164
    165#if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
    166static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
    167{
    168	struct pdc_tod tod_data;
    169
    170	memset(tm, 0, sizeof(*tm));
    171	if (pdc_tod_read(&tod_data) < 0)
    172		return -EOPNOTSUPP;
    173
    174	/* we treat tod_sec as unsigned, so this can work until year 2106 */
    175	rtc_time64_to_tm(tod_data.tod_sec, tm);
    176	return 0;
    177}
    178
    179static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
    180{
    181	time64_t secs = rtc_tm_to_time64(tm);
    182	int ret;
    183
    184	/* hppa has Y2K38 problem: pdc_tod_set() takes an u32 value! */
    185	ret = pdc_tod_set(secs, 0);
    186	if (ret != 0) {
    187		pr_warn("pdc_tod_set(%lld) returned error %d\n", secs, ret);
    188		if (ret == PDC_INVALID_ARG)
    189			return -EINVAL;
    190		return -EOPNOTSUPP;
    191	}
    192
    193	return 0;
    194}
    195
    196static const struct rtc_class_ops rtc_generic_ops = {
    197	.read_time = rtc_generic_get_time,
    198	.set_time = rtc_generic_set_time,
    199};
    200
    201static int __init rtc_init(void)
    202{
    203	struct platform_device *pdev;
    204
    205	pdev = platform_device_register_data(NULL, "rtc-generic", -1,
    206					     &rtc_generic_ops,
    207					     sizeof(rtc_generic_ops));
    208
    209	return PTR_ERR_OR_ZERO(pdev);
    210}
    211device_initcall(rtc_init);
    212#endif
    213
    214void read_persistent_clock64(struct timespec64 *ts)
    215{
    216	static struct pdc_tod tod_data;
    217	if (pdc_tod_read(&tod_data) == 0) {
    218		ts->tv_sec = tod_data.tod_sec;
    219		ts->tv_nsec = tod_data.tod_usec * 1000;
    220	} else {
    221		printk(KERN_ERR "Error reading tod clock\n");
    222	        ts->tv_sec = 0;
    223		ts->tv_nsec = 0;
    224	}
    225}
    226
    227
    228static u64 notrace read_cr16_sched_clock(void)
    229{
    230	return get_cycles();
    231}
    232
    233
    234/*
    235 * timer interrupt and sched_clock() initialization
    236 */
    237
    238void __init time_init(void)
    239{
    240	unsigned long cr16_hz;
    241
    242	clocktick = (100 * PAGE0->mem_10msec) / HZ;
    243	start_cpu_itimer();	/* get CPU 0 started */
    244
    245	cr16_hz = 100 * PAGE0->mem_10msec;  /* Hz */
    246
    247	/* register as sched_clock source */
    248	sched_clock_register(read_cr16_sched_clock, BITS_PER_LONG, cr16_hz);
    249}
    250
    251static int __init init_cr16_clocksource(void)
    252{
    253	/*
    254	 * The cr16 interval timers are not synchronized across CPUs.
    255	 */
    256	if (num_online_cpus() > 1 && !running_on_qemu) {
    257		clocksource_cr16.name = "cr16_unstable";
    258		clocksource_cr16.flags = CLOCK_SOURCE_UNSTABLE;
    259		clocksource_cr16.rating = 0;
    260	}
    261
    262	/* register at clocksource framework */
    263	clocksource_register_hz(&clocksource_cr16,
    264		100 * PAGE0->mem_10msec);
    265
    266	return 0;
    267}
    268
    269device_initcall(init_cr16_clocksource);