cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

dbl_float.h (36084B)


      1/* SPDX-License-Identifier: GPL-2.0-or-later */
      2/*
      3 * Linux/PA-RISC Project (http://www.parisc-linux.org/)
      4 *
      5 * Floating-point emulation code
      6 *  Copyright (C) 2001 Hewlett-Packard (Paul Bame) <bame@debian.org>
      7 */
      8#ifdef __NO_PA_HDRS
      9    PA header file -- do not include this header file for non-PA builds.
     10#endif
     11
     12/* 32-bit word grabbing functions */
     13#define Dbl_firstword(value) Dallp1(value)
     14#define Dbl_secondword(value) Dallp2(value)
     15#define Dbl_thirdword(value) dummy_location
     16#define Dbl_fourthword(value) dummy_location
     17
     18#define Dbl_sign(object) Dsign(object)
     19#define Dbl_exponent(object) Dexponent(object)
     20#define Dbl_signexponent(object) Dsignexponent(object)
     21#define Dbl_mantissap1(object) Dmantissap1(object)
     22#define Dbl_mantissap2(object) Dmantissap2(object)
     23#define Dbl_exponentmantissap1(object) Dexponentmantissap1(object)
     24#define Dbl_allp1(object) Dallp1(object)
     25#define Dbl_allp2(object) Dallp2(object)
     26
     27/* dbl_and_signs ANDs the sign bits of each argument and puts the result
     28 * into the first argument. dbl_or_signs ors those same sign bits */
     29#define Dbl_and_signs( src1dst, src2)		\
     30    Dallp1(src1dst) = (Dallp1(src2)|~((unsigned int)1<<31)) & Dallp1(src1dst)
     31#define Dbl_or_signs( src1dst, src2)		\
     32    Dallp1(src1dst) = (Dallp1(src2)&((unsigned int)1<<31)) | Dallp1(src1dst)
     33
     34/* The hidden bit is always the low bit of the exponent */
     35#define Dbl_clear_exponent_set_hidden(srcdst) Deposit_dexponent(srcdst,1)
     36#define Dbl_clear_signexponent_set_hidden(srcdst) \
     37    Deposit_dsignexponent(srcdst,1)
     38#define Dbl_clear_sign(srcdst) Dallp1(srcdst) &= ~((unsigned int)1<<31)
     39#define Dbl_clear_signexponent(srcdst) \
     40    Dallp1(srcdst) &= Dmantissap1((unsigned int)-1)
     41
     42/* Exponent field for doubles has already been cleared and may be
     43 * included in the shift.  Here we need to generate two double width
     44 * variable shifts.  The insignificant bits can be ignored.
     45 *      MTSAR f(varamount)
     46 *      VSHD	srcdst.high,srcdst.low => srcdst.low
     47 *	VSHD	0,srcdst.high => srcdst.high 
     48 * This is very difficult to model with C expressions since the shift amount
     49 * could exceed 32.  */
     50/* varamount must be less than 64 */
     51#define Dbl_rightshift(srcdstA, srcdstB, varamount)			\
     52    {if((varamount) >= 32) {						\
     53        Dallp2(srcdstB) = Dallp1(srcdstA) >> (varamount-32);		\
     54        Dallp1(srcdstA)=0;						\
     55    }									\
     56    else if(varamount > 0) {						\
     57	Variable_shift_double(Dallp1(srcdstA), Dallp2(srcdstB), 	\
     58	  (varamount), Dallp2(srcdstB));				\
     59	Dallp1(srcdstA) >>= varamount;					\
     60    } }
     61/* varamount must be less than 64 */
     62#define Dbl_rightshift_exponentmantissa(srcdstA, srcdstB, varamount)	\
     63    {if((varamount) >= 32) {						\
     64        Dallp2(srcdstB) = Dexponentmantissap1(srcdstA) >> (varamount-32); \
     65	Dallp1(srcdstA) &= ((unsigned int)1<<31);  /* clear expmant field */ \
     66    }									\
     67    else if(varamount > 0) {						\
     68	Variable_shift_double(Dexponentmantissap1(srcdstA), Dallp2(srcdstB), \
     69	(varamount), Dallp2(srcdstB));					\
     70	Deposit_dexponentmantissap1(srcdstA,				\
     71	    (Dexponentmantissap1(srcdstA)>>varamount));			\
     72    } }
     73/* varamount must be less than 64 */
     74#define Dbl_leftshift(srcdstA, srcdstB, varamount)			\
     75    {if((varamount) >= 32) {						\
     76	Dallp1(srcdstA) = Dallp2(srcdstB) << (varamount-32);		\
     77	Dallp2(srcdstB)=0;						\
     78    }									\
     79    else {								\
     80	if ((varamount) > 0) {						\
     81	    Dallp1(srcdstA) = (Dallp1(srcdstA) << (varamount)) |	\
     82		(Dallp2(srcdstB) >> (32-(varamount)));			\
     83	    Dallp2(srcdstB) <<= varamount;				\
     84	}								\
     85    } }
     86#define Dbl_leftshiftby1_withextent(lefta,leftb,right,resulta,resultb)	\
     87    Shiftdouble(Dallp1(lefta), Dallp2(leftb), 31, Dallp1(resulta));	\
     88    Shiftdouble(Dallp2(leftb), Extall(right), 31, Dallp2(resultb)) 
     89    
     90#define Dbl_rightshiftby1_withextent(leftb,right,dst)		\
     91    Extall(dst) = (Dallp2(leftb) << 31) | ((unsigned int)Extall(right) >> 1) | \
     92		  Extlow(right)
     93
     94#define Dbl_arithrightshiftby1(srcdstA,srcdstB)			\
     95    Shiftdouble(Dallp1(srcdstA),Dallp2(srcdstB),1,Dallp2(srcdstB));\
     96    Dallp1(srcdstA) = (int)Dallp1(srcdstA) >> 1
     97   
     98/* Sign extend the sign bit with an integer destination */
     99#define Dbl_signextendedsign(value)  Dsignedsign(value)
    100
    101#define Dbl_isone_hidden(dbl_value) (Is_dhidden(dbl_value)!=0)
    102/* Singles and doubles may include the sign and exponent fields.  The
    103 * hidden bit and the hidden overflow must be included. */
    104#define Dbl_increment(dbl_valueA,dbl_valueB) \
    105    if( (Dallp2(dbl_valueB) += 1) == 0 )  Dallp1(dbl_valueA) += 1
    106#define Dbl_increment_mantissa(dbl_valueA,dbl_valueB) \
    107    if( (Dmantissap2(dbl_valueB) += 1) == 0 )  \
    108    Deposit_dmantissap1(dbl_valueA,dbl_valueA+1)
    109#define Dbl_decrement(dbl_valueA,dbl_valueB) \
    110    if( Dallp2(dbl_valueB) == 0 )  Dallp1(dbl_valueA) -= 1; \
    111    Dallp2(dbl_valueB) -= 1
    112
    113#define Dbl_isone_sign(dbl_value) (Is_dsign(dbl_value)!=0)
    114#define Dbl_isone_hiddenoverflow(dbl_value) (Is_dhiddenoverflow(dbl_value)!=0)
    115#define Dbl_isone_lowmantissap1(dbl_valueA) (Is_dlowp1(dbl_valueA)!=0)
    116#define Dbl_isone_lowmantissap2(dbl_valueB) (Is_dlowp2(dbl_valueB)!=0)
    117#define Dbl_isone_signaling(dbl_value) (Is_dsignaling(dbl_value)!=0)
    118#define Dbl_is_signalingnan(dbl_value) (Dsignalingnan(dbl_value)==0xfff)
    119#define Dbl_isnotzero(dbl_valueA,dbl_valueB) \
    120    (Dallp1(dbl_valueA) || Dallp2(dbl_valueB))
    121#define Dbl_isnotzero_hiddenhigh7mantissa(dbl_value) \
    122    (Dhiddenhigh7mantissa(dbl_value)!=0)
    123#define Dbl_isnotzero_exponent(dbl_value) (Dexponent(dbl_value)!=0)
    124#define Dbl_isnotzero_mantissa(dbl_valueA,dbl_valueB) \
    125    (Dmantissap1(dbl_valueA) || Dmantissap2(dbl_valueB))
    126#define Dbl_isnotzero_mantissap1(dbl_valueA) (Dmantissap1(dbl_valueA)!=0)
    127#define Dbl_isnotzero_mantissap2(dbl_valueB) (Dmantissap2(dbl_valueB)!=0)
    128#define Dbl_isnotzero_exponentmantissa(dbl_valueA,dbl_valueB) \
    129    (Dexponentmantissap1(dbl_valueA) || Dmantissap2(dbl_valueB))
    130#define Dbl_isnotzero_low4p2(dbl_value) (Dlow4p2(dbl_value)!=0)
    131#define Dbl_iszero(dbl_valueA,dbl_valueB) (Dallp1(dbl_valueA)==0 && \
    132    Dallp2(dbl_valueB)==0)
    133#define Dbl_iszero_allp1(dbl_value) (Dallp1(dbl_value)==0)
    134#define Dbl_iszero_allp2(dbl_value) (Dallp2(dbl_value)==0)
    135#define Dbl_iszero_hidden(dbl_value) (Is_dhidden(dbl_value)==0)
    136#define Dbl_iszero_hiddenoverflow(dbl_value) (Is_dhiddenoverflow(dbl_value)==0)
    137#define Dbl_iszero_hiddenhigh3mantissa(dbl_value) \
    138    (Dhiddenhigh3mantissa(dbl_value)==0)
    139#define Dbl_iszero_hiddenhigh7mantissa(dbl_value) \
    140    (Dhiddenhigh7mantissa(dbl_value)==0)
    141#define Dbl_iszero_sign(dbl_value) (Is_dsign(dbl_value)==0)
    142#define Dbl_iszero_exponent(dbl_value) (Dexponent(dbl_value)==0)
    143#define Dbl_iszero_mantissa(dbl_valueA,dbl_valueB) \
    144    (Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0)
    145#define Dbl_iszero_exponentmantissa(dbl_valueA,dbl_valueB) \
    146    (Dexponentmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0)
    147#define Dbl_isinfinity_exponent(dbl_value)		\
    148    (Dexponent(dbl_value)==DBL_INFINITY_EXPONENT)
    149#define Dbl_isnotinfinity_exponent(dbl_value)		\
    150    (Dexponent(dbl_value)!=DBL_INFINITY_EXPONENT)
    151#define Dbl_isinfinity(dbl_valueA,dbl_valueB)			\
    152    (Dexponent(dbl_valueA)==DBL_INFINITY_EXPONENT &&	\
    153    Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0)
    154#define Dbl_isnan(dbl_valueA,dbl_valueB)		\
    155    (Dexponent(dbl_valueA)==DBL_INFINITY_EXPONENT &&	\
    156    (Dmantissap1(dbl_valueA)!=0 || Dmantissap2(dbl_valueB)!=0))
    157#define Dbl_isnotnan(dbl_valueA,dbl_valueB)		\
    158    (Dexponent(dbl_valueA)!=DBL_INFINITY_EXPONENT ||	\
    159    (Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0))
    160
    161#define Dbl_islessthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b)	\
    162    (Dallp1(dbl_op1a) < Dallp1(dbl_op2a) ||			\
    163     (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) &&			\
    164      Dallp2(dbl_op1b) < Dallp2(dbl_op2b)))
    165#define Dbl_isgreaterthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b)	\
    166    (Dallp1(dbl_op1a) > Dallp1(dbl_op2a) ||			\
    167     (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) &&			\
    168      Dallp2(dbl_op1b) > Dallp2(dbl_op2b)))
    169#define Dbl_isnotlessthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b)	\
    170    (Dallp1(dbl_op1a) > Dallp1(dbl_op2a) ||			\
    171     (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) &&			\
    172      Dallp2(dbl_op1b) >= Dallp2(dbl_op2b)))
    173#define Dbl_isnotgreaterthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b) \
    174    (Dallp1(dbl_op1a) < Dallp1(dbl_op2a) ||			\
    175     (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) &&			\
    176      Dallp2(dbl_op1b) <= Dallp2(dbl_op2b)))
    177#define Dbl_isequal(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b)	\
    178     ((Dallp1(dbl_op1a) == Dallp1(dbl_op2a)) &&			\
    179      (Dallp2(dbl_op1b) == Dallp2(dbl_op2b)))
    180
    181#define Dbl_leftshiftby8(dbl_valueA,dbl_valueB) \
    182    Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),24,Dallp1(dbl_valueA)); \
    183    Dallp2(dbl_valueB) <<= 8
    184#define Dbl_leftshiftby7(dbl_valueA,dbl_valueB) \
    185    Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),25,Dallp1(dbl_valueA)); \
    186    Dallp2(dbl_valueB) <<= 7
    187#define Dbl_leftshiftby4(dbl_valueA,dbl_valueB) \
    188    Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),28,Dallp1(dbl_valueA)); \
    189    Dallp2(dbl_valueB) <<= 4
    190#define Dbl_leftshiftby3(dbl_valueA,dbl_valueB) \
    191    Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),29,Dallp1(dbl_valueA)); \
    192    Dallp2(dbl_valueB) <<= 3
    193#define Dbl_leftshiftby2(dbl_valueA,dbl_valueB) \
    194    Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),30,Dallp1(dbl_valueA)); \
    195    Dallp2(dbl_valueB) <<= 2
    196#define Dbl_leftshiftby1(dbl_valueA,dbl_valueB) \
    197    Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),31,Dallp1(dbl_valueA)); \
    198    Dallp2(dbl_valueB) <<= 1
    199
    200#define Dbl_rightshiftby8(dbl_valueA,dbl_valueB) \
    201    Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),8,Dallp2(dbl_valueB)); \
    202    Dallp1(dbl_valueA) >>= 8
    203#define Dbl_rightshiftby4(dbl_valueA,dbl_valueB) \
    204    Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),4,Dallp2(dbl_valueB)); \
    205    Dallp1(dbl_valueA) >>= 4
    206#define Dbl_rightshiftby2(dbl_valueA,dbl_valueB) \
    207    Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),2,Dallp2(dbl_valueB)); \
    208    Dallp1(dbl_valueA) >>= 2
    209#define Dbl_rightshiftby1(dbl_valueA,dbl_valueB) \
    210    Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),1,Dallp2(dbl_valueB)); \
    211    Dallp1(dbl_valueA) >>= 1
    212    
    213/* This magnitude comparison uses the signless first words and
    214 * the regular part2 words.  The comparison is graphically:
    215 *
    216 *       1st greater?  -------------
    217 *                                 |
    218 *       1st less?-----------------+---------
    219 *                                 |        |
    220 *       2nd greater or equal----->|        |
    221 *                               False     True
    222 */
    223#define Dbl_ismagnitudeless(leftB,rightB,signlessleft,signlessright)	\
    224      ((signlessleft <= signlessright) &&				\
    225       ( (signlessleft < signlessright) || (Dallp2(leftB)<Dallp2(rightB)) ))
    226    
    227#define Dbl_copytoint_exponentmantissap1(src,dest) \
    228    dest = Dexponentmantissap1(src)
    229
    230/* A quiet NaN has the high mantissa bit clear and at least on other (in this
    231 * case the adjacent bit) bit set. */
    232#define Dbl_set_quiet(dbl_value) Deposit_dhigh2mantissa(dbl_value,1)
    233#define Dbl_set_exponent(dbl_value, exp) Deposit_dexponent(dbl_value,exp)
    234
    235#define Dbl_set_mantissa(desta,destb,valuea,valueb)	\
    236    Deposit_dmantissap1(desta,valuea);			\
    237    Dmantissap2(destb) = Dmantissap2(valueb)
    238#define Dbl_set_mantissap1(desta,valuea)		\
    239    Deposit_dmantissap1(desta,valuea)
    240#define Dbl_set_mantissap2(destb,valueb)		\
    241    Dmantissap2(destb) = Dmantissap2(valueb)
    242
    243#define Dbl_set_exponentmantissa(desta,destb,valuea,valueb)	\
    244    Deposit_dexponentmantissap1(desta,valuea);			\
    245    Dmantissap2(destb) = Dmantissap2(valueb)
    246#define Dbl_set_exponentmantissap1(dest,value)			\
    247    Deposit_dexponentmantissap1(dest,value)
    248
    249#define Dbl_copyfromptr(src,desta,destb) \
    250    Dallp1(desta) = src->wd0;		\
    251    Dallp2(destb) = src->wd1 
    252#define Dbl_copytoptr(srca,srcb,dest)	\
    253    dest->wd0 = Dallp1(srca);		\
    254    dest->wd1 = Dallp2(srcb)
    255
    256/*  An infinity is represented with the max exponent and a zero mantissa */
    257#define Dbl_setinfinity_exponent(dbl_value) \
    258    Deposit_dexponent(dbl_value,DBL_INFINITY_EXPONENT)
    259#define Dbl_setinfinity_exponentmantissa(dbl_valueA,dbl_valueB)	\
    260    Deposit_dexponentmantissap1(dbl_valueA, 			\
    261    (DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH))));	\
    262    Dmantissap2(dbl_valueB) = 0
    263#define Dbl_setinfinitypositive(dbl_valueA,dbl_valueB)		\
    264    Dallp1(dbl_valueA) 						\
    265        = (DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH)));	\
    266    Dmantissap2(dbl_valueB) = 0
    267#define Dbl_setinfinitynegative(dbl_valueA,dbl_valueB)		\
    268    Dallp1(dbl_valueA) = ((unsigned int)1<<31) |		\
    269         (DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH)));	\
    270    Dmantissap2(dbl_valueB) = 0
    271#define Dbl_setinfinity(dbl_valueA,dbl_valueB,sign)		\
    272    Dallp1(dbl_valueA) = ((unsigned int)sign << 31) | 		\
    273	(DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH)));	\
    274    Dmantissap2(dbl_valueB) = 0
    275
    276#define Dbl_sethigh4bits(dbl_value, extsign) Deposit_dhigh4p1(dbl_value,extsign)
    277#define Dbl_set_sign(dbl_value,sign) Deposit_dsign(dbl_value,sign)
    278#define Dbl_invert_sign(dbl_value) Deposit_dsign(dbl_value,~Dsign(dbl_value))
    279#define Dbl_setone_sign(dbl_value) Deposit_dsign(dbl_value,1)
    280#define Dbl_setone_lowmantissap2(dbl_value) Deposit_dlowp2(dbl_value,1)
    281#define Dbl_setzero_sign(dbl_value) Dallp1(dbl_value) &= 0x7fffffff
    282#define Dbl_setzero_exponent(dbl_value) 		\
    283    Dallp1(dbl_value) &= 0x800fffff
    284#define Dbl_setzero_mantissa(dbl_valueA,dbl_valueB)	\
    285    Dallp1(dbl_valueA) &= 0xfff00000; 			\
    286    Dallp2(dbl_valueB) = 0
    287#define Dbl_setzero_mantissap1(dbl_value) Dallp1(dbl_value) &= 0xfff00000
    288#define Dbl_setzero_mantissap2(dbl_value) Dallp2(dbl_value) = 0
    289#define Dbl_setzero_exponentmantissa(dbl_valueA,dbl_valueB)	\
    290    Dallp1(dbl_valueA) &= 0x80000000;		\
    291    Dallp2(dbl_valueB) = 0
    292#define Dbl_setzero_exponentmantissap1(dbl_valueA)	\
    293    Dallp1(dbl_valueA) &= 0x80000000
    294#define Dbl_setzero(dbl_valueA,dbl_valueB) \
    295    Dallp1(dbl_valueA) = 0; Dallp2(dbl_valueB) = 0
    296#define Dbl_setzerop1(dbl_value) Dallp1(dbl_value) = 0
    297#define Dbl_setzerop2(dbl_value) Dallp2(dbl_value) = 0
    298#define Dbl_setnegativezero(dbl_value) \
    299    Dallp1(dbl_value) = (unsigned int)1 << 31; Dallp2(dbl_value) = 0
    300#define Dbl_setnegativezerop1(dbl_value) Dallp1(dbl_value) = (unsigned int)1<<31
    301
    302/* Use the following macro for both overflow & underflow conditions */
    303#define ovfl -
    304#define unfl +
    305#define Dbl_setwrapped_exponent(dbl_value,exponent,op) \
    306    Deposit_dexponent(dbl_value,(exponent op DBL_WRAP))
    307
    308#define Dbl_setlargestpositive(dbl_valueA,dbl_valueB) 			\
    309    Dallp1(dbl_valueA) = ((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) \
    310			| ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 );		\
    311    Dallp2(dbl_valueB) = 0xFFFFFFFF
    312#define Dbl_setlargestnegative(dbl_valueA,dbl_valueB) 			\
    313    Dallp1(dbl_valueA) = ((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) \
    314			| ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 )		\
    315			| ((unsigned int)1<<31);			\
    316    Dallp2(dbl_valueB) = 0xFFFFFFFF
    317#define Dbl_setlargest_exponentmantissa(dbl_valueA,dbl_valueB)		\
    318    Deposit_dexponentmantissap1(dbl_valueA,				\
    319	(((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH)))		\
    320			| ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 )));	\
    321    Dallp2(dbl_valueB) = 0xFFFFFFFF
    322
    323#define Dbl_setnegativeinfinity(dbl_valueA,dbl_valueB) 			\
    324    Dallp1(dbl_valueA) = ((1<<DBL_EXP_LENGTH) | DBL_INFINITY_EXPONENT) 	\
    325			 << (32-(1+DBL_EXP_LENGTH)) ; 			\
    326    Dallp2(dbl_valueB) = 0
    327#define Dbl_setlargest(dbl_valueA,dbl_valueB,sign)			\
    328    Dallp1(dbl_valueA) = ((unsigned int)sign << 31) |			\
    329         ((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) |	 	\
    330	 ((1 << (32-(1+DBL_EXP_LENGTH))) - 1 );				\
    331    Dallp2(dbl_valueB) = 0xFFFFFFFF
    332    
    333
    334/* The high bit is always zero so arithmetic or logical shifts will work. */
    335#define Dbl_right_align(srcdstA,srcdstB,shift,extent)			\
    336    if( shift >= 32 ) 							\
    337	{								\
    338	/* Big shift requires examining the portion shift off 		\
    339	the end to properly set inexact.  */				\
    340	if(shift < 64)							\
    341	    {								\
    342	    if(shift > 32)						\
    343		{							\
    344	        Variable_shift_double(Dallp1(srcdstA),Dallp2(srcdstB),	\
    345		 shift-32, Extall(extent));				\
    346	        if(Dallp2(srcdstB) << 64 - (shift)) Ext_setone_low(extent); \
    347	        }							\
    348	    else Extall(extent) = Dallp2(srcdstB);			\
    349	    Dallp2(srcdstB) = Dallp1(srcdstA) >> (shift - 32);		\
    350	    }								\
    351	else								\
    352	    {								\
    353	    Extall(extent) = Dallp1(srcdstA);				\
    354	    if(Dallp2(srcdstB)) Ext_setone_low(extent);			\
    355	    Dallp2(srcdstB) = 0;					\
    356	    }								\
    357	Dallp1(srcdstA) = 0;						\
    358	}								\
    359    else								\
    360	{								\
    361	/* Small alignment is simpler.  Extension is easily set. */	\
    362	if (shift > 0)							\
    363	    {								\
    364	    Extall(extent) = Dallp2(srcdstB) << 32 - (shift);		\
    365	    Variable_shift_double(Dallp1(srcdstA),Dallp2(srcdstB),shift, \
    366	     Dallp2(srcdstB));						\
    367	    Dallp1(srcdstA) >>= shift;					\
    368	    }								\
    369	else Extall(extent) = 0;					\
    370	}
    371
    372/* 
    373 * Here we need to shift the result right to correct for an overshift
    374 * (due to the exponent becoming negative) during normalization.
    375 */
    376#define Dbl_fix_overshift(srcdstA,srcdstB,shift,extent)			\
    377	    Extall(extent) = Dallp2(srcdstB) << 32 - (shift);		\
    378	    Dallp2(srcdstB) = (Dallp1(srcdstA) << 32 - (shift)) |	\
    379		(Dallp2(srcdstB) >> (shift));				\
    380	    Dallp1(srcdstA) = Dallp1(srcdstA) >> shift
    381
    382#define Dbl_hiddenhigh3mantissa(dbl_value) Dhiddenhigh3mantissa(dbl_value)
    383#define Dbl_hidden(dbl_value) Dhidden(dbl_value)
    384#define Dbl_lowmantissap2(dbl_value) Dlowp2(dbl_value)
    385
    386/* The left argument is never smaller than the right argument */
    387#define Dbl_subtract(lefta,leftb,righta,rightb,resulta,resultb)			\
    388    if( Dallp2(rightb) > Dallp2(leftb) ) Dallp1(lefta)--;	\
    389    Dallp2(resultb) = Dallp2(leftb) - Dallp2(rightb);		\
    390    Dallp1(resulta) = Dallp1(lefta) - Dallp1(righta)
    391
    392/* Subtract right augmented with extension from left augmented with zeros and
    393 * store into result and extension. */
    394#define Dbl_subtract_withextension(lefta,leftb,righta,rightb,extent,resulta,resultb)	\
    395    Dbl_subtract(lefta,leftb,righta,rightb,resulta,resultb);		\
    396    if( (Extall(extent) = 0-Extall(extent)) )				\
    397        {								\
    398        if((Dallp2(resultb)--) == 0) Dallp1(resulta)--;			\
    399        }
    400
    401#define Dbl_addition(lefta,leftb,righta,rightb,resulta,resultb)		\
    402    /* If the sum of the low words is less than either source, then	\
    403     * an overflow into the next word occurred. */			\
    404    Dallp1(resulta) = Dallp1(lefta) + Dallp1(righta);			\
    405    if((Dallp2(resultb) = Dallp2(leftb) + Dallp2(rightb)) < Dallp2(rightb)) \
    406	Dallp1(resulta)++
    407
    408#define Dbl_xortointp1(left,right,result)			\
    409    result = Dallp1(left) XOR Dallp1(right)
    410
    411#define Dbl_xorfromintp1(left,right,result)			\
    412    Dallp1(result) = left XOR Dallp1(right)
    413
    414#define Dbl_swap_lower(left,right)				\
    415    Dallp2(left)  = Dallp2(left) XOR Dallp2(right);		\
    416    Dallp2(right) = Dallp2(left) XOR Dallp2(right);		\
    417    Dallp2(left)  = Dallp2(left) XOR Dallp2(right)
    418
    419/* Need to Initialize */
    420#define Dbl_makequietnan(desta,destb)					\
    421    Dallp1(desta) = ((DBL_EMAX+DBL_BIAS)+1)<< (32-(1+DBL_EXP_LENGTH))	\
    422                 | (1<<(32-(1+DBL_EXP_LENGTH+2)));			\
    423    Dallp2(destb) = 0
    424#define Dbl_makesignalingnan(desta,destb)				\
    425    Dallp1(desta) = ((DBL_EMAX+DBL_BIAS)+1)<< (32-(1+DBL_EXP_LENGTH))	\
    426                 | (1<<(32-(1+DBL_EXP_LENGTH+1)));			\
    427    Dallp2(destb) = 0
    428
    429#define Dbl_normalize(dbl_opndA,dbl_opndB,exponent)			\
    430	while(Dbl_iszero_hiddenhigh7mantissa(dbl_opndA)) {		\
    431		Dbl_leftshiftby8(dbl_opndA,dbl_opndB);			\
    432		exponent -= 8;						\
    433	}								\
    434	if(Dbl_iszero_hiddenhigh3mantissa(dbl_opndA)) {			\
    435		Dbl_leftshiftby4(dbl_opndA,dbl_opndB);			\
    436		exponent -= 4;						\
    437	}								\
    438	while(Dbl_iszero_hidden(dbl_opndA)) {				\
    439		Dbl_leftshiftby1(dbl_opndA,dbl_opndB);			\
    440		exponent -= 1;						\
    441	}
    442
    443#define Twoword_add(src1dstA,src1dstB,src2A,src2B)		\
    444	/* 							\
    445	 * want this macro to generate:				\
    446	 *	ADD	src1dstB,src2B,src1dstB;		\
    447	 *	ADDC	src1dstA,src2A,src1dstA;		\
    448	 */							\
    449	if ((src1dstB) + (src2B) < (src1dstB)) Dallp1(src1dstA)++; \
    450	Dallp1(src1dstA) += (src2A);				\
    451	Dallp2(src1dstB) += (src2B)
    452
    453#define Twoword_subtract(src1dstA,src1dstB,src2A,src2B)		\
    454	/* 							\
    455	 * want this macro to generate:				\
    456	 *	SUB	src1dstB,src2B,src1dstB;		\
    457	 *	SUBB	src1dstA,src2A,src1dstA;		\
    458	 */							\
    459	if ((src1dstB) < (src2B)) Dallp1(src1dstA)--;		\
    460	Dallp1(src1dstA) -= (src2A);				\
    461	Dallp2(src1dstB) -= (src2B)
    462
    463#define Dbl_setoverflow(resultA,resultB)				\
    464	/* set result to infinity or largest number */			\
    465	switch (Rounding_mode()) {					\
    466		case ROUNDPLUS:						\
    467			if (Dbl_isone_sign(resultA)) {			\
    468				Dbl_setlargestnegative(resultA,resultB); \
    469			}						\
    470			else {						\
    471				Dbl_setinfinitypositive(resultA,resultB); \
    472			}						\
    473			break;						\
    474		case ROUNDMINUS:					\
    475			if (Dbl_iszero_sign(resultA)) {			\
    476				Dbl_setlargestpositive(resultA,resultB); \
    477			}						\
    478			else {						\
    479				Dbl_setinfinitynegative(resultA,resultB); \
    480			}						\
    481			break;						\
    482		case ROUNDNEAREST:					\
    483			Dbl_setinfinity_exponentmantissa(resultA,resultB); \
    484			break;						\
    485		case ROUNDZERO:						\
    486			Dbl_setlargest_exponentmantissa(resultA,resultB); \
    487	}
    488
    489#define Dbl_denormalize(opndp1,opndp2,exponent,guard,sticky,inexact)	\
    490    Dbl_clear_signexponent_set_hidden(opndp1);				\
    491    if (exponent >= (1-DBL_P)) {					\
    492	if (exponent >= -31) {						\
    493	    guard = (Dallp2(opndp2) >> -exponent) & 1;			\
    494	    if (exponent < 0) sticky |= Dallp2(opndp2) << (32+exponent); \
    495	    if (exponent > -31) {					\
    496		Variable_shift_double(opndp1,opndp2,1-exponent,opndp2);	\
    497		Dallp1(opndp1) >>= 1-exponent;				\
    498	    }								\
    499	    else {							\
    500		Dallp2(opndp2) = Dallp1(opndp1);			\
    501		Dbl_setzerop1(opndp1);					\
    502	    }								\
    503	}								\
    504	else {								\
    505	    guard = (Dallp1(opndp1) >> -32-exponent) & 1;		\
    506	    if (exponent == -32) sticky |= Dallp2(opndp2);		\
    507	    else sticky |= (Dallp2(opndp2) | Dallp1(opndp1) << 64+exponent); \
    508	    Dallp2(opndp2) = Dallp1(opndp1) >> -31-exponent;		\
    509	    Dbl_setzerop1(opndp1);					\
    510	}								\
    511	inexact = guard | sticky;					\
    512    }									\
    513    else {								\
    514	guard = 0;							\
    515	sticky |= (Dallp1(opndp1) | Dallp2(opndp2));			\
    516	Dbl_setzero(opndp1,opndp2);					\
    517	inexact = sticky;						\
    518    }
    519
    520/* 
    521 * The fused multiply add instructions requires a double extended format,
    522 * with 106 bits of mantissa.
    523 */
    524#define DBLEXT_THRESHOLD 106
    525
    526#define Dblext_setzero(valA,valB,valC,valD)	\
    527    Dextallp1(valA) = 0; Dextallp2(valB) = 0;	\
    528    Dextallp3(valC) = 0; Dextallp4(valD) = 0
    529
    530
    531#define Dblext_isnotzero_mantissap3(valC) (Dextallp3(valC)!=0)
    532#define Dblext_isnotzero_mantissap4(valD) (Dextallp3(valD)!=0)
    533#define Dblext_isone_lowp2(val) (Dextlowp2(val)!=0)
    534#define Dblext_isone_highp3(val) (Dexthighp3(val)!=0)
    535#define Dblext_isnotzero_low31p3(val) (Dextlow31p3(val)!=0)
    536#define Dblext_iszero(valA,valB,valC,valD) (Dextallp1(valA)==0 && \
    537    Dextallp2(valB)==0 && Dextallp3(valC)==0 && Dextallp4(valD)==0)
    538
    539#define Dblext_copy(srca,srcb,srcc,srcd,desta,destb,destc,destd) \
    540    Dextallp1(desta) = Dextallp4(srca);	\
    541    Dextallp2(destb) = Dextallp4(srcb);	\
    542    Dextallp3(destc) = Dextallp4(srcc);	\
    543    Dextallp4(destd) = Dextallp4(srcd)
    544
    545#define Dblext_swap_lower(leftp2,leftp3,leftp4,rightp2,rightp3,rightp4)  \
    546    Dextallp2(leftp2)  = Dextallp2(leftp2) XOR Dextallp2(rightp2);  \
    547    Dextallp2(rightp2) = Dextallp2(leftp2) XOR Dextallp2(rightp2);  \
    548    Dextallp2(leftp2)  = Dextallp2(leftp2) XOR Dextallp2(rightp2);  \
    549    Dextallp3(leftp3)  = Dextallp3(leftp3) XOR Dextallp3(rightp3);  \
    550    Dextallp3(rightp3) = Dextallp3(leftp3) XOR Dextallp3(rightp3);  \
    551    Dextallp3(leftp3)  = Dextallp3(leftp3) XOR Dextallp3(rightp3);  \
    552    Dextallp4(leftp4)  = Dextallp4(leftp4) XOR Dextallp4(rightp4);  \
    553    Dextallp4(rightp4) = Dextallp4(leftp4) XOR Dextallp4(rightp4);  \
    554    Dextallp4(leftp4)  = Dextallp4(leftp4) XOR Dextallp4(rightp4)
    555
    556#define Dblext_setone_lowmantissap4(dbl_value) Deposit_dextlowp4(dbl_value,1)
    557
    558/* The high bit is always zero so arithmetic or logical shifts will work. */
    559#define Dblext_right_align(srcdstA,srcdstB,srcdstC,srcdstD,shift) \
    560  {int shiftamt, sticky;						\
    561    shiftamt = shift % 32;						\
    562    sticky = 0;								\
    563    switch (shift/32) {							\
    564     case 0: if (shiftamt > 0) {					\
    565	        sticky = Dextallp4(srcdstD) << 32 - (shiftamt); 	\
    566                Variable_shift_double(Dextallp3(srcdstC),		\
    567		 Dextallp4(srcdstD),shiftamt,Dextallp4(srcdstD));	\
    568                Variable_shift_double(Dextallp2(srcdstB),		\
    569		 Dextallp3(srcdstC),shiftamt,Dextallp3(srcdstC));	\
    570                Variable_shift_double(Dextallp1(srcdstA),		\
    571		 Dextallp2(srcdstB),shiftamt,Dextallp2(srcdstB));	\
    572	        Dextallp1(srcdstA) >>= shiftamt;			\
    573	     }								\
    574	     break;							\
    575     case 1: if (shiftamt > 0) {					\
    576                sticky = (Dextallp3(srcdstC) << 31 - shiftamt) |	\
    577			 Dextallp4(srcdstD);				\
    578                Variable_shift_double(Dextallp2(srcdstB),		\
    579		 Dextallp3(srcdstC),shiftamt,Dextallp4(srcdstD));	\
    580                Variable_shift_double(Dextallp1(srcdstA),		\
    581		 Dextallp2(srcdstB),shiftamt,Dextallp3(srcdstC));	\
    582	     }								\
    583	     else {							\
    584		sticky = Dextallp4(srcdstD);				\
    585		Dextallp4(srcdstD) = Dextallp3(srcdstC);		\
    586		Dextallp3(srcdstC) = Dextallp2(srcdstB);		\
    587	     }								\
    588	     Dextallp2(srcdstB) = Dextallp1(srcdstA) >> shiftamt;	\
    589	     Dextallp1(srcdstA) = 0;					\
    590	     break;							\
    591     case 2: if (shiftamt > 0) {					\
    592                sticky = (Dextallp2(srcdstB) << 31 - shiftamt) |	\
    593			 Dextallp3(srcdstC) | Dextallp4(srcdstD);	\
    594                Variable_shift_double(Dextallp1(srcdstA),		\
    595		 Dextallp2(srcdstB),shiftamt,Dextallp4(srcdstD));	\
    596	     }								\
    597	     else {							\
    598		sticky = Dextallp3(srcdstC) | Dextallp4(srcdstD);	\
    599		Dextallp4(srcdstD) = Dextallp2(srcdstB);		\
    600	     }								\
    601	     Dextallp3(srcdstC) = Dextallp1(srcdstA) >> shiftamt;	\
    602	     Dextallp1(srcdstA) = Dextallp2(srcdstB) = 0;		\
    603	     break;							\
    604     case 3: if (shiftamt > 0) {					\
    605                sticky = (Dextallp1(srcdstA) << 31 - shiftamt) |	\
    606			 Dextallp2(srcdstB) | Dextallp3(srcdstC) |	\
    607			 Dextallp4(srcdstD);				\
    608	     }								\
    609	     else {							\
    610		sticky = Dextallp2(srcdstB) | Dextallp3(srcdstC) |	\
    611		    Dextallp4(srcdstD);					\
    612	     }								\
    613	     Dextallp4(srcdstD) = Dextallp1(srcdstA) >> shiftamt;	\
    614	     Dextallp1(srcdstA) = Dextallp2(srcdstB) = 0;		\
    615	     Dextallp3(srcdstC) = 0;					\
    616	     break;							\
    617    }									\
    618    if (sticky) Dblext_setone_lowmantissap4(srcdstD);			\
    619  }
    620
    621/* The left argument is never smaller than the right argument */
    622#define Dblext_subtract(lefta,leftb,leftc,leftd,righta,rightb,rightc,rightd,resulta,resultb,resultc,resultd) \
    623    if( Dextallp4(rightd) > Dextallp4(leftd) ) 			\
    624	if( (Dextallp3(leftc)--) == 0)				\
    625	    if( (Dextallp2(leftb)--) == 0) Dextallp1(lefta)--;	\
    626    Dextallp4(resultd) = Dextallp4(leftd) - Dextallp4(rightd);	\
    627    if( Dextallp3(rightc) > Dextallp3(leftc) ) 			\
    628        if( (Dextallp2(leftb)--) == 0) Dextallp1(lefta)--;	\
    629    Dextallp3(resultc) = Dextallp3(leftc) - Dextallp3(rightc);	\
    630    if( Dextallp2(rightb) > Dextallp2(leftb) ) Dextallp1(lefta)--; \
    631    Dextallp2(resultb) = Dextallp2(leftb) - Dextallp2(rightb);	\
    632    Dextallp1(resulta) = Dextallp1(lefta) - Dextallp1(righta)
    633
    634#define Dblext_addition(lefta,leftb,leftc,leftd,righta,rightb,rightc,rightd,resulta,resultb,resultc,resultd) \
    635    /* If the sum of the low words is less than either source, then \
    636     * an overflow into the next word occurred. */ \
    637    if ((Dextallp4(resultd) = Dextallp4(leftd)+Dextallp4(rightd)) < \
    638	Dextallp4(rightd)) \
    639	if((Dextallp3(resultc) = Dextallp3(leftc)+Dextallp3(rightc)+1) <= \
    640	    Dextallp3(rightc)) \
    641	    if((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)+1) \
    642	        <= Dextallp2(rightb))  \
    643		    Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \
    644	    else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta); \
    645	else \
    646	    if ((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)) < \
    647	        Dextallp2(rightb)) \
    648		    Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \
    649	    else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta); \
    650    else \
    651	if ((Dextallp3(resultc) = Dextallp3(leftc)+Dextallp3(rightc)) < \
    652	    Dextallp3(rightc))  \
    653	    if ((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)+1) \
    654	        <= Dextallp2(rightb)) \
    655		    Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \
    656	    else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta); \
    657	else \
    658	    if ((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)) < \
    659	        Dextallp2(rightb)) \
    660		    Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \
    661	    else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)
    662
    663
    664#define Dblext_arithrightshiftby1(srcdstA,srcdstB,srcdstC,srcdstD)	\
    665    Shiftdouble(Dextallp3(srcdstC),Dextallp4(srcdstD),1,Dextallp4(srcdstD)); \
    666    Shiftdouble(Dextallp2(srcdstB),Dextallp3(srcdstC),1,Dextallp3(srcdstC)); \
    667    Shiftdouble(Dextallp1(srcdstA),Dextallp2(srcdstB),1,Dextallp2(srcdstB)); \
    668    Dextallp1(srcdstA) = (int)Dextallp1(srcdstA) >> 1
    669   
    670#define Dblext_leftshiftby8(valA,valB,valC,valD) \
    671    Shiftdouble(Dextallp1(valA),Dextallp2(valB),24,Dextallp1(valA)); \
    672    Shiftdouble(Dextallp2(valB),Dextallp3(valC),24,Dextallp2(valB)); \
    673    Shiftdouble(Dextallp3(valC),Dextallp4(valD),24,Dextallp3(valC)); \
    674    Dextallp4(valD) <<= 8
    675#define Dblext_leftshiftby4(valA,valB,valC,valD) \
    676    Shiftdouble(Dextallp1(valA),Dextallp2(valB),28,Dextallp1(valA)); \
    677    Shiftdouble(Dextallp2(valB),Dextallp3(valC),28,Dextallp2(valB)); \
    678    Shiftdouble(Dextallp3(valC),Dextallp4(valD),28,Dextallp3(valC)); \
    679    Dextallp4(valD) <<= 4
    680#define Dblext_leftshiftby3(valA,valB,valC,valD) \
    681    Shiftdouble(Dextallp1(valA),Dextallp2(valB),29,Dextallp1(valA)); \
    682    Shiftdouble(Dextallp2(valB),Dextallp3(valC),29,Dextallp2(valB)); \
    683    Shiftdouble(Dextallp3(valC),Dextallp4(valD),29,Dextallp3(valC)); \
    684    Dextallp4(valD) <<= 3
    685#define Dblext_leftshiftby2(valA,valB,valC,valD) \
    686    Shiftdouble(Dextallp1(valA),Dextallp2(valB),30,Dextallp1(valA)); \
    687    Shiftdouble(Dextallp2(valB),Dextallp3(valC),30,Dextallp2(valB)); \
    688    Shiftdouble(Dextallp3(valC),Dextallp4(valD),30,Dextallp3(valC)); \
    689    Dextallp4(valD) <<= 2
    690#define Dblext_leftshiftby1(valA,valB,valC,valD) \
    691    Shiftdouble(Dextallp1(valA),Dextallp2(valB),31,Dextallp1(valA)); \
    692    Shiftdouble(Dextallp2(valB),Dextallp3(valC),31,Dextallp2(valB)); \
    693    Shiftdouble(Dextallp3(valC),Dextallp4(valD),31,Dextallp3(valC)); \
    694    Dextallp4(valD) <<= 1
    695
    696#define Dblext_rightshiftby4(valueA,valueB,valueC,valueD) \
    697    Shiftdouble(Dextallp3(valueC),Dextallp4(valueD),4,Dextallp4(valueD)); \
    698    Shiftdouble(Dextallp2(valueB),Dextallp3(valueC),4,Dextallp3(valueC)); \
    699    Shiftdouble(Dextallp1(valueA),Dextallp2(valueB),4,Dextallp2(valueB)); \
    700    Dextallp1(valueA) >>= 4
    701#define Dblext_rightshiftby1(valueA,valueB,valueC,valueD) \
    702    Shiftdouble(Dextallp3(valueC),Dextallp4(valueD),1,Dextallp4(valueD)); \
    703    Shiftdouble(Dextallp2(valueB),Dextallp3(valueC),1,Dextallp3(valueC)); \
    704    Shiftdouble(Dextallp1(valueA),Dextallp2(valueB),1,Dextallp2(valueB)); \
    705    Dextallp1(valueA) >>= 1
    706
    707#define Dblext_xortointp1(left,right,result) Dbl_xortointp1(left,right,result)
    708
    709#define Dblext_xorfromintp1(left,right,result) \
    710	Dbl_xorfromintp1(left,right,result)
    711
    712#define Dblext_copytoint_exponentmantissap1(src,dest) \
    713	Dbl_copytoint_exponentmantissap1(src,dest)
    714
    715#define Dblext_ismagnitudeless(leftB,rightB,signlessleft,signlessright) \
    716	Dbl_ismagnitudeless(leftB,rightB,signlessleft,signlessright)
    717
    718#define Dbl_copyto_dblext(src1,src2,dest1,dest2,dest3,dest4) \
    719	Dextallp1(dest1) = Dallp1(src1); Dextallp2(dest2) = Dallp2(src2); \
    720	Dextallp3(dest3) = 0; Dextallp4(dest4) = 0
    721
    722#define Dblext_set_sign(dbl_value,sign)  Dbl_set_sign(dbl_value,sign)  
    723#define Dblext_clear_signexponent_set_hidden(srcdst) \
    724	Dbl_clear_signexponent_set_hidden(srcdst) 
    725#define Dblext_clear_signexponent(srcdst) Dbl_clear_signexponent(srcdst) 
    726#define Dblext_clear_sign(srcdst) Dbl_clear_sign(srcdst) 
    727#define Dblext_isone_hidden(dbl_value) Dbl_isone_hidden(dbl_value) 
    728
    729/*
    730 * The Fourword_add() macro assumes that integers are 4 bytes in size.
    731 * It will break if this is not the case.
    732 */
    733
    734#define Fourword_add(src1dstA,src1dstB,src1dstC,src1dstD,src2A,src2B,src2C,src2D) \
    735	/* 								\
    736	 * want this macro to generate:					\
    737	 *	ADD	src1dstD,src2D,src1dstD;			\
    738	 *	ADDC	src1dstC,src2C,src1dstC;			\
    739	 *	ADDC	src1dstB,src2B,src1dstB;			\
    740	 *	ADDC	src1dstA,src2A,src1dstA;			\
    741	 */								\
    742	if ((unsigned int)(src1dstD += (src2D)) < (unsigned int)(src2D)) { \
    743	   if ((unsigned int)(src1dstC += (src2C) + 1) <=		\
    744	       (unsigned int)(src2C)) {					\
    745	     if ((unsigned int)(src1dstB += (src2B) + 1) <=		\
    746		 (unsigned int)(src2B)) src1dstA++;			\
    747	   }								\
    748	   else if ((unsigned int)(src1dstB += (src2B)) < 		\
    749		    (unsigned int)(src2B)) src1dstA++;			\
    750	}								\
    751	else {								\
    752	   if ((unsigned int)(src1dstC += (src2C)) <			\
    753	       (unsigned int)(src2C)) {					\
    754	      if ((unsigned int)(src1dstB += (src2B) + 1) <=		\
    755		  (unsigned int)(src2B)) src1dstA++;			\
    756	   }								\
    757	   else if ((unsigned int)(src1dstB += (src2B)) <		\
    758		    (unsigned int)(src2B)) src1dstA++;			\
    759	}								\
    760	src1dstA += (src2A)
    761
    762#define Dblext_denormalize(opndp1,opndp2,opndp3,opndp4,exponent,is_tiny) \
    763  {int shiftamt, sticky;						\
    764    is_tiny = TRUE;							\
    765    if (exponent == 0 && (Dextallp3(opndp3) || Dextallp4(opndp4))) {	\
    766	switch (Rounding_mode()) {					\
    767	case ROUNDPLUS:							\
    768		if (Dbl_iszero_sign(opndp1)) {				\
    769			Dbl_increment(opndp1,opndp2);			\
    770			if (Dbl_isone_hiddenoverflow(opndp1))		\
    771				is_tiny = FALSE;			\
    772			Dbl_decrement(opndp1,opndp2);			\
    773		}							\
    774		break;							\
    775	case ROUNDMINUS:						\
    776		if (Dbl_isone_sign(opndp1)) {				\
    777			Dbl_increment(opndp1,opndp2);			\
    778			if (Dbl_isone_hiddenoverflow(opndp1))		\
    779				is_tiny = FALSE;			\
    780			Dbl_decrement(opndp1,opndp2);			\
    781		}							\
    782		break;							\
    783	case ROUNDNEAREST:						\
    784		if (Dblext_isone_highp3(opndp3) &&			\
    785		    (Dblext_isone_lowp2(opndp2) || 			\
    786		     Dblext_isnotzero_low31p3(opndp3)))	{		\
    787			Dbl_increment(opndp1,opndp2);			\
    788			if (Dbl_isone_hiddenoverflow(opndp1))		\
    789				is_tiny = FALSE;			\
    790			Dbl_decrement(opndp1,opndp2);			\
    791		}							\
    792		break;							\
    793	}								\
    794    }									\
    795    Dblext_clear_signexponent_set_hidden(opndp1);			\
    796    if (exponent >= (1-QUAD_P)) {					\
    797	shiftamt = (1-exponent) % 32;					\
    798	switch((1-exponent)/32) {					\
    799	  case 0: sticky = Dextallp4(opndp4) << 32-(shiftamt);		\
    800		  Variableshiftdouble(opndp3,opndp4,shiftamt,opndp4);	\
    801		  Variableshiftdouble(opndp2,opndp3,shiftamt,opndp3);	\
    802		  Variableshiftdouble(opndp1,opndp2,shiftamt,opndp2);	\
    803		  Dextallp1(opndp1) >>= shiftamt;			\
    804		  break;						\
    805	  case 1: sticky = (Dextallp3(opndp3) << 32-(shiftamt)) | 	\
    806			   Dextallp4(opndp4);				\
    807		  Variableshiftdouble(opndp2,opndp3,shiftamt,opndp4);	\
    808		  Variableshiftdouble(opndp1,opndp2,shiftamt,opndp3);	\
    809		  Dextallp2(opndp2) = Dextallp1(opndp1) >> shiftamt;	\
    810		  Dextallp1(opndp1) = 0;				\
    811		  break;						\
    812	  case 2: sticky = (Dextallp2(opndp2) << 32-(shiftamt)) |	\
    813			    Dextallp3(opndp3) | Dextallp4(opndp4);	\
    814		  Variableshiftdouble(opndp1,opndp2,shiftamt,opndp4);	\
    815		  Dextallp3(opndp3) = Dextallp1(opndp1) >> shiftamt;	\
    816		  Dextallp1(opndp1) = Dextallp2(opndp2) = 0;		\
    817		  break;						\
    818	  case 3: sticky = (Dextallp1(opndp1) << 32-(shiftamt)) |	\
    819		  	Dextallp2(opndp2) | Dextallp3(opndp3) | 	\
    820			Dextallp4(opndp4);				\
    821		  Dextallp4(opndp4) = Dextallp1(opndp1) >> shiftamt;	\
    822		  Dextallp1(opndp1) = Dextallp2(opndp2) = 0;		\
    823		  Dextallp3(opndp3) = 0;				\
    824		  break;						\
    825	}								\
    826    }									\
    827    else {								\
    828	sticky = Dextallp1(opndp1) | Dextallp2(opndp2) |		\
    829		 Dextallp3(opndp3) | Dextallp4(opndp4);			\
    830	Dblext_setzero(opndp1,opndp2,opndp3,opndp4);			\
    831    }									\
    832    if (sticky) Dblext_setone_lowmantissap4(opndp4);			\
    833    exponent = 0;							\
    834  }