cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

crc32c-vpmsum_asm.S (27722B)


      1/* SPDX-License-Identifier: GPL-2.0-or-later */
      2/*
      3 * Calculate a crc32c with vpmsum acceleration
      4 *
      5 * Copyright (C) 2015 Anton Blanchard <anton@au.ibm.com>, IBM
      6 */
      7	.section	.rodata
      8.balign 16
      9
     10.byteswap_constant:
     11	/* byte reverse permute constant */
     12	.octa 0x0F0E0D0C0B0A09080706050403020100
     13
     14.constants:
     15
     16	/* Reduce 262144 kbits to 1024 bits */
     17	/* x^261120 mod p(x)` << 1, x^261184 mod p(x)` << 1 */
     18	.octa 0x00000000b6ca9e20000000009c37c408
     19
     20	/* x^260096 mod p(x)` << 1, x^260160 mod p(x)` << 1 */
     21	.octa 0x00000000350249a800000001b51df26c
     22
     23	/* x^259072 mod p(x)` << 1, x^259136 mod p(x)` << 1 */
     24	.octa 0x00000001862dac54000000000724b9d0
     25
     26	/* x^258048 mod p(x)` << 1, x^258112 mod p(x)` << 1 */
     27	.octa 0x00000001d87fb48c00000001c00532fe
     28
     29	/* x^257024 mod p(x)` << 1, x^257088 mod p(x)` << 1 */
     30	.octa 0x00000001f39b699e00000000f05a9362
     31
     32	/* x^256000 mod p(x)` << 1, x^256064 mod p(x)` << 1 */
     33	.octa 0x0000000101da11b400000001e1007970
     34
     35	/* x^254976 mod p(x)` << 1, x^255040 mod p(x)` << 1 */
     36	.octa 0x00000001cab571e000000000a57366ee
     37
     38	/* x^253952 mod p(x)` << 1, x^254016 mod p(x)` << 1 */
     39	.octa 0x00000000c7020cfe0000000192011284
     40
     41	/* x^252928 mod p(x)` << 1, x^252992 mod p(x)` << 1 */
     42	.octa 0x00000000cdaed1ae0000000162716d9a
     43
     44	/* x^251904 mod p(x)` << 1, x^251968 mod p(x)` << 1 */
     45	.octa 0x00000001e804effc00000000cd97ecde
     46
     47	/* x^250880 mod p(x)` << 1, x^250944 mod p(x)` << 1 */
     48	.octa 0x0000000077c3ea3a0000000058812bc0
     49
     50	/* x^249856 mod p(x)` << 1, x^249920 mod p(x)` << 1 */
     51	.octa 0x0000000068df31b40000000088b8c12e
     52
     53	/* x^248832 mod p(x)` << 1, x^248896 mod p(x)` << 1 */
     54	.octa 0x00000000b059b6c200000001230b234c
     55
     56	/* x^247808 mod p(x)` << 1, x^247872 mod p(x)` << 1 */
     57	.octa 0x0000000145fb8ed800000001120b416e
     58
     59	/* x^246784 mod p(x)` << 1, x^246848 mod p(x)` << 1 */
     60	.octa 0x00000000cbc0916800000001974aecb0
     61
     62	/* x^245760 mod p(x)` << 1, x^245824 mod p(x)` << 1 */
     63	.octa 0x000000005ceeedc2000000008ee3f226
     64
     65	/* x^244736 mod p(x)` << 1, x^244800 mod p(x)` << 1 */
     66	.octa 0x0000000047d74e8600000001089aba9a
     67
     68	/* x^243712 mod p(x)` << 1, x^243776 mod p(x)` << 1 */
     69	.octa 0x00000001407e9e220000000065113872
     70
     71	/* x^242688 mod p(x)` << 1, x^242752 mod p(x)` << 1 */
     72	.octa 0x00000001da967bda000000005c07ec10
     73
     74	/* x^241664 mod p(x)` << 1, x^241728 mod p(x)` << 1 */
     75	.octa 0x000000006c8983680000000187590924
     76
     77	/* x^240640 mod p(x)` << 1, x^240704 mod p(x)` << 1 */
     78	.octa 0x00000000f2d14c9800000000e35da7c6
     79
     80	/* x^239616 mod p(x)` << 1, x^239680 mod p(x)` << 1 */
     81	.octa 0x00000001993c6ad4000000000415855a
     82
     83	/* x^238592 mod p(x)` << 1, x^238656 mod p(x)` << 1 */
     84	.octa 0x000000014683d1ac0000000073617758
     85
     86	/* x^237568 mod p(x)` << 1, x^237632 mod p(x)` << 1 */
     87	.octa 0x00000001a7c93e6c0000000176021d28
     88
     89	/* x^236544 mod p(x)` << 1, x^236608 mod p(x)` << 1 */
     90	.octa 0x000000010211e90a00000001c358fd0a
     91
     92	/* x^235520 mod p(x)` << 1, x^235584 mod p(x)` << 1 */
     93	.octa 0x000000001119403e00000001ff7a2c18
     94
     95	/* x^234496 mod p(x)` << 1, x^234560 mod p(x)` << 1 */
     96	.octa 0x000000001c3261aa00000000f2d9f7e4
     97
     98	/* x^233472 mod p(x)` << 1, x^233536 mod p(x)` << 1 */
     99	.octa 0x000000014e37a634000000016cf1f9c8
    100
    101	/* x^232448 mod p(x)` << 1, x^232512 mod p(x)` << 1 */
    102	.octa 0x0000000073786c0c000000010af9279a
    103
    104	/* x^231424 mod p(x)` << 1, x^231488 mod p(x)` << 1 */
    105	.octa 0x000000011dc037f80000000004f101e8
    106
    107	/* x^230400 mod p(x)` << 1, x^230464 mod p(x)` << 1 */
    108	.octa 0x0000000031433dfc0000000070bcf184
    109
    110	/* x^229376 mod p(x)` << 1, x^229440 mod p(x)` << 1 */
    111	.octa 0x000000009cde8348000000000a8de642
    112
    113	/* x^228352 mod p(x)` << 1, x^228416 mod p(x)` << 1 */
    114	.octa 0x0000000038d3c2a60000000062ea130c
    115
    116	/* x^227328 mod p(x)` << 1, x^227392 mod p(x)` << 1 */
    117	.octa 0x000000011b25f26000000001eb31cbb2
    118
    119	/* x^226304 mod p(x)` << 1, x^226368 mod p(x)` << 1 */
    120	.octa 0x000000001629e6f00000000170783448
    121
    122	/* x^225280 mod p(x)` << 1, x^225344 mod p(x)` << 1 */
    123	.octa 0x0000000160838b4c00000001a684b4c6
    124
    125	/* x^224256 mod p(x)` << 1, x^224320 mod p(x)` << 1 */
    126	.octa 0x000000007a44011c00000000253ca5b4
    127
    128	/* x^223232 mod p(x)` << 1, x^223296 mod p(x)` << 1 */
    129	.octa 0x00000000226f417a0000000057b4b1e2
    130
    131	/* x^222208 mod p(x)` << 1, x^222272 mod p(x)` << 1 */
    132	.octa 0x0000000045eb2eb400000000b6bd084c
    133
    134	/* x^221184 mod p(x)` << 1, x^221248 mod p(x)` << 1 */
    135	.octa 0x000000014459d70c0000000123c2d592
    136
    137	/* x^220160 mod p(x)` << 1, x^220224 mod p(x)` << 1 */
    138	.octa 0x00000001d406ed8200000000159dafce
    139
    140	/* x^219136 mod p(x)` << 1, x^219200 mod p(x)` << 1 */
    141	.octa 0x0000000160c8e1a80000000127e1a64e
    142
    143	/* x^218112 mod p(x)` << 1, x^218176 mod p(x)` << 1 */
    144	.octa 0x0000000027ba80980000000056860754
    145
    146	/* x^217088 mod p(x)` << 1, x^217152 mod p(x)` << 1 */
    147	.octa 0x000000006d92d01800000001e661aae8
    148
    149	/* x^216064 mod p(x)` << 1, x^216128 mod p(x)` << 1 */
    150	.octa 0x000000012ed7e3f200000000f82c6166
    151
    152	/* x^215040 mod p(x)` << 1, x^215104 mod p(x)` << 1 */
    153	.octa 0x000000002dc8778800000000c4f9c7ae
    154
    155	/* x^214016 mod p(x)` << 1, x^214080 mod p(x)` << 1 */
    156	.octa 0x0000000018240bb80000000074203d20
    157
    158	/* x^212992 mod p(x)` << 1, x^213056 mod p(x)` << 1 */
    159	.octa 0x000000001ad381580000000198173052
    160
    161	/* x^211968 mod p(x)` << 1, x^212032 mod p(x)` << 1 */
    162	.octa 0x00000001396b78f200000001ce8aba54
    163
    164	/* x^210944 mod p(x)` << 1, x^211008 mod p(x)` << 1 */
    165	.octa 0x000000011a68133400000001850d5d94
    166
    167	/* x^209920 mod p(x)` << 1, x^209984 mod p(x)` << 1 */
    168	.octa 0x000000012104732e00000001d609239c
    169
    170	/* x^208896 mod p(x)` << 1, x^208960 mod p(x)` << 1 */
    171	.octa 0x00000000a140d90c000000001595f048
    172
    173	/* x^207872 mod p(x)` << 1, x^207936 mod p(x)` << 1 */
    174	.octa 0x00000001b7215eda0000000042ccee08
    175
    176	/* x^206848 mod p(x)` << 1, x^206912 mod p(x)` << 1 */
    177	.octa 0x00000001aaf1df3c000000010a389d74
    178
    179	/* x^205824 mod p(x)` << 1, x^205888 mod p(x)` << 1 */
    180	.octa 0x0000000029d15b8a000000012a840da6
    181
    182	/* x^204800 mod p(x)` << 1, x^204864 mod p(x)` << 1 */
    183	.octa 0x00000000f1a96922000000001d181c0c
    184
    185	/* x^203776 mod p(x)` << 1, x^203840 mod p(x)` << 1 */
    186	.octa 0x00000001ac80d03c0000000068b7d1f6
    187
    188	/* x^202752 mod p(x)` << 1, x^202816 mod p(x)` << 1 */
    189	.octa 0x000000000f11d56a000000005b0f14fc
    190
    191	/* x^201728 mod p(x)` << 1, x^201792 mod p(x)` << 1 */
    192	.octa 0x00000001f1c022a20000000179e9e730
    193
    194	/* x^200704 mod p(x)` << 1, x^200768 mod p(x)` << 1 */
    195	.octa 0x0000000173d00ae200000001ce1368d6
    196
    197	/* x^199680 mod p(x)` << 1, x^199744 mod p(x)` << 1 */
    198	.octa 0x00000001d4ffe4ac0000000112c3a84c
    199
    200	/* x^198656 mod p(x)` << 1, x^198720 mod p(x)` << 1 */
    201	.octa 0x000000016edc5ae400000000de940fee
    202
    203	/* x^197632 mod p(x)` << 1, x^197696 mod p(x)` << 1 */
    204	.octa 0x00000001f1a0214000000000fe896b7e
    205
    206	/* x^196608 mod p(x)` << 1, x^196672 mod p(x)` << 1 */
    207	.octa 0x00000000ca0b28a000000001f797431c
    208
    209	/* x^195584 mod p(x)` << 1, x^195648 mod p(x)` << 1 */
    210	.octa 0x00000001928e30a20000000053e989ba
    211
    212	/* x^194560 mod p(x)` << 1, x^194624 mod p(x)` << 1 */
    213	.octa 0x0000000097b1b002000000003920cd16
    214
    215	/* x^193536 mod p(x)` << 1, x^193600 mod p(x)` << 1 */
    216	.octa 0x00000000b15bf90600000001e6f579b8
    217
    218	/* x^192512 mod p(x)` << 1, x^192576 mod p(x)` << 1 */
    219	.octa 0x00000000411c5d52000000007493cb0a
    220
    221	/* x^191488 mod p(x)` << 1, x^191552 mod p(x)` << 1 */
    222	.octa 0x00000001c36f330000000001bdd376d8
    223
    224	/* x^190464 mod p(x)` << 1, x^190528 mod p(x)` << 1 */
    225	.octa 0x00000001119227e0000000016badfee6
    226
    227	/* x^189440 mod p(x)` << 1, x^189504 mod p(x)` << 1 */
    228	.octa 0x00000000114d47020000000071de5c58
    229
    230	/* x^188416 mod p(x)` << 1, x^188480 mod p(x)` << 1 */
    231	.octa 0x00000000458b5b9800000000453f317c
    232
    233	/* x^187392 mod p(x)` << 1, x^187456 mod p(x)` << 1 */
    234	.octa 0x000000012e31fb8e0000000121675cce
    235
    236	/* x^186368 mod p(x)` << 1, x^186432 mod p(x)` << 1 */
    237	.octa 0x000000005cf619d800000001f409ee92
    238
    239	/* x^185344 mod p(x)` << 1, x^185408 mod p(x)` << 1 */
    240	.octa 0x0000000063f4d8b200000000f36b9c88
    241
    242	/* x^184320 mod p(x)` << 1, x^184384 mod p(x)` << 1 */
    243	.octa 0x000000004138dc8a0000000036b398f4
    244
    245	/* x^183296 mod p(x)` << 1, x^183360 mod p(x)` << 1 */
    246	.octa 0x00000001d29ee8e000000001748f9adc
    247
    248	/* x^182272 mod p(x)` << 1, x^182336 mod p(x)` << 1 */
    249	.octa 0x000000006a08ace800000001be94ec00
    250
    251	/* x^181248 mod p(x)` << 1, x^181312 mod p(x)` << 1 */
    252	.octa 0x0000000127d4201000000000b74370d6
    253
    254	/* x^180224 mod p(x)` << 1, x^180288 mod p(x)` << 1 */
    255	.octa 0x0000000019d76b6200000001174d0b98
    256
    257	/* x^179200 mod p(x)` << 1, x^179264 mod p(x)` << 1 */
    258	.octa 0x00000001b1471f6e00000000befc06a4
    259
    260	/* x^178176 mod p(x)` << 1, x^178240 mod p(x)` << 1 */
    261	.octa 0x00000001f64c19cc00000001ae125288
    262
    263	/* x^177152 mod p(x)` << 1, x^177216 mod p(x)` << 1 */
    264	.octa 0x00000000003c0ea00000000095c19b34
    265
    266	/* x^176128 mod p(x)` << 1, x^176192 mod p(x)` << 1 */
    267	.octa 0x000000014d73abf600000001a78496f2
    268
    269	/* x^175104 mod p(x)` << 1, x^175168 mod p(x)` << 1 */
    270	.octa 0x00000001620eb84400000001ac5390a0
    271
    272	/* x^174080 mod p(x)` << 1, x^174144 mod p(x)` << 1 */
    273	.octa 0x0000000147655048000000002a80ed6e
    274
    275	/* x^173056 mod p(x)` << 1, x^173120 mod p(x)` << 1 */
    276	.octa 0x0000000067b5077e00000001fa9b0128
    277
    278	/* x^172032 mod p(x)` << 1, x^172096 mod p(x)` << 1 */
    279	.octa 0x0000000010ffe20600000001ea94929e
    280
    281	/* x^171008 mod p(x)` << 1, x^171072 mod p(x)` << 1 */
    282	.octa 0x000000000fee8f1e0000000125f4305c
    283
    284	/* x^169984 mod p(x)` << 1, x^170048 mod p(x)` << 1 */
    285	.octa 0x00000001da26fbae00000001471e2002
    286
    287	/* x^168960 mod p(x)` << 1, x^169024 mod p(x)` << 1 */
    288	.octa 0x00000001b3a8bd880000000132d2253a
    289
    290	/* x^167936 mod p(x)` << 1, x^168000 mod p(x)` << 1 */
    291	.octa 0x00000000e8f3898e00000000f26b3592
    292
    293	/* x^166912 mod p(x)` << 1, x^166976 mod p(x)` << 1 */
    294	.octa 0x00000000b0d0d28c00000000bc8b67b0
    295
    296	/* x^165888 mod p(x)` << 1, x^165952 mod p(x)` << 1 */
    297	.octa 0x0000000030f2a798000000013a826ef2
    298
    299	/* x^164864 mod p(x)` << 1, x^164928 mod p(x)` << 1 */
    300	.octa 0x000000000fba10020000000081482c84
    301
    302	/* x^163840 mod p(x)` << 1, x^163904 mod p(x)` << 1 */
    303	.octa 0x00000000bdb9bd7200000000e77307c2
    304
    305	/* x^162816 mod p(x)` << 1, x^162880 mod p(x)` << 1 */
    306	.octa 0x0000000075d3bf5a00000000d4a07ec8
    307
    308	/* x^161792 mod p(x)` << 1, x^161856 mod p(x)` << 1 */
    309	.octa 0x00000000ef1f98a00000000017102100
    310
    311	/* x^160768 mod p(x)` << 1, x^160832 mod p(x)` << 1 */
    312	.octa 0x00000000689c760200000000db406486
    313
    314	/* x^159744 mod p(x)` << 1, x^159808 mod p(x)` << 1 */
    315	.octa 0x000000016d5fa5fe0000000192db7f88
    316
    317	/* x^158720 mod p(x)` << 1, x^158784 mod p(x)` << 1 */
    318	.octa 0x00000001d0d2b9ca000000018bf67b1e
    319
    320	/* x^157696 mod p(x)` << 1, x^157760 mod p(x)` << 1 */
    321	.octa 0x0000000041e7b470000000007c09163e
    322
    323	/* x^156672 mod p(x)` << 1, x^156736 mod p(x)` << 1 */
    324	.octa 0x00000001cbb6495e000000000adac060
    325
    326	/* x^155648 mod p(x)` << 1, x^155712 mod p(x)` << 1 */
    327	.octa 0x000000010052a0b000000000bd8316ae
    328
    329	/* x^154624 mod p(x)` << 1, x^154688 mod p(x)` << 1 */
    330	.octa 0x00000001d8effb5c000000019f09ab54
    331
    332	/* x^153600 mod p(x)` << 1, x^153664 mod p(x)` << 1 */
    333	.octa 0x00000001d969853c0000000125155542
    334
    335	/* x^152576 mod p(x)` << 1, x^152640 mod p(x)` << 1 */
    336	.octa 0x00000000523ccce2000000018fdb5882
    337
    338	/* x^151552 mod p(x)` << 1, x^151616 mod p(x)` << 1 */
    339	.octa 0x000000001e2436bc00000000e794b3f4
    340
    341	/* x^150528 mod p(x)` << 1, x^150592 mod p(x)` << 1 */
    342	.octa 0x00000000ddd1c3a2000000016f9bb022
    343
    344	/* x^149504 mod p(x)` << 1, x^149568 mod p(x)` << 1 */
    345	.octa 0x0000000019fcfe3800000000290c9978
    346
    347	/* x^148480 mod p(x)` << 1, x^148544 mod p(x)` << 1 */
    348	.octa 0x00000001ce95db640000000083c0f350
    349
    350	/* x^147456 mod p(x)` << 1, x^147520 mod p(x)` << 1 */
    351	.octa 0x00000000af5828060000000173ea6628
    352
    353	/* x^146432 mod p(x)` << 1, x^146496 mod p(x)` << 1 */
    354	.octa 0x00000001006388f600000001c8b4e00a
    355
    356	/* x^145408 mod p(x)` << 1, x^145472 mod p(x)` << 1 */
    357	.octa 0x0000000179eca00a00000000de95d6aa
    358
    359	/* x^144384 mod p(x)` << 1, x^144448 mod p(x)` << 1 */
    360	.octa 0x0000000122410a6a000000010b7f7248
    361
    362	/* x^143360 mod p(x)` << 1, x^143424 mod p(x)` << 1 */
    363	.octa 0x000000004288e87c00000001326e3a06
    364
    365	/* x^142336 mod p(x)` << 1, x^142400 mod p(x)` << 1 */
    366	.octa 0x000000016c5490da00000000bb62c2e6
    367
    368	/* x^141312 mod p(x)` << 1, x^141376 mod p(x)` << 1 */
    369	.octa 0x00000000d1c71f6e0000000156a4b2c2
    370
    371	/* x^140288 mod p(x)` << 1, x^140352 mod p(x)` << 1 */
    372	.octa 0x00000001b4ce08a6000000011dfe763a
    373
    374	/* x^139264 mod p(x)` << 1, x^139328 mod p(x)` << 1 */
    375	.octa 0x00000001466ba60c000000007bcca8e2
    376
    377	/* x^138240 mod p(x)` << 1, x^138304 mod p(x)` << 1 */
    378	.octa 0x00000001f6c488a40000000186118faa
    379
    380	/* x^137216 mod p(x)` << 1, x^137280 mod p(x)` << 1 */
    381	.octa 0x000000013bfb06820000000111a65a88
    382
    383	/* x^136192 mod p(x)` << 1, x^136256 mod p(x)` << 1 */
    384	.octa 0x00000000690e9e54000000003565e1c4
    385
    386	/* x^135168 mod p(x)` << 1, x^135232 mod p(x)` << 1 */
    387	.octa 0x00000000281346b6000000012ed02a82
    388
    389	/* x^134144 mod p(x)` << 1, x^134208 mod p(x)` << 1 */
    390	.octa 0x000000015646402400000000c486ecfc
    391
    392	/* x^133120 mod p(x)` << 1, x^133184 mod p(x)` << 1 */
    393	.octa 0x000000016063a8dc0000000001b951b2
    394
    395	/* x^132096 mod p(x)` << 1, x^132160 mod p(x)` << 1 */
    396	.octa 0x0000000116a663620000000048143916
    397
    398	/* x^131072 mod p(x)` << 1, x^131136 mod p(x)` << 1 */
    399	.octa 0x000000017e8aa4d200000001dc2ae124
    400
    401	/* x^130048 mod p(x)` << 1, x^130112 mod p(x)` << 1 */
    402	.octa 0x00000001728eb10c00000001416c58d6
    403
    404	/* x^129024 mod p(x)` << 1, x^129088 mod p(x)` << 1 */
    405	.octa 0x00000001b08fd7fa00000000a479744a
    406
    407	/* x^128000 mod p(x)` << 1, x^128064 mod p(x)` << 1 */
    408	.octa 0x00000001092a16e80000000096ca3a26
    409
    410	/* x^126976 mod p(x)` << 1, x^127040 mod p(x)` << 1 */
    411	.octa 0x00000000a505637c00000000ff223d4e
    412
    413	/* x^125952 mod p(x)` << 1, x^126016 mod p(x)` << 1 */
    414	.octa 0x00000000d94869b2000000010e84da42
    415
    416	/* x^124928 mod p(x)` << 1, x^124992 mod p(x)` << 1 */
    417	.octa 0x00000001c8b203ae00000001b61ba3d0
    418
    419	/* x^123904 mod p(x)` << 1, x^123968 mod p(x)` << 1 */
    420	.octa 0x000000005704aea000000000680f2de8
    421
    422	/* x^122880 mod p(x)` << 1, x^122944 mod p(x)` << 1 */
    423	.octa 0x000000012e295fa2000000008772a9a8
    424
    425	/* x^121856 mod p(x)` << 1, x^121920 mod p(x)` << 1 */
    426	.octa 0x000000011d0908bc0000000155f295bc
    427
    428	/* x^120832 mod p(x)` << 1, x^120896 mod p(x)` << 1 */
    429	.octa 0x0000000193ed97ea00000000595f9282
    430
    431	/* x^119808 mod p(x)` << 1, x^119872 mod p(x)` << 1 */
    432	.octa 0x000000013a0f1c520000000164b1c25a
    433
    434	/* x^118784 mod p(x)` << 1, x^118848 mod p(x)` << 1 */
    435	.octa 0x000000010c2c40c000000000fbd67c50
    436
    437	/* x^117760 mod p(x)` << 1, x^117824 mod p(x)` << 1 */
    438	.octa 0x00000000ff6fac3e0000000096076268
    439
    440	/* x^116736 mod p(x)` << 1, x^116800 mod p(x)` << 1 */
    441	.octa 0x000000017b3609c000000001d288e4cc
    442
    443	/* x^115712 mod p(x)` << 1, x^115776 mod p(x)` << 1 */
    444	.octa 0x0000000088c8c92200000001eaac1bdc
    445
    446	/* x^114688 mod p(x)` << 1, x^114752 mod p(x)` << 1 */
    447	.octa 0x00000001751baae600000001f1ea39e2
    448
    449	/* x^113664 mod p(x)` << 1, x^113728 mod p(x)` << 1 */
    450	.octa 0x000000010795297200000001eb6506fc
    451
    452	/* x^112640 mod p(x)` << 1, x^112704 mod p(x)` << 1 */
    453	.octa 0x0000000162b00abe000000010f806ffe
    454
    455	/* x^111616 mod p(x)` << 1, x^111680 mod p(x)` << 1 */
    456	.octa 0x000000000d7b404c000000010408481e
    457
    458	/* x^110592 mod p(x)` << 1, x^110656 mod p(x)` << 1 */
    459	.octa 0x00000000763b13d40000000188260534
    460
    461	/* x^109568 mod p(x)` << 1, x^109632 mod p(x)` << 1 */
    462	.octa 0x00000000f6dc22d80000000058fc73e0
    463
    464	/* x^108544 mod p(x)` << 1, x^108608 mod p(x)` << 1 */
    465	.octa 0x000000007daae06000000000391c59b8
    466
    467	/* x^107520 mod p(x)` << 1, x^107584 mod p(x)` << 1 */
    468	.octa 0x000000013359ab7c000000018b638400
    469
    470	/* x^106496 mod p(x)` << 1, x^106560 mod p(x)` << 1 */
    471	.octa 0x000000008add438a000000011738f5c4
    472
    473	/* x^105472 mod p(x)` << 1, x^105536 mod p(x)` << 1 */
    474	.octa 0x00000001edbefdea000000008cf7c6da
    475
    476	/* x^104448 mod p(x)` << 1, x^104512 mod p(x)` << 1 */
    477	.octa 0x000000004104e0f800000001ef97fb16
    478
    479	/* x^103424 mod p(x)` << 1, x^103488 mod p(x)` << 1 */
    480	.octa 0x00000000b48a82220000000102130e20
    481
    482	/* x^102400 mod p(x)` << 1, x^102464 mod p(x)` << 1 */
    483	.octa 0x00000001bcb4684400000000db968898
    484
    485	/* x^101376 mod p(x)` << 1, x^101440 mod p(x)` << 1 */
    486	.octa 0x000000013293ce0a00000000b5047b5e
    487
    488	/* x^100352 mod p(x)` << 1, x^100416 mod p(x)` << 1 */
    489	.octa 0x00000001710d0844000000010b90fdb2
    490
    491	/* x^99328 mod p(x)` << 1, x^99392 mod p(x)` << 1 */
    492	.octa 0x0000000117907f6e000000004834a32e
    493
    494	/* x^98304 mod p(x)` << 1, x^98368 mod p(x)` << 1 */
    495	.octa 0x0000000087ddf93e0000000059c8f2b0
    496
    497	/* x^97280 mod p(x)` << 1, x^97344 mod p(x)` << 1 */
    498	.octa 0x000000005970e9b00000000122cec508
    499
    500	/* x^96256 mod p(x)` << 1, x^96320 mod p(x)` << 1 */
    501	.octa 0x0000000185b2b7d0000000000a330cda
    502
    503	/* x^95232 mod p(x)` << 1, x^95296 mod p(x)` << 1 */
    504	.octa 0x00000001dcee0efc000000014a47148c
    505
    506	/* x^94208 mod p(x)` << 1, x^94272 mod p(x)` << 1 */
    507	.octa 0x0000000030da27220000000042c61cb8
    508
    509	/* x^93184 mod p(x)` << 1, x^93248 mod p(x)` << 1 */
    510	.octa 0x000000012f925a180000000012fe6960
    511
    512	/* x^92160 mod p(x)` << 1, x^92224 mod p(x)` << 1 */
    513	.octa 0x00000000dd2e357c00000000dbda2c20
    514
    515	/* x^91136 mod p(x)` << 1, x^91200 mod p(x)` << 1 */
    516	.octa 0x00000000071c80de000000011122410c
    517
    518	/* x^90112 mod p(x)` << 1, x^90176 mod p(x)` << 1 */
    519	.octa 0x000000011513140a00000000977b2070
    520
    521	/* x^89088 mod p(x)` << 1, x^89152 mod p(x)` << 1 */
    522	.octa 0x00000001df876e8e000000014050438e
    523
    524	/* x^88064 mod p(x)` << 1, x^88128 mod p(x)` << 1 */
    525	.octa 0x000000015f81d6ce0000000147c840e8
    526
    527	/* x^87040 mod p(x)` << 1, x^87104 mod p(x)` << 1 */
    528	.octa 0x000000019dd94dbe00000001cc7c88ce
    529
    530	/* x^86016 mod p(x)` << 1, x^86080 mod p(x)` << 1 */
    531	.octa 0x00000001373d206e00000001476b35a4
    532
    533	/* x^84992 mod p(x)` << 1, x^85056 mod p(x)` << 1 */
    534	.octa 0x00000000668ccade000000013d52d508
    535
    536	/* x^83968 mod p(x)` << 1, x^84032 mod p(x)` << 1 */
    537	.octa 0x00000001b192d268000000008e4be32e
    538
    539	/* x^82944 mod p(x)` << 1, x^83008 mod p(x)` << 1 */
    540	.octa 0x00000000e30f3a7800000000024120fe
    541
    542	/* x^81920 mod p(x)` << 1, x^81984 mod p(x)` << 1 */
    543	.octa 0x000000010ef1f7bc00000000ddecddb4
    544
    545	/* x^80896 mod p(x)` << 1, x^80960 mod p(x)` << 1 */
    546	.octa 0x00000001f5ac738000000000d4d403bc
    547
    548	/* x^79872 mod p(x)` << 1, x^79936 mod p(x)` << 1 */
    549	.octa 0x000000011822ea7000000001734b89aa
    550
    551	/* x^78848 mod p(x)` << 1, x^78912 mod p(x)` << 1 */
    552	.octa 0x00000000c3a33848000000010e7a58d6
    553
    554	/* x^77824 mod p(x)` << 1, x^77888 mod p(x)` << 1 */
    555	.octa 0x00000001bd151c2400000001f9f04e9c
    556
    557	/* x^76800 mod p(x)` << 1, x^76864 mod p(x)` << 1 */
    558	.octa 0x0000000056002d7600000000b692225e
    559
    560	/* x^75776 mod p(x)` << 1, x^75840 mod p(x)` << 1 */
    561	.octa 0x000000014657c4f4000000019b8d3f3e
    562
    563	/* x^74752 mod p(x)` << 1, x^74816 mod p(x)` << 1 */
    564	.octa 0x0000000113742d7c00000001a874f11e
    565
    566	/* x^73728 mod p(x)` << 1, x^73792 mod p(x)` << 1 */
    567	.octa 0x000000019c5920ba000000010d5a4254
    568
    569	/* x^72704 mod p(x)` << 1, x^72768 mod p(x)` << 1 */
    570	.octa 0x000000005216d2d600000000bbb2f5d6
    571
    572	/* x^71680 mod p(x)` << 1, x^71744 mod p(x)` << 1 */
    573	.octa 0x0000000136f5ad8a0000000179cc0e36
    574
    575	/* x^70656 mod p(x)` << 1, x^70720 mod p(x)` << 1 */
    576	.octa 0x000000018b07beb600000001dca1da4a
    577
    578	/* x^69632 mod p(x)` << 1, x^69696 mod p(x)` << 1 */
    579	.octa 0x00000000db1e93b000000000feb1a192
    580
    581	/* x^68608 mod p(x)` << 1, x^68672 mod p(x)` << 1 */
    582	.octa 0x000000000b96fa3a00000000d1eeedd6
    583
    584	/* x^67584 mod p(x)` << 1, x^67648 mod p(x)` << 1 */
    585	.octa 0x00000001d9968af0000000008fad9bb4
    586
    587	/* x^66560 mod p(x)` << 1, x^66624 mod p(x)` << 1 */
    588	.octa 0x000000000e4a77a200000001884938e4
    589
    590	/* x^65536 mod p(x)` << 1, x^65600 mod p(x)` << 1 */
    591	.octa 0x00000000508c2ac800000001bc2e9bc0
    592
    593	/* x^64512 mod p(x)` << 1, x^64576 mod p(x)` << 1 */
    594	.octa 0x0000000021572a8000000001f9658a68
    595
    596	/* x^63488 mod p(x)` << 1, x^63552 mod p(x)` << 1 */
    597	.octa 0x00000001b859daf2000000001b9224fc
    598
    599	/* x^62464 mod p(x)` << 1, x^62528 mod p(x)` << 1 */
    600	.octa 0x000000016f7884740000000055b2fb84
    601
    602	/* x^61440 mod p(x)` << 1, x^61504 mod p(x)` << 1 */
    603	.octa 0x00000001b438810e000000018b090348
    604
    605	/* x^60416 mod p(x)` << 1, x^60480 mod p(x)` << 1 */
    606	.octa 0x0000000095ddc6f2000000011ccbd5ea
    607
    608	/* x^59392 mod p(x)` << 1, x^59456 mod p(x)` << 1 */
    609	.octa 0x00000001d977c20c0000000007ae47f8
    610
    611	/* x^58368 mod p(x)` << 1, x^58432 mod p(x)` << 1 */
    612	.octa 0x00000000ebedb99a0000000172acbec0
    613
    614	/* x^57344 mod p(x)` << 1, x^57408 mod p(x)` << 1 */
    615	.octa 0x00000001df9e9e9200000001c6e3ff20
    616
    617	/* x^56320 mod p(x)` << 1, x^56384 mod p(x)` << 1 */
    618	.octa 0x00000001a4a3f95200000000e1b38744
    619
    620	/* x^55296 mod p(x)` << 1, x^55360 mod p(x)` << 1 */
    621	.octa 0x00000000e2f5122000000000791585b2
    622
    623	/* x^54272 mod p(x)` << 1, x^54336 mod p(x)` << 1 */
    624	.octa 0x000000004aa01f3e00000000ac53b894
    625
    626	/* x^53248 mod p(x)` << 1, x^53312 mod p(x)` << 1 */
    627	.octa 0x00000000b3e90a5800000001ed5f2cf4
    628
    629	/* x^52224 mod p(x)` << 1, x^52288 mod p(x)` << 1 */
    630	.octa 0x000000000c9ca2aa00000001df48b2e0
    631
    632	/* x^51200 mod p(x)` << 1, x^51264 mod p(x)` << 1 */
    633	.octa 0x000000015168231600000000049c1c62
    634
    635	/* x^50176 mod p(x)` << 1, x^50240 mod p(x)` << 1 */
    636	.octa 0x0000000036fce78c000000017c460c12
    637
    638	/* x^49152 mod p(x)` << 1, x^49216 mod p(x)` << 1 */
    639	.octa 0x000000009037dc10000000015be4da7e
    640
    641	/* x^48128 mod p(x)` << 1, x^48192 mod p(x)` << 1 */
    642	.octa 0x00000000d3298582000000010f38f668
    643
    644	/* x^47104 mod p(x)` << 1, x^47168 mod p(x)` << 1 */
    645	.octa 0x00000001b42e8ad60000000039f40a00
    646
    647	/* x^46080 mod p(x)` << 1, x^46144 mod p(x)` << 1 */
    648	.octa 0x00000000142a983800000000bd4c10c4
    649
    650	/* x^45056 mod p(x)` << 1, x^45120 mod p(x)` << 1 */
    651	.octa 0x0000000109c7f1900000000042db1d98
    652
    653	/* x^44032 mod p(x)` << 1, x^44096 mod p(x)` << 1 */
    654	.octa 0x0000000056ff931000000001c905bae6
    655
    656	/* x^43008 mod p(x)` << 1, x^43072 mod p(x)` << 1 */
    657	.octa 0x00000001594513aa00000000069d40ea
    658
    659	/* x^41984 mod p(x)` << 1, x^42048 mod p(x)` << 1 */
    660	.octa 0x00000001e3b5b1e8000000008e4fbad0
    661
    662	/* x^40960 mod p(x)` << 1, x^41024 mod p(x)` << 1 */
    663	.octa 0x000000011dd5fc080000000047bedd46
    664
    665	/* x^39936 mod p(x)` << 1, x^40000 mod p(x)` << 1 */
    666	.octa 0x00000001675f0cc20000000026396bf8
    667
    668	/* x^38912 mod p(x)` << 1, x^38976 mod p(x)` << 1 */
    669	.octa 0x00000000d1c8dd4400000000379beb92
    670
    671	/* x^37888 mod p(x)` << 1, x^37952 mod p(x)` << 1 */
    672	.octa 0x0000000115ebd3d8000000000abae54a
    673
    674	/* x^36864 mod p(x)` << 1, x^36928 mod p(x)` << 1 */
    675	.octa 0x00000001ecbd0dac0000000007e6a128
    676
    677	/* x^35840 mod p(x)` << 1, x^35904 mod p(x)` << 1 */
    678	.octa 0x00000000cdf67af2000000000ade29d2
    679
    680	/* x^34816 mod p(x)` << 1, x^34880 mod p(x)` << 1 */
    681	.octa 0x000000004c01ff4c00000000f974c45c
    682
    683	/* x^33792 mod p(x)` << 1, x^33856 mod p(x)` << 1 */
    684	.octa 0x00000000f2d8657e00000000e77ac60a
    685
    686	/* x^32768 mod p(x)` << 1, x^32832 mod p(x)` << 1 */
    687	.octa 0x000000006bae74c40000000145895816
    688
    689	/* x^31744 mod p(x)` << 1, x^31808 mod p(x)` << 1 */
    690	.octa 0x0000000152af8aa00000000038e362be
    691
    692	/* x^30720 mod p(x)` << 1, x^30784 mod p(x)` << 1 */
    693	.octa 0x0000000004663802000000007f991a64
    694
    695	/* x^29696 mod p(x)` << 1, x^29760 mod p(x)` << 1 */
    696	.octa 0x00000001ab2f5afc00000000fa366d3a
    697
    698	/* x^28672 mod p(x)` << 1, x^28736 mod p(x)` << 1 */
    699	.octa 0x0000000074a4ebd400000001a2bb34f0
    700
    701	/* x^27648 mod p(x)` << 1, x^27712 mod p(x)` << 1 */
    702	.octa 0x00000001d7ab3a4c0000000028a9981e
    703
    704	/* x^26624 mod p(x)` << 1, x^26688 mod p(x)` << 1 */
    705	.octa 0x00000001a8da60c600000001dbc672be
    706
    707	/* x^25600 mod p(x)` << 1, x^25664 mod p(x)` << 1 */
    708	.octa 0x000000013cf6382000000000b04d77f6
    709
    710	/* x^24576 mod p(x)` << 1, x^24640 mod p(x)` << 1 */
    711	.octa 0x00000000bec12e1e0000000124400d96
    712
    713	/* x^23552 mod p(x)` << 1, x^23616 mod p(x)` << 1 */
    714	.octa 0x00000001c6368010000000014ca4b414
    715
    716	/* x^22528 mod p(x)` << 1, x^22592 mod p(x)` << 1 */
    717	.octa 0x00000001e6e78758000000012fe2c938
    718
    719	/* x^21504 mod p(x)` << 1, x^21568 mod p(x)` << 1 */
    720	.octa 0x000000008d7f2b3c00000001faed01e6
    721
    722	/* x^20480 mod p(x)` << 1, x^20544 mod p(x)` << 1 */
    723	.octa 0x000000016b4a156e000000007e80ecfe
    724
    725	/* x^19456 mod p(x)` << 1, x^19520 mod p(x)` << 1 */
    726	.octa 0x00000001c63cfeb60000000098daee94
    727
    728	/* x^18432 mod p(x)` << 1, x^18496 mod p(x)` << 1 */
    729	.octa 0x000000015f902670000000010a04edea
    730
    731	/* x^17408 mod p(x)` << 1, x^17472 mod p(x)` << 1 */
    732	.octa 0x00000001cd5de11e00000001c00b4524
    733
    734	/* x^16384 mod p(x)` << 1, x^16448 mod p(x)` << 1 */
    735	.octa 0x000000001acaec540000000170296550
    736
    737	/* x^15360 mod p(x)` << 1, x^15424 mod p(x)` << 1 */
    738	.octa 0x000000002bd0ca780000000181afaa48
    739
    740	/* x^14336 mod p(x)` << 1, x^14400 mod p(x)` << 1 */
    741	.octa 0x0000000032d63d5c0000000185a31ffa
    742
    743	/* x^13312 mod p(x)` << 1, x^13376 mod p(x)` << 1 */
    744	.octa 0x000000001c6d4e4c000000002469f608
    745
    746	/* x^12288 mod p(x)` << 1, x^12352 mod p(x)` << 1 */
    747	.octa 0x0000000106a60b92000000006980102a
    748
    749	/* x^11264 mod p(x)` << 1, x^11328 mod p(x)` << 1 */
    750	.octa 0x00000000d3855e120000000111ea9ca8
    751
    752	/* x^10240 mod p(x)` << 1, x^10304 mod p(x)` << 1 */
    753	.octa 0x00000000e312563600000001bd1d29ce
    754
    755	/* x^9216 mod p(x)` << 1, x^9280 mod p(x)` << 1 */
    756	.octa 0x000000009e8f7ea400000001b34b9580
    757
    758	/* x^8192 mod p(x)` << 1, x^8256 mod p(x)` << 1 */
    759	.octa 0x00000001c82e562c000000003076054e
    760
    761	/* x^7168 mod p(x)` << 1, x^7232 mod p(x)` << 1 */
    762	.octa 0x00000000ca9f09ce000000012a608ea4
    763
    764	/* x^6144 mod p(x)` << 1, x^6208 mod p(x)` << 1 */
    765	.octa 0x00000000c63764e600000000784d05fe
    766
    767	/* x^5120 mod p(x)` << 1, x^5184 mod p(x)` << 1 */
    768	.octa 0x0000000168d2e49e000000016ef0d82a
    769
    770	/* x^4096 mod p(x)` << 1, x^4160 mod p(x)` << 1 */
    771	.octa 0x00000000e986c1480000000075bda454
    772
    773	/* x^3072 mod p(x)` << 1, x^3136 mod p(x)` << 1 */
    774	.octa 0x00000000cfb65894000000003dc0a1c4
    775
    776	/* x^2048 mod p(x)` << 1, x^2112 mod p(x)` << 1 */
    777	.octa 0x0000000111cadee400000000e9a5d8be
    778
    779	/* x^1024 mod p(x)` << 1, x^1088 mod p(x)` << 1 */
    780	.octa 0x0000000171fb63ce00000001609bc4b4
    781
    782.short_constants:
    783
    784	/* Reduce final 1024-2048 bits to 64 bits, shifting 32 bits to include the trailing 32 bits of zeros */
    785	/* x^1952 mod p(x)`, x^1984 mod p(x)`, x^2016 mod p(x)`, x^2048 mod p(x)` */
    786	.octa 0x7fec2963e5bf80485cf015c388e56f72
    787
    788	/* x^1824 mod p(x)`, x^1856 mod p(x)`, x^1888 mod p(x)`, x^1920 mod p(x)` */
    789	.octa 0x38e888d4844752a9963a18920246e2e6
    790
    791	/* x^1696 mod p(x)`, x^1728 mod p(x)`, x^1760 mod p(x)`, x^1792 mod p(x)` */
    792	.octa 0x42316c00730206ad419a441956993a31
    793
    794	/* x^1568 mod p(x)`, x^1600 mod p(x)`, x^1632 mod p(x)`, x^1664 mod p(x)` */
    795	.octa 0x543d5c543e65ddf9924752ba2b830011
    796
    797	/* x^1440 mod p(x)`, x^1472 mod p(x)`, x^1504 mod p(x)`, x^1536 mod p(x)` */
    798	.octa 0x78e87aaf56767c9255bd7f9518e4a304
    799
    800	/* x^1312 mod p(x)`, x^1344 mod p(x)`, x^1376 mod p(x)`, x^1408 mod p(x)` */
    801	.octa 0x8f68fcec1903da7f6d76739fe0553f1e
    802
    803	/* x^1184 mod p(x)`, x^1216 mod p(x)`, x^1248 mod p(x)`, x^1280 mod p(x)` */
    804	.octa 0x3f4840246791d588c133722b1fe0b5c3
    805
    806	/* x^1056 mod p(x)`, x^1088 mod p(x)`, x^1120 mod p(x)`, x^1152 mod p(x)` */
    807	.octa 0x34c96751b04de25a64b67ee0e55ef1f3
    808
    809	/* x^928 mod p(x)`, x^960 mod p(x)`, x^992 mod p(x)`, x^1024 mod p(x)` */
    810	.octa 0x156c8e180b4a395b069db049b8fdb1e7
    811
    812	/* x^800 mod p(x)`, x^832 mod p(x)`, x^864 mod p(x)`, x^896 mod p(x)` */
    813	.octa 0xe0b99ccbe661f7bea11bfaf3c9e90b9e
    814
    815	/* x^672 mod p(x)`, x^704 mod p(x)`, x^736 mod p(x)`, x^768 mod p(x)` */
    816	.octa 0x041d37768cd75659817cdc5119b29a35
    817
    818	/* x^544 mod p(x)`, x^576 mod p(x)`, x^608 mod p(x)`, x^640 mod p(x)` */
    819	.octa 0x3a0777818cfaa9651ce9d94b36c41f1c
    820
    821	/* x^416 mod p(x)`, x^448 mod p(x)`, x^480 mod p(x)`, x^512 mod p(x)` */
    822	.octa 0x0e148e8252377a554f256efcb82be955
    823
    824	/* x^288 mod p(x)`, x^320 mod p(x)`, x^352 mod p(x)`, x^384 mod p(x)` */
    825	.octa 0x9c25531d19e65ddeec1631edb2dea967
    826
    827	/* x^160 mod p(x)`, x^192 mod p(x)`, x^224 mod p(x)`, x^256 mod p(x)` */
    828	.octa 0x790606ff9957c0a65d27e147510ac59a
    829
    830	/* x^32 mod p(x)`, x^64 mod p(x)`, x^96 mod p(x)`, x^128 mod p(x)` */
    831	.octa 0x82f63b786ea2d55ca66805eb18b8ea18
    832
    833
    834.barrett_constants:
    835	/* 33 bit reflected Barrett constant m - (4^32)/n */
    836	.octa 0x000000000000000000000000dea713f1	/* x^64 div p(x)` */
    837	/* 33 bit reflected Barrett constant n */
    838	.octa 0x00000000000000000000000105ec76f1
    839
    840#define CRC_FUNCTION_NAME __crc32c_vpmsum
    841#define REFLECT
    842#include "crc32-vpmsum_core.S"