cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

crct10dif-vpmsum_asm.S (24680B)


      1/* SPDX-License-Identifier: GPL-2.0-or-later */
      2/*
      3 * Calculate a CRC T10DIF  with vpmsum acceleration
      4 *
      5 * Constants generated by crc32-vpmsum, available at
      6 * https://github.com/antonblanchard/crc32-vpmsum
      7 *
      8 * crc32-vpmsum is
      9 * Copyright (C) 2015 Anton Blanchard <anton@au.ibm.com>, IBM
     10 */
     11	.section	.rodata
     12.balign 16
     13
     14.byteswap_constant:
     15	/* byte reverse permute constant */
     16	.octa 0x0F0E0D0C0B0A09080706050403020100
     17
     18.constants:
     19
     20	/* Reduce 262144 kbits to 1024 bits */
     21	/* x^261184 mod p(x), x^261120 mod p(x) */
     22	.octa 0x0000000056d300000000000052550000
     23
     24	/* x^260160 mod p(x), x^260096 mod p(x) */
     25	.octa 0x00000000ee67000000000000a1e40000
     26
     27	/* x^259136 mod p(x), x^259072 mod p(x) */
     28	.octa 0x0000000060830000000000004ad10000
     29
     30	/* x^258112 mod p(x), x^258048 mod p(x) */
     31	.octa 0x000000008cfe0000000000009ab40000
     32
     33	/* x^257088 mod p(x), x^257024 mod p(x) */
     34	.octa 0x000000003e93000000000000fdb50000
     35
     36	/* x^256064 mod p(x), x^256000 mod p(x) */
     37	.octa 0x000000003c2000000000000045480000
     38
     39	/* x^255040 mod p(x), x^254976 mod p(x) */
     40	.octa 0x00000000b1fc0000000000008d690000
     41
     42	/* x^254016 mod p(x), x^253952 mod p(x) */
     43	.octa 0x00000000f82b00000000000024ad0000
     44
     45	/* x^252992 mod p(x), x^252928 mod p(x) */
     46	.octa 0x0000000044420000000000009f1a0000
     47
     48	/* x^251968 mod p(x), x^251904 mod p(x) */
     49	.octa 0x00000000e88c00000000000066ec0000
     50
     51	/* x^250944 mod p(x), x^250880 mod p(x) */
     52	.octa 0x00000000385c000000000000c87d0000
     53
     54	/* x^249920 mod p(x), x^249856 mod p(x) */
     55	.octa 0x000000003227000000000000c8ff0000
     56
     57	/* x^248896 mod p(x), x^248832 mod p(x) */
     58	.octa 0x00000000a9a900000000000033440000
     59
     60	/* x^247872 mod p(x), x^247808 mod p(x) */
     61	.octa 0x00000000abaa00000000000066eb0000
     62
     63	/* x^246848 mod p(x), x^246784 mod p(x) */
     64	.octa 0x000000001ac3000000000000c4ef0000
     65
     66	/* x^245824 mod p(x), x^245760 mod p(x) */
     67	.octa 0x0000000063f000000000000056f30000
     68
     69	/* x^244800 mod p(x), x^244736 mod p(x) */
     70	.octa 0x0000000032cc00000000000002050000
     71
     72	/* x^243776 mod p(x), x^243712 mod p(x) */
     73	.octa 0x00000000f8b5000000000000568e0000
     74
     75	/* x^242752 mod p(x), x^242688 mod p(x) */
     76	.octa 0x000000008db100000000000064290000
     77
     78	/* x^241728 mod p(x), x^241664 mod p(x) */
     79	.octa 0x0000000059ca0000000000006b660000
     80
     81	/* x^240704 mod p(x), x^240640 mod p(x) */
     82	.octa 0x000000005f5c00000000000018f80000
     83
     84	/* x^239680 mod p(x), x^239616 mod p(x) */
     85	.octa 0x0000000061af000000000000b6090000
     86
     87	/* x^238656 mod p(x), x^238592 mod p(x) */
     88	.octa 0x00000000e29e000000000000099a0000
     89
     90	/* x^237632 mod p(x), x^237568 mod p(x) */
     91	.octa 0x000000000975000000000000a8360000
     92
     93	/* x^236608 mod p(x), x^236544 mod p(x) */
     94	.octa 0x0000000043900000000000004f570000
     95
     96	/* x^235584 mod p(x), x^235520 mod p(x) */
     97	.octa 0x00000000f9cd000000000000134c0000
     98
     99	/* x^234560 mod p(x), x^234496 mod p(x) */
    100	.octa 0x000000007c29000000000000ec380000
    101
    102	/* x^233536 mod p(x), x^233472 mod p(x) */
    103	.octa 0x000000004c6a000000000000b0d10000
    104
    105	/* x^232512 mod p(x), x^232448 mod p(x) */
    106	.octa 0x00000000e7290000000000007d3e0000
    107
    108	/* x^231488 mod p(x), x^231424 mod p(x) */
    109	.octa 0x00000000f1ab000000000000f0b20000
    110
    111	/* x^230464 mod p(x), x^230400 mod p(x) */
    112	.octa 0x0000000039db0000000000009c270000
    113
    114	/* x^229440 mod p(x), x^229376 mod p(x) */
    115	.octa 0x000000005e2800000000000092890000
    116
    117	/* x^228416 mod p(x), x^228352 mod p(x) */
    118	.octa 0x00000000d44e000000000000d5ee0000
    119
    120	/* x^227392 mod p(x), x^227328 mod p(x) */
    121	.octa 0x00000000cd0a00000000000041f50000
    122
    123	/* x^226368 mod p(x), x^226304 mod p(x) */
    124	.octa 0x00000000c5b400000000000010520000
    125
    126	/* x^225344 mod p(x), x^225280 mod p(x) */
    127	.octa 0x00000000fd2100000000000042170000
    128
    129	/* x^224320 mod p(x), x^224256 mod p(x) */
    130	.octa 0x000000002f2500000000000095c20000
    131
    132	/* x^223296 mod p(x), x^223232 mod p(x) */
    133	.octa 0x000000001b0100000000000001ce0000
    134
    135	/* x^222272 mod p(x), x^222208 mod p(x) */
    136	.octa 0x000000000d430000000000002aca0000
    137
    138	/* x^221248 mod p(x), x^221184 mod p(x) */
    139	.octa 0x0000000030a6000000000000385e0000
    140
    141	/* x^220224 mod p(x), x^220160 mod p(x) */
    142	.octa 0x00000000e37b0000000000006f7a0000
    143
    144	/* x^219200 mod p(x), x^219136 mod p(x) */
    145	.octa 0x00000000873600000000000024320000
    146
    147	/* x^218176 mod p(x), x^218112 mod p(x) */
    148	.octa 0x00000000e9fb000000000000bd9c0000
    149
    150	/* x^217152 mod p(x), x^217088 mod p(x) */
    151	.octa 0x000000003b9500000000000054bc0000
    152
    153	/* x^216128 mod p(x), x^216064 mod p(x) */
    154	.octa 0x00000000133e000000000000a4660000
    155
    156	/* x^215104 mod p(x), x^215040 mod p(x) */
    157	.octa 0x00000000784500000000000079930000
    158
    159	/* x^214080 mod p(x), x^214016 mod p(x) */
    160	.octa 0x00000000b9800000000000001bb80000
    161
    162	/* x^213056 mod p(x), x^212992 mod p(x) */
    163	.octa 0x00000000687600000000000024400000
    164
    165	/* x^212032 mod p(x), x^211968 mod p(x) */
    166	.octa 0x00000000aff300000000000029e10000
    167
    168	/* x^211008 mod p(x), x^210944 mod p(x) */
    169	.octa 0x0000000024b50000000000005ded0000
    170
    171	/* x^209984 mod p(x), x^209920 mod p(x) */
    172	.octa 0x0000000017e8000000000000b12e0000
    173
    174	/* x^208960 mod p(x), x^208896 mod p(x) */
    175	.octa 0x00000000128400000000000026d20000
    176
    177	/* x^207936 mod p(x), x^207872 mod p(x) */
    178	.octa 0x000000002115000000000000a32a0000
    179
    180	/* x^206912 mod p(x), x^206848 mod p(x) */
    181	.octa 0x000000009595000000000000a1210000
    182
    183	/* x^205888 mod p(x), x^205824 mod p(x) */
    184	.octa 0x00000000281e000000000000ee8b0000
    185
    186	/* x^204864 mod p(x), x^204800 mod p(x) */
    187	.octa 0x0000000006010000000000003d0d0000
    188
    189	/* x^203840 mod p(x), x^203776 mod p(x) */
    190	.octa 0x00000000e2b600000000000034e90000
    191
    192	/* x^202816 mod p(x), x^202752 mod p(x) */
    193	.octa 0x000000001bd40000000000004cdb0000
    194
    195	/* x^201792 mod p(x), x^201728 mod p(x) */
    196	.octa 0x00000000df2800000000000030e90000
    197
    198	/* x^200768 mod p(x), x^200704 mod p(x) */
    199	.octa 0x0000000049c200000000000042590000
    200
    201	/* x^199744 mod p(x), x^199680 mod p(x) */
    202	.octa 0x000000009b97000000000000df950000
    203
    204	/* x^198720 mod p(x), x^198656 mod p(x) */
    205	.octa 0x000000006184000000000000da7b0000
    206
    207	/* x^197696 mod p(x), x^197632 mod p(x) */
    208	.octa 0x00000000461700000000000012510000
    209
    210	/* x^196672 mod p(x), x^196608 mod p(x) */
    211	.octa 0x000000009b40000000000000f37e0000
    212
    213	/* x^195648 mod p(x), x^195584 mod p(x) */
    214	.octa 0x00000000eeb2000000000000ecf10000
    215
    216	/* x^194624 mod p(x), x^194560 mod p(x) */
    217	.octa 0x00000000b2e800000000000050f20000
    218
    219	/* x^193600 mod p(x), x^193536 mod p(x) */
    220	.octa 0x00000000f59a000000000000e0b30000
    221
    222	/* x^192576 mod p(x), x^192512 mod p(x) */
    223	.octa 0x00000000467f0000000000004d5a0000
    224
    225	/* x^191552 mod p(x), x^191488 mod p(x) */
    226	.octa 0x00000000da92000000000000bb010000
    227
    228	/* x^190528 mod p(x), x^190464 mod p(x) */
    229	.octa 0x000000001e1000000000000022a40000
    230
    231	/* x^189504 mod p(x), x^189440 mod p(x) */
    232	.octa 0x0000000058fe000000000000836f0000
    233
    234	/* x^188480 mod p(x), x^188416 mod p(x) */
    235	.octa 0x00000000b9ce000000000000d78d0000
    236
    237	/* x^187456 mod p(x), x^187392 mod p(x) */
    238	.octa 0x0000000022210000000000004f8d0000
    239
    240	/* x^186432 mod p(x), x^186368 mod p(x) */
    241	.octa 0x00000000744600000000000033760000
    242
    243	/* x^185408 mod p(x), x^185344 mod p(x) */
    244	.octa 0x000000001c2e000000000000a1e50000
    245
    246	/* x^184384 mod p(x), x^184320 mod p(x) */
    247	.octa 0x00000000dcc8000000000000a1a40000
    248
    249	/* x^183360 mod p(x), x^183296 mod p(x) */
    250	.octa 0x00000000910f00000000000019a20000
    251
    252	/* x^182336 mod p(x), x^182272 mod p(x) */
    253	.octa 0x0000000055d5000000000000f6ae0000
    254
    255	/* x^181312 mod p(x), x^181248 mod p(x) */
    256	.octa 0x00000000c8ba000000000000a7ac0000
    257
    258	/* x^180288 mod p(x), x^180224 mod p(x) */
    259	.octa 0x0000000031f8000000000000eea20000
    260
    261	/* x^179264 mod p(x), x^179200 mod p(x) */
    262	.octa 0x000000001966000000000000c4d90000
    263
    264	/* x^178240 mod p(x), x^178176 mod p(x) */
    265	.octa 0x00000000b9810000000000002b470000
    266
    267	/* x^177216 mod p(x), x^177152 mod p(x) */
    268	.octa 0x000000008303000000000000f7cf0000
    269
    270	/* x^176192 mod p(x), x^176128 mod p(x) */
    271	.octa 0x000000002ce500000000000035b30000
    272
    273	/* x^175168 mod p(x), x^175104 mod p(x) */
    274	.octa 0x000000002fae0000000000000c7c0000
    275
    276	/* x^174144 mod p(x), x^174080 mod p(x) */
    277	.octa 0x00000000f50c0000000000009edf0000
    278
    279	/* x^173120 mod p(x), x^173056 mod p(x) */
    280	.octa 0x00000000714f00000000000004cd0000
    281
    282	/* x^172096 mod p(x), x^172032 mod p(x) */
    283	.octa 0x00000000c161000000000000541b0000
    284
    285	/* x^171072 mod p(x), x^171008 mod p(x) */
    286	.octa 0x0000000021c8000000000000e2700000
    287
    288	/* x^170048 mod p(x), x^169984 mod p(x) */
    289	.octa 0x00000000b93d00000000000009a60000
    290
    291	/* x^169024 mod p(x), x^168960 mod p(x) */
    292	.octa 0x00000000fbcf000000000000761c0000
    293
    294	/* x^168000 mod p(x), x^167936 mod p(x) */
    295	.octa 0x0000000026350000000000009db30000
    296
    297	/* x^166976 mod p(x), x^166912 mod p(x) */
    298	.octa 0x00000000b64f0000000000003e9f0000
    299
    300	/* x^165952 mod p(x), x^165888 mod p(x) */
    301	.octa 0x00000000bd0e00000000000078590000
    302
    303	/* x^164928 mod p(x), x^164864 mod p(x) */
    304	.octa 0x00000000d9360000000000008bc80000
    305
    306	/* x^163904 mod p(x), x^163840 mod p(x) */
    307	.octa 0x000000002f140000000000008c9f0000
    308
    309	/* x^162880 mod p(x), x^162816 mod p(x) */
    310	.octa 0x000000006a270000000000006af70000
    311
    312	/* x^161856 mod p(x), x^161792 mod p(x) */
    313	.octa 0x000000006685000000000000e5210000
    314
    315	/* x^160832 mod p(x), x^160768 mod p(x) */
    316	.octa 0x0000000062da00000000000008290000
    317
    318	/* x^159808 mod p(x), x^159744 mod p(x) */
    319	.octa 0x00000000bb4b000000000000e4d00000
    320
    321	/* x^158784 mod p(x), x^158720 mod p(x) */
    322	.octa 0x00000000d2490000000000004ae10000
    323
    324	/* x^157760 mod p(x), x^157696 mod p(x) */
    325	.octa 0x00000000c85b00000000000000e70000
    326
    327	/* x^156736 mod p(x), x^156672 mod p(x) */
    328	.octa 0x00000000c37a00000000000015650000
    329
    330	/* x^155712 mod p(x), x^155648 mod p(x) */
    331	.octa 0x0000000018530000000000001c2f0000
    332
    333	/* x^154688 mod p(x), x^154624 mod p(x) */
    334	.octa 0x00000000b46600000000000037bd0000
    335
    336	/* x^153664 mod p(x), x^153600 mod p(x) */
    337	.octa 0x00000000439b00000000000012190000
    338
    339	/* x^152640 mod p(x), x^152576 mod p(x) */
    340	.octa 0x00000000b1260000000000005ece0000
    341
    342	/* x^151616 mod p(x), x^151552 mod p(x) */
    343	.octa 0x00000000d8110000000000002a5e0000
    344
    345	/* x^150592 mod p(x), x^150528 mod p(x) */
    346	.octa 0x00000000099f00000000000052330000
    347
    348	/* x^149568 mod p(x), x^149504 mod p(x) */
    349	.octa 0x00000000f9f9000000000000f9120000
    350
    351	/* x^148544 mod p(x), x^148480 mod p(x) */
    352	.octa 0x000000005cc00000000000000ddc0000
    353
    354	/* x^147520 mod p(x), x^147456 mod p(x) */
    355	.octa 0x00000000343b00000000000012200000
    356
    357	/* x^146496 mod p(x), x^146432 mod p(x) */
    358	.octa 0x000000009222000000000000d12b0000
    359
    360	/* x^145472 mod p(x), x^145408 mod p(x) */
    361	.octa 0x00000000d781000000000000eb2d0000
    362
    363	/* x^144448 mod p(x), x^144384 mod p(x) */
    364	.octa 0x000000000bf400000000000058970000
    365
    366	/* x^143424 mod p(x), x^143360 mod p(x) */
    367	.octa 0x00000000094200000000000013690000
    368
    369	/* x^142400 mod p(x), x^142336 mod p(x) */
    370	.octa 0x00000000d55100000000000051950000
    371
    372	/* x^141376 mod p(x), x^141312 mod p(x) */
    373	.octa 0x000000008f11000000000000954b0000
    374
    375	/* x^140352 mod p(x), x^140288 mod p(x) */
    376	.octa 0x00000000140f000000000000b29e0000
    377
    378	/* x^139328 mod p(x), x^139264 mod p(x) */
    379	.octa 0x00000000c6db000000000000db5d0000
    380
    381	/* x^138304 mod p(x), x^138240 mod p(x) */
    382	.octa 0x00000000715b000000000000dfaf0000
    383
    384	/* x^137280 mod p(x), x^137216 mod p(x) */
    385	.octa 0x000000000dea000000000000e3b60000
    386
    387	/* x^136256 mod p(x), x^136192 mod p(x) */
    388	.octa 0x000000006f94000000000000ddaf0000
    389
    390	/* x^135232 mod p(x), x^135168 mod p(x) */
    391	.octa 0x0000000024e1000000000000e4f70000
    392
    393	/* x^134208 mod p(x), x^134144 mod p(x) */
    394	.octa 0x000000008810000000000000aa110000
    395
    396	/* x^133184 mod p(x), x^133120 mod p(x) */
    397	.octa 0x0000000030c2000000000000a8e60000
    398
    399	/* x^132160 mod p(x), x^132096 mod p(x) */
    400	.octa 0x00000000e6d0000000000000ccf30000
    401
    402	/* x^131136 mod p(x), x^131072 mod p(x) */
    403	.octa 0x000000004da000000000000079bf0000
    404
    405	/* x^130112 mod p(x), x^130048 mod p(x) */
    406	.octa 0x000000007759000000000000b3a30000
    407
    408	/* x^129088 mod p(x), x^129024 mod p(x) */
    409	.octa 0x00000000597400000000000028790000
    410
    411	/* x^128064 mod p(x), x^128000 mod p(x) */
    412	.octa 0x000000007acd000000000000b5820000
    413
    414	/* x^127040 mod p(x), x^126976 mod p(x) */
    415	.octa 0x00000000e6e400000000000026ad0000
    416
    417	/* x^126016 mod p(x), x^125952 mod p(x) */
    418	.octa 0x000000006d49000000000000985b0000
    419
    420	/* x^124992 mod p(x), x^124928 mod p(x) */
    421	.octa 0x000000000f0800000000000011520000
    422
    423	/* x^123968 mod p(x), x^123904 mod p(x) */
    424	.octa 0x000000002c7f000000000000846c0000
    425
    426	/* x^122944 mod p(x), x^122880 mod p(x) */
    427	.octa 0x000000005ce7000000000000ae1d0000
    428
    429	/* x^121920 mod p(x), x^121856 mod p(x) */
    430	.octa 0x00000000d4cb000000000000e21d0000
    431
    432	/* x^120896 mod p(x), x^120832 mod p(x) */
    433	.octa 0x000000003a2300000000000019bb0000
    434
    435	/* x^119872 mod p(x), x^119808 mod p(x) */
    436	.octa 0x000000000e1700000000000095290000
    437
    438	/* x^118848 mod p(x), x^118784 mod p(x) */
    439	.octa 0x000000006e6400000000000050d20000
    440
    441	/* x^117824 mod p(x), x^117760 mod p(x) */
    442	.octa 0x000000008d5c0000000000000cd10000
    443
    444	/* x^116800 mod p(x), x^116736 mod p(x) */
    445	.octa 0x00000000ef310000000000007b570000
    446
    447	/* x^115776 mod p(x), x^115712 mod p(x) */
    448	.octa 0x00000000645d00000000000053d60000
    449
    450	/* x^114752 mod p(x), x^114688 mod p(x) */
    451	.octa 0x0000000018fc00000000000077510000
    452
    453	/* x^113728 mod p(x), x^113664 mod p(x) */
    454	.octa 0x000000000cb3000000000000a7b70000
    455
    456	/* x^112704 mod p(x), x^112640 mod p(x) */
    457	.octa 0x00000000991b000000000000d0780000
    458
    459	/* x^111680 mod p(x), x^111616 mod p(x) */
    460	.octa 0x00000000845a000000000000be3c0000
    461
    462	/* x^110656 mod p(x), x^110592 mod p(x) */
    463	.octa 0x00000000d3a9000000000000df020000
    464
    465	/* x^109632 mod p(x), x^109568 mod p(x) */
    466	.octa 0x0000000017d7000000000000063e0000
    467
    468	/* x^108608 mod p(x), x^108544 mod p(x) */
    469	.octa 0x000000007a860000000000008ab40000
    470
    471	/* x^107584 mod p(x), x^107520 mod p(x) */
    472	.octa 0x00000000fd7c000000000000c7bd0000
    473
    474	/* x^106560 mod p(x), x^106496 mod p(x) */
    475	.octa 0x00000000a56b000000000000efd60000
    476
    477	/* x^105536 mod p(x), x^105472 mod p(x) */
    478	.octa 0x0000000010e400000000000071380000
    479
    480	/* x^104512 mod p(x), x^104448 mod p(x) */
    481	.octa 0x00000000994500000000000004d30000
    482
    483	/* x^103488 mod p(x), x^103424 mod p(x) */
    484	.octa 0x00000000b83c0000000000003b0e0000
    485
    486	/* x^102464 mod p(x), x^102400 mod p(x) */
    487	.octa 0x00000000d6c10000000000008b020000
    488
    489	/* x^101440 mod p(x), x^101376 mod p(x) */
    490	.octa 0x000000009efc000000000000da940000
    491
    492	/* x^100416 mod p(x), x^100352 mod p(x) */
    493	.octa 0x000000005e87000000000000f9f70000
    494
    495	/* x^99392 mod p(x), x^99328 mod p(x) */
    496	.octa 0x000000006c9b00000000000045e40000
    497
    498	/* x^98368 mod p(x), x^98304 mod p(x) */
    499	.octa 0x00000000178a00000000000083940000
    500
    501	/* x^97344 mod p(x), x^97280 mod p(x) */
    502	.octa 0x00000000f0c8000000000000f0a00000
    503
    504	/* x^96320 mod p(x), x^96256 mod p(x) */
    505	.octa 0x00000000f699000000000000b74b0000
    506
    507	/* x^95296 mod p(x), x^95232 mod p(x) */
    508	.octa 0x00000000316d000000000000c1cf0000
    509
    510	/* x^94272 mod p(x), x^94208 mod p(x) */
    511	.octa 0x00000000987e00000000000072680000
    512
    513	/* x^93248 mod p(x), x^93184 mod p(x) */
    514	.octa 0x00000000acff000000000000e0ab0000
    515
    516	/* x^92224 mod p(x), x^92160 mod p(x) */
    517	.octa 0x00000000a1f6000000000000c5a80000
    518
    519	/* x^91200 mod p(x), x^91136 mod p(x) */
    520	.octa 0x0000000061bd000000000000cf690000
    521
    522	/* x^90176 mod p(x), x^90112 mod p(x) */
    523	.octa 0x00000000c9f2000000000000cbcc0000
    524
    525	/* x^89152 mod p(x), x^89088 mod p(x) */
    526	.octa 0x000000005a33000000000000de050000
    527
    528	/* x^88128 mod p(x), x^88064 mod p(x) */
    529	.octa 0x00000000e416000000000000ccd70000
    530
    531	/* x^87104 mod p(x), x^87040 mod p(x) */
    532	.octa 0x0000000058930000000000002f670000
    533
    534	/* x^86080 mod p(x), x^86016 mod p(x) */
    535	.octa 0x00000000a9d3000000000000152f0000
    536
    537	/* x^85056 mod p(x), x^84992 mod p(x) */
    538	.octa 0x00000000c114000000000000ecc20000
    539
    540	/* x^84032 mod p(x), x^83968 mod p(x) */
    541	.octa 0x00000000b9270000000000007c890000
    542
    543	/* x^83008 mod p(x), x^82944 mod p(x) */
    544	.octa 0x000000002e6000000000000006ee0000
    545
    546	/* x^81984 mod p(x), x^81920 mod p(x) */
    547	.octa 0x00000000dfc600000000000009100000
    548
    549	/* x^80960 mod p(x), x^80896 mod p(x) */
    550	.octa 0x000000004911000000000000ad4e0000
    551
    552	/* x^79936 mod p(x), x^79872 mod p(x) */
    553	.octa 0x00000000ae1b000000000000b04d0000
    554
    555	/* x^78912 mod p(x), x^78848 mod p(x) */
    556	.octa 0x0000000005fa000000000000e9900000
    557
    558	/* x^77888 mod p(x), x^77824 mod p(x) */
    559	.octa 0x0000000004a1000000000000cc6f0000
    560
    561	/* x^76864 mod p(x), x^76800 mod p(x) */
    562	.octa 0x00000000af73000000000000ed110000
    563
    564	/* x^75840 mod p(x), x^75776 mod p(x) */
    565	.octa 0x0000000082530000000000008f7e0000
    566
    567	/* x^74816 mod p(x), x^74752 mod p(x) */
    568	.octa 0x00000000cfdc000000000000594f0000
    569
    570	/* x^73792 mod p(x), x^73728 mod p(x) */
    571	.octa 0x00000000a6b6000000000000a8750000
    572
    573	/* x^72768 mod p(x), x^72704 mod p(x) */
    574	.octa 0x00000000fd76000000000000aa0c0000
    575
    576	/* x^71744 mod p(x), x^71680 mod p(x) */
    577	.octa 0x0000000006f500000000000071db0000
    578
    579	/* x^70720 mod p(x), x^70656 mod p(x) */
    580	.octa 0x0000000037ca000000000000ab0c0000
    581
    582	/* x^69696 mod p(x), x^69632 mod p(x) */
    583	.octa 0x00000000d7ab000000000000b7a00000
    584
    585	/* x^68672 mod p(x), x^68608 mod p(x) */
    586	.octa 0x00000000440800000000000090d30000
    587
    588	/* x^67648 mod p(x), x^67584 mod p(x) */
    589	.octa 0x00000000186100000000000054730000
    590
    591	/* x^66624 mod p(x), x^66560 mod p(x) */
    592	.octa 0x000000007368000000000000a3a20000
    593
    594	/* x^65600 mod p(x), x^65536 mod p(x) */
    595	.octa 0x0000000026d0000000000000f9040000
    596
    597	/* x^64576 mod p(x), x^64512 mod p(x) */
    598	.octa 0x00000000fe770000000000009c0a0000
    599
    600	/* x^63552 mod p(x), x^63488 mod p(x) */
    601	.octa 0x000000002cba000000000000d1e70000
    602
    603	/* x^62528 mod p(x), x^62464 mod p(x) */
    604	.octa 0x00000000f8bd0000000000005ac10000
    605
    606	/* x^61504 mod p(x), x^61440 mod p(x) */
    607	.octa 0x000000007372000000000000d68d0000
    608
    609	/* x^60480 mod p(x), x^60416 mod p(x) */
    610	.octa 0x00000000f37f00000000000089f60000
    611
    612	/* x^59456 mod p(x), x^59392 mod p(x) */
    613	.octa 0x00000000078400000000000008a90000
    614
    615	/* x^58432 mod p(x), x^58368 mod p(x) */
    616	.octa 0x00000000d3e400000000000042360000
    617
    618	/* x^57408 mod p(x), x^57344 mod p(x) */
    619	.octa 0x00000000eba800000000000092d50000
    620
    621	/* x^56384 mod p(x), x^56320 mod p(x) */
    622	.octa 0x00000000afbe000000000000b4d50000
    623
    624	/* x^55360 mod p(x), x^55296 mod p(x) */
    625	.octa 0x00000000d8ca000000000000c9060000
    626
    627	/* x^54336 mod p(x), x^54272 mod p(x) */
    628	.octa 0x00000000c2d00000000000008f4f0000
    629
    630	/* x^53312 mod p(x), x^53248 mod p(x) */
    631	.octa 0x00000000373200000000000028690000
    632
    633	/* x^52288 mod p(x), x^52224 mod p(x) */
    634	.octa 0x0000000046ae000000000000c3b30000
    635
    636	/* x^51264 mod p(x), x^51200 mod p(x) */
    637	.octa 0x00000000b243000000000000f8700000
    638
    639	/* x^50240 mod p(x), x^50176 mod p(x) */
    640	.octa 0x00000000f7f500000000000029eb0000
    641
    642	/* x^49216 mod p(x), x^49152 mod p(x) */
    643	.octa 0x000000000c7e000000000000fe730000
    644
    645	/* x^48192 mod p(x), x^48128 mod p(x) */
    646	.octa 0x00000000c38200000000000096000000
    647
    648	/* x^47168 mod p(x), x^47104 mod p(x) */
    649	.octa 0x000000008956000000000000683c0000
    650
    651	/* x^46144 mod p(x), x^46080 mod p(x) */
    652	.octa 0x00000000422d0000000000005f1e0000
    653
    654	/* x^45120 mod p(x), x^45056 mod p(x) */
    655	.octa 0x00000000ac0f0000000000006f810000
    656
    657	/* x^44096 mod p(x), x^44032 mod p(x) */
    658	.octa 0x00000000ce30000000000000031f0000
    659
    660	/* x^43072 mod p(x), x^43008 mod p(x) */
    661	.octa 0x000000003d43000000000000455a0000
    662
    663	/* x^42048 mod p(x), x^41984 mod p(x) */
    664	.octa 0x000000007ebe000000000000a6050000
    665
    666	/* x^41024 mod p(x), x^40960 mod p(x) */
    667	.octa 0x00000000976e00000000000077eb0000
    668
    669	/* x^40000 mod p(x), x^39936 mod p(x) */
    670	.octa 0x000000000872000000000000389c0000
    671
    672	/* x^38976 mod p(x), x^38912 mod p(x) */
    673	.octa 0x000000008979000000000000c7b20000
    674
    675	/* x^37952 mod p(x), x^37888 mod p(x) */
    676	.octa 0x000000005c1e0000000000001d870000
    677
    678	/* x^36928 mod p(x), x^36864 mod p(x) */
    679	.octa 0x00000000aebb00000000000045810000
    680
    681	/* x^35904 mod p(x), x^35840 mod p(x) */
    682	.octa 0x000000004f7e0000000000006d4a0000
    683
    684	/* x^34880 mod p(x), x^34816 mod p(x) */
    685	.octa 0x00000000ea98000000000000b9200000
    686
    687	/* x^33856 mod p(x), x^33792 mod p(x) */
    688	.octa 0x00000000f39600000000000022f20000
    689
    690	/* x^32832 mod p(x), x^32768 mod p(x) */
    691	.octa 0x000000000bc500000000000041ca0000
    692
    693	/* x^31808 mod p(x), x^31744 mod p(x) */
    694	.octa 0x00000000786400000000000078500000
    695
    696	/* x^30784 mod p(x), x^30720 mod p(x) */
    697	.octa 0x00000000be970000000000009e7e0000
    698
    699	/* x^29760 mod p(x), x^29696 mod p(x) */
    700	.octa 0x00000000dd6d000000000000a53c0000
    701
    702	/* x^28736 mod p(x), x^28672 mod p(x) */
    703	.octa 0x000000004c3f00000000000039340000
    704
    705	/* x^27712 mod p(x), x^27648 mod p(x) */
    706	.octa 0x0000000093a4000000000000b58e0000
    707
    708	/* x^26688 mod p(x), x^26624 mod p(x) */
    709	.octa 0x0000000050fb00000000000062d40000
    710
    711	/* x^25664 mod p(x), x^25600 mod p(x) */
    712	.octa 0x00000000f505000000000000a26f0000
    713
    714	/* x^24640 mod p(x), x^24576 mod p(x) */
    715	.octa 0x0000000064f900000000000065e60000
    716
    717	/* x^23616 mod p(x), x^23552 mod p(x) */
    718	.octa 0x00000000e8c2000000000000aad90000
    719
    720	/* x^22592 mod p(x), x^22528 mod p(x) */
    721	.octa 0x00000000720b000000000000a3b00000
    722
    723	/* x^21568 mod p(x), x^21504 mod p(x) */
    724	.octa 0x00000000e992000000000000d2680000
    725
    726	/* x^20544 mod p(x), x^20480 mod p(x) */
    727	.octa 0x000000009132000000000000cf4c0000
    728
    729	/* x^19520 mod p(x), x^19456 mod p(x) */
    730	.octa 0x00000000608a00000000000076610000
    731
    732	/* x^18496 mod p(x), x^18432 mod p(x) */
    733	.octa 0x000000009948000000000000fb9f0000
    734
    735	/* x^17472 mod p(x), x^17408 mod p(x) */
    736	.octa 0x00000000173000000000000003770000
    737
    738	/* x^16448 mod p(x), x^16384 mod p(x) */
    739	.octa 0x000000006fe300000000000004880000
    740
    741	/* x^15424 mod p(x), x^15360 mod p(x) */
    742	.octa 0x00000000e15300000000000056a70000
    743
    744	/* x^14400 mod p(x), x^14336 mod p(x) */
    745	.octa 0x0000000092d60000000000009dfd0000
    746
    747	/* x^13376 mod p(x), x^13312 mod p(x) */
    748	.octa 0x0000000002fd00000000000074c80000
    749
    750	/* x^12352 mod p(x), x^12288 mod p(x) */
    751	.octa 0x00000000c78b000000000000a3ec0000
    752
    753	/* x^11328 mod p(x), x^11264 mod p(x) */
    754	.octa 0x000000009262000000000000b3530000
    755
    756	/* x^10304 mod p(x), x^10240 mod p(x) */
    757	.octa 0x0000000084f200000000000047bf0000
    758
    759	/* x^9280 mod p(x), x^9216 mod p(x) */
    760	.octa 0x0000000067ee000000000000e97c0000
    761
    762	/* x^8256 mod p(x), x^8192 mod p(x) */
    763	.octa 0x00000000535b00000000000091e10000
    764
    765	/* x^7232 mod p(x), x^7168 mod p(x) */
    766	.octa 0x000000007ebb00000000000055060000
    767
    768	/* x^6208 mod p(x), x^6144 mod p(x) */
    769	.octa 0x00000000c6a1000000000000fd360000
    770
    771	/* x^5184 mod p(x), x^5120 mod p(x) */
    772	.octa 0x000000001be500000000000055860000
    773
    774	/* x^4160 mod p(x), x^4096 mod p(x) */
    775	.octa 0x00000000ae0e0000000000005bd00000
    776
    777	/* x^3136 mod p(x), x^3072 mod p(x) */
    778	.octa 0x0000000022040000000000008db20000
    779
    780	/* x^2112 mod p(x), x^2048 mod p(x) */
    781	.octa 0x00000000c9eb000000000000efe20000
    782
    783	/* x^1088 mod p(x), x^1024 mod p(x) */
    784	.octa 0x0000000039b400000000000051d10000
    785
    786.short_constants:
    787
    788	/* Reduce final 1024-2048 bits to 64 bits, shifting 32 bits to include the trailing 32 bits of zeros */
    789	/* x^2048 mod p(x), x^2016 mod p(x), x^1984 mod p(x), x^1952 mod p(x) */
    790	.octa 0xefe20000dccf00009440000033590000
    791
    792	/* x^1920 mod p(x), x^1888 mod p(x), x^1856 mod p(x), x^1824 mod p(x) */
    793	.octa 0xee6300002f3f000062180000e0ed0000
    794
    795	/* x^1792 mod p(x), x^1760 mod p(x), x^1728 mod p(x), x^1696 mod p(x) */
    796	.octa 0xcf5f000017ef0000ccbe000023d30000
    797
    798	/* x^1664 mod p(x), x^1632 mod p(x), x^1600 mod p(x), x^1568 mod p(x) */
    799	.octa 0x6d0c0000a30e00000920000042630000
    800
    801	/* x^1536 mod p(x), x^1504 mod p(x), x^1472 mod p(x), x^1440 mod p(x) */
    802	.octa 0x21d30000932b0000a7a00000efcc0000
    803
    804	/* x^1408 mod p(x), x^1376 mod p(x), x^1344 mod p(x), x^1312 mod p(x) */
    805	.octa 0x10be00000b310000666f00000d1c0000
    806
    807	/* x^1280 mod p(x), x^1248 mod p(x), x^1216 mod p(x), x^1184 mod p(x) */
    808	.octa 0x1f240000ce9e0000caad0000589e0000
    809
    810	/* x^1152 mod p(x), x^1120 mod p(x), x^1088 mod p(x), x^1056 mod p(x) */
    811	.octa 0x29610000d02b000039b400007cf50000
    812
    813	/* x^1024 mod p(x), x^992 mod p(x), x^960 mod p(x), x^928 mod p(x) */
    814	.octa 0x51d100009d9d00003c0e0000bfd60000
    815
    816	/* x^896 mod p(x), x^864 mod p(x), x^832 mod p(x), x^800 mod p(x) */
    817	.octa 0xda390000ceae000013830000713c0000
    818
    819	/* x^768 mod p(x), x^736 mod p(x), x^704 mod p(x), x^672 mod p(x) */
    820	.octa 0xb67800001e16000085c0000080a60000
    821
    822	/* x^640 mod p(x), x^608 mod p(x), x^576 mod p(x), x^544 mod p(x) */
    823	.octa 0x0db40000f7f90000371d0000e6580000
    824
    825	/* x^512 mod p(x), x^480 mod p(x), x^448 mod p(x), x^416 mod p(x) */
    826	.octa 0x87e70000044c0000aadb0000a4970000
    827
    828	/* x^384 mod p(x), x^352 mod p(x), x^320 mod p(x), x^288 mod p(x) */
    829	.octa 0x1f990000ad180000d8b30000e7b50000
    830
    831	/* x^256 mod p(x), x^224 mod p(x), x^192 mod p(x), x^160 mod p(x) */
    832	.octa 0xbe6c00006ee300004c1a000006df0000
    833
    834	/* x^128 mod p(x), x^96 mod p(x), x^64 mod p(x), x^32 mod p(x) */
    835	.octa 0xfb0b00002d560000136800008bb70000
    836
    837
    838.barrett_constants:
    839	/* Barrett constant m - (4^32)/n */
    840	.octa 0x000000000000000000000001f65a57f8	/* x^64 div p(x) */
    841	/* Barrett constant n */
    842	.octa 0x0000000000000000000000018bb70000
    843
    844#define CRC_FUNCTION_NAME __crct10dif_vpmsum
    845#include "crc32-vpmsum_core.S"