cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

sha256-spe-glue.c (5924B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * Glue code for SHA-256 implementation for SPE instructions (PPC)
      4 *
      5 * Based on generic implementation. The assembler module takes care 
      6 * about the SPE registers so it can run from interrupt context.
      7 *
      8 * Copyright (c) 2015 Markus Stockhausen <stockhausen@collogia.de>
      9 */
     10
     11#include <crypto/internal/hash.h>
     12#include <linux/init.h>
     13#include <linux/module.h>
     14#include <linux/mm.h>
     15#include <linux/types.h>
     16#include <crypto/sha2.h>
     17#include <crypto/sha256_base.h>
     18#include <asm/byteorder.h>
     19#include <asm/switch_to.h>
     20#include <linux/hardirq.h>
     21
     22/*
     23 * MAX_BYTES defines the number of bytes that are allowed to be processed
     24 * between preempt_disable() and preempt_enable(). SHA256 takes ~2,000
     25 * operations per 64 bytes. e500 cores can issue two arithmetic instructions
     26 * per clock cycle using one 32/64 bit unit (SU1) and one 32 bit unit (SU2).
     27 * Thus 1KB of input data will need an estimated maximum of 18,000 cycles.
     28 * Headroom for cache misses included. Even with the low end model clocked
     29 * at 667 MHz this equals to a critical time window of less than 27us.
     30 *
     31 */
     32#define MAX_BYTES 1024
     33
     34extern void ppc_spe_sha256_transform(u32 *state, const u8 *src, u32 blocks);
     35
     36static void spe_begin(void)
     37{
     38	/* We just start SPE operations and will save SPE registers later. */
     39	preempt_disable();
     40	enable_kernel_spe();
     41}
     42
     43static void spe_end(void)
     44{
     45	disable_kernel_spe();
     46	/* reenable preemption */
     47	preempt_enable();
     48}
     49
     50static inline void ppc_sha256_clear_context(struct sha256_state *sctx)
     51{
     52	int count = sizeof(struct sha256_state) >> 2;
     53	u32 *ptr = (u32 *)sctx;
     54
     55	/* make sure we can clear the fast way */
     56	BUILD_BUG_ON(sizeof(struct sha256_state) % 4);
     57	do { *ptr++ = 0; } while (--count);
     58}
     59
     60static int ppc_spe_sha256_update(struct shash_desc *desc, const u8 *data,
     61			unsigned int len)
     62{
     63	struct sha256_state *sctx = shash_desc_ctx(desc);
     64	const unsigned int offset = sctx->count & 0x3f;
     65	const unsigned int avail = 64 - offset;
     66	unsigned int bytes;
     67	const u8 *src = data;
     68
     69	if (avail > len) {
     70		sctx->count += len;
     71		memcpy((char *)sctx->buf + offset, src, len);
     72		return 0;
     73	}
     74
     75	sctx->count += len;
     76
     77	if (offset) {
     78		memcpy((char *)sctx->buf + offset, src, avail);
     79
     80		spe_begin();
     81		ppc_spe_sha256_transform(sctx->state, (const u8 *)sctx->buf, 1);
     82		spe_end();
     83
     84		len -= avail;
     85		src += avail;
     86	}
     87
     88	while (len > 63) {
     89		/* cut input data into smaller blocks */
     90		bytes = (len > MAX_BYTES) ? MAX_BYTES : len;
     91		bytes = bytes & ~0x3f;
     92
     93		spe_begin();
     94		ppc_spe_sha256_transform(sctx->state, src, bytes >> 6);
     95		spe_end();
     96
     97		src += bytes;
     98		len -= bytes;
     99	}
    100
    101	memcpy((char *)sctx->buf, src, len);
    102	return 0;
    103}
    104
    105static int ppc_spe_sha256_final(struct shash_desc *desc, u8 *out)
    106{
    107	struct sha256_state *sctx = shash_desc_ctx(desc);
    108	const unsigned int offset = sctx->count & 0x3f;
    109	char *p = (char *)sctx->buf + offset;
    110	int padlen;
    111	__be64 *pbits = (__be64 *)(((char *)&sctx->buf) + 56);
    112	__be32 *dst = (__be32 *)out;
    113
    114	padlen = 55 - offset;
    115	*p++ = 0x80;
    116
    117	spe_begin();
    118
    119	if (padlen < 0) {
    120		memset(p, 0x00, padlen + sizeof (u64));
    121		ppc_spe_sha256_transform(sctx->state, sctx->buf, 1);
    122		p = (char *)sctx->buf;
    123		padlen = 56;
    124	}
    125
    126	memset(p, 0, padlen);
    127	*pbits = cpu_to_be64(sctx->count << 3);
    128	ppc_spe_sha256_transform(sctx->state, sctx->buf, 1);
    129
    130	spe_end();
    131
    132	dst[0] = cpu_to_be32(sctx->state[0]);
    133	dst[1] = cpu_to_be32(sctx->state[1]);
    134	dst[2] = cpu_to_be32(sctx->state[2]);
    135	dst[3] = cpu_to_be32(sctx->state[3]);
    136	dst[4] = cpu_to_be32(sctx->state[4]);
    137	dst[5] = cpu_to_be32(sctx->state[5]);
    138	dst[6] = cpu_to_be32(sctx->state[6]);
    139	dst[7] = cpu_to_be32(sctx->state[7]);
    140
    141	ppc_sha256_clear_context(sctx);
    142	return 0;
    143}
    144
    145static int ppc_spe_sha224_final(struct shash_desc *desc, u8 *out)
    146{
    147	__be32 D[SHA256_DIGEST_SIZE >> 2];
    148	__be32 *dst = (__be32 *)out;
    149
    150	ppc_spe_sha256_final(desc, (u8 *)D);
    151
    152	/* avoid bytewise memcpy */
    153	dst[0] = D[0];
    154	dst[1] = D[1];
    155	dst[2] = D[2];
    156	dst[3] = D[3];
    157	dst[4] = D[4];
    158	dst[5] = D[5];
    159	dst[6] = D[6];
    160
    161	/* clear sensitive data */
    162	memzero_explicit(D, SHA256_DIGEST_SIZE);
    163	return 0;
    164}
    165
    166static int ppc_spe_sha256_export(struct shash_desc *desc, void *out)
    167{
    168	struct sha256_state *sctx = shash_desc_ctx(desc);
    169
    170	memcpy(out, sctx, sizeof(*sctx));
    171	return 0;
    172}
    173
    174static int ppc_spe_sha256_import(struct shash_desc *desc, const void *in)
    175{
    176	struct sha256_state *sctx = shash_desc_ctx(desc);
    177
    178	memcpy(sctx, in, sizeof(*sctx));
    179	return 0;
    180}
    181
    182static struct shash_alg algs[2] = { {
    183	.digestsize	=	SHA256_DIGEST_SIZE,
    184	.init		=	sha256_base_init,
    185	.update		=	ppc_spe_sha256_update,
    186	.final		=	ppc_spe_sha256_final,
    187	.export		=	ppc_spe_sha256_export,
    188	.import		=	ppc_spe_sha256_import,
    189	.descsize	=	sizeof(struct sha256_state),
    190	.statesize	=	sizeof(struct sha256_state),
    191	.base		=	{
    192		.cra_name	=	"sha256",
    193		.cra_driver_name=	"sha256-ppc-spe",
    194		.cra_priority	=	300,
    195		.cra_blocksize	=	SHA256_BLOCK_SIZE,
    196		.cra_module	=	THIS_MODULE,
    197	}
    198}, {
    199	.digestsize	=	SHA224_DIGEST_SIZE,
    200	.init		=	sha224_base_init,
    201	.update		=	ppc_spe_sha256_update,
    202	.final		=	ppc_spe_sha224_final,
    203	.export		=	ppc_spe_sha256_export,
    204	.import		=	ppc_spe_sha256_import,
    205	.descsize	=	sizeof(struct sha256_state),
    206	.statesize	=	sizeof(struct sha256_state),
    207	.base		=	{
    208		.cra_name	=	"sha224",
    209		.cra_driver_name=	"sha224-ppc-spe",
    210		.cra_priority	=	300,
    211		.cra_blocksize	=	SHA224_BLOCK_SIZE,
    212		.cra_module	=	THIS_MODULE,
    213	}
    214} };
    215
    216static int __init ppc_spe_sha256_mod_init(void)
    217{
    218	return crypto_register_shashes(algs, ARRAY_SIZE(algs));
    219}
    220
    221static void __exit ppc_spe_sha256_mod_fini(void)
    222{
    223	crypto_unregister_shashes(algs, ARRAY_SIZE(algs));
    224}
    225
    226module_init(ppc_spe_sha256_mod_init);
    227module_exit(ppc_spe_sha256_mod_fini);
    228
    229MODULE_LICENSE("GPL");
    230MODULE_DESCRIPTION("SHA-224 and SHA-256 Secure Hash Algorithm, SPE optimized");
    231
    232MODULE_ALIAS_CRYPTO("sha224");
    233MODULE_ALIAS_CRYPTO("sha224-ppc-spe");
    234MODULE_ALIAS_CRYPTO("sha256");
    235MODULE_ALIAS_CRYPTO("sha256-ppc-spe");