pgtable.h (19796B)
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _ASM_POWERPC_BOOK3S_32_PGTABLE_H 3#define _ASM_POWERPC_BOOK3S_32_PGTABLE_H 4 5#include <asm-generic/pgtable-nopmd.h> 6 7/* 8 * The "classic" 32-bit implementation of the PowerPC MMU uses a hash 9 * table containing PTEs, together with a set of 16 segment registers, 10 * to define the virtual to physical address mapping. 11 * 12 * We use the hash table as an extended TLB, i.e. a cache of currently 13 * active mappings. We maintain a two-level page table tree, much 14 * like that used by the i386, for the sake of the Linux memory 15 * management code. Low-level assembler code in hash_low_32.S 16 * (procedure hash_page) is responsible for extracting ptes from the 17 * tree and putting them into the hash table when necessary, and 18 * updating the accessed and modified bits in the page table tree. 19 */ 20 21#define _PAGE_PRESENT 0x001 /* software: pte contains a translation */ 22#define _PAGE_HASHPTE 0x002 /* hash_page has made an HPTE for this pte */ 23#define _PAGE_USER 0x004 /* usermode access allowed */ 24#define _PAGE_GUARDED 0x008 /* G: prohibit speculative access */ 25#define _PAGE_COHERENT 0x010 /* M: enforce memory coherence (SMP systems) */ 26#define _PAGE_NO_CACHE 0x020 /* I: cache inhibit */ 27#define _PAGE_WRITETHRU 0x040 /* W: cache write-through */ 28#define _PAGE_DIRTY 0x080 /* C: page changed */ 29#define _PAGE_ACCESSED 0x100 /* R: page referenced */ 30#define _PAGE_EXEC 0x200 /* software: exec allowed */ 31#define _PAGE_RW 0x400 /* software: user write access allowed */ 32#define _PAGE_SPECIAL 0x800 /* software: Special page */ 33 34#ifdef CONFIG_PTE_64BIT 35/* We never clear the high word of the pte */ 36#define _PTE_NONE_MASK (0xffffffff00000000ULL | _PAGE_HASHPTE) 37#else 38#define _PTE_NONE_MASK _PAGE_HASHPTE 39#endif 40 41#define _PMD_PRESENT 0 42#define _PMD_PRESENT_MASK (PAGE_MASK) 43#define _PMD_BAD (~PAGE_MASK) 44 45/* And here we include common definitions */ 46 47#define _PAGE_KERNEL_RO 0 48#define _PAGE_KERNEL_ROX (_PAGE_EXEC) 49#define _PAGE_KERNEL_RW (_PAGE_DIRTY | _PAGE_RW) 50#define _PAGE_KERNEL_RWX (_PAGE_DIRTY | _PAGE_RW | _PAGE_EXEC) 51 52#define _PAGE_HPTEFLAGS _PAGE_HASHPTE 53 54#ifndef __ASSEMBLY__ 55 56static inline bool pte_user(pte_t pte) 57{ 58 return pte_val(pte) & _PAGE_USER; 59} 60#endif /* __ASSEMBLY__ */ 61 62/* 63 * Location of the PFN in the PTE. Most 32-bit platforms use the same 64 * as _PAGE_SHIFT here (ie, naturally aligned). 65 * Platform who don't just pre-define the value so we don't override it here. 66 */ 67#define PTE_RPN_SHIFT (PAGE_SHIFT) 68 69/* 70 * The mask covered by the RPN must be a ULL on 32-bit platforms with 71 * 64-bit PTEs. 72 */ 73#ifdef CONFIG_PTE_64BIT 74#define PTE_RPN_MASK (~((1ULL << PTE_RPN_SHIFT) - 1)) 75#define MAX_POSSIBLE_PHYSMEM_BITS 36 76#else 77#define PTE_RPN_MASK (~((1UL << PTE_RPN_SHIFT) - 1)) 78#define MAX_POSSIBLE_PHYSMEM_BITS 32 79#endif 80 81/* 82 * _PAGE_CHG_MASK masks of bits that are to be preserved across 83 * pgprot changes. 84 */ 85#define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HASHPTE | _PAGE_DIRTY | \ 86 _PAGE_ACCESSED | _PAGE_SPECIAL) 87 88/* 89 * We define 2 sets of base prot bits, one for basic pages (ie, 90 * cacheable kernel and user pages) and one for non cacheable 91 * pages. We always set _PAGE_COHERENT when SMP is enabled or 92 * the processor might need it for DMA coherency. 93 */ 94#define _PAGE_BASE_NC (_PAGE_PRESENT | _PAGE_ACCESSED) 95#define _PAGE_BASE (_PAGE_BASE_NC | _PAGE_COHERENT) 96 97/* 98 * Permission masks used to generate the __P and __S table. 99 * 100 * Note:__pgprot is defined in arch/powerpc/include/asm/page.h 101 * 102 * Write permissions imply read permissions for now. 103 */ 104#define PAGE_NONE __pgprot(_PAGE_BASE) 105#define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW) 106#define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC) 107#define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER) 108#define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) 109#define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER) 110#define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) 111 112/* Permission masks used for kernel mappings */ 113#define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_KERNEL_RW) 114#define PAGE_KERNEL_NC __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NO_CACHE) 115#define PAGE_KERNEL_NCG __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \ 116 _PAGE_NO_CACHE | _PAGE_GUARDED) 117#define PAGE_KERNEL_X __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX) 118#define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_KERNEL_RO) 119#define PAGE_KERNEL_ROX __pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX) 120 121/* 122 * Protection used for kernel text. We want the debuggers to be able to 123 * set breakpoints anywhere, so don't write protect the kernel text 124 * on platforms where such control is possible. 125 */ 126#if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) ||\ 127 defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE) 128#define PAGE_KERNEL_TEXT PAGE_KERNEL_X 129#else 130#define PAGE_KERNEL_TEXT PAGE_KERNEL_ROX 131#endif 132 133/* Make modules code happy. We don't set RO yet */ 134#define PAGE_KERNEL_EXEC PAGE_KERNEL_X 135 136/* Advertise special mapping type for AGP */ 137#define PAGE_AGP (PAGE_KERNEL_NC) 138#define HAVE_PAGE_AGP 139 140#define PTE_INDEX_SIZE PTE_SHIFT 141#define PMD_INDEX_SIZE 0 142#define PUD_INDEX_SIZE 0 143#define PGD_INDEX_SIZE (32 - PGDIR_SHIFT) 144 145#define PMD_CACHE_INDEX PMD_INDEX_SIZE 146#define PUD_CACHE_INDEX PUD_INDEX_SIZE 147 148#ifndef __ASSEMBLY__ 149#define PTE_TABLE_SIZE (sizeof(pte_t) << PTE_INDEX_SIZE) 150#define PMD_TABLE_SIZE 0 151#define PUD_TABLE_SIZE 0 152#define PGD_TABLE_SIZE (sizeof(pgd_t) << PGD_INDEX_SIZE) 153 154/* Bits to mask out from a PMD to get to the PTE page */ 155#define PMD_MASKED_BITS (PTE_TABLE_SIZE - 1) 156#endif /* __ASSEMBLY__ */ 157 158#define PTRS_PER_PTE (1 << PTE_INDEX_SIZE) 159#define PTRS_PER_PGD (1 << PGD_INDEX_SIZE) 160 161/* 162 * The normal case is that PTEs are 32-bits and we have a 1-page 163 * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus 164 * 165 * For any >32-bit physical address platform, we can use the following 166 * two level page table layout where the pgdir is 8KB and the MS 13 bits 167 * are an index to the second level table. The combined pgdir/pmd first 168 * level has 2048 entries and the second level has 512 64-bit PTE entries. 169 * -Matt 170 */ 171/* PGDIR_SHIFT determines what a top-level page table entry can map */ 172#define PGDIR_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE) 173#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 174#define PGDIR_MASK (~(PGDIR_SIZE-1)) 175 176#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) 177 178#ifndef __ASSEMBLY__ 179 180int map_kernel_page(unsigned long va, phys_addr_t pa, pgprot_t prot); 181void unmap_kernel_page(unsigned long va); 182 183#endif /* !__ASSEMBLY__ */ 184 185/* 186 * This is the bottom of the PKMAP area with HIGHMEM or an arbitrary 187 * value (for now) on others, from where we can start layout kernel 188 * virtual space that goes below PKMAP and FIXMAP 189 */ 190#include <asm/fixmap.h> 191 192/* 193 * ioremap_bot starts at that address. Early ioremaps move down from there, 194 * until mem_init() at which point this becomes the top of the vmalloc 195 * and ioremap space 196 */ 197#ifdef CONFIG_HIGHMEM 198#define IOREMAP_TOP PKMAP_BASE 199#else 200#define IOREMAP_TOP FIXADDR_START 201#endif 202 203/* PPC32 shares vmalloc area with ioremap */ 204#define IOREMAP_START VMALLOC_START 205#define IOREMAP_END VMALLOC_END 206 207/* 208 * Just any arbitrary offset to the start of the vmalloc VM area: the 209 * current 16MB value just means that there will be a 64MB "hole" after the 210 * physical memory until the kernel virtual memory starts. That means that 211 * any out-of-bounds memory accesses will hopefully be caught. 212 * The vmalloc() routines leaves a hole of 4kB between each vmalloced 213 * area for the same reason. ;) 214 * 215 * We no longer map larger than phys RAM with the BATs so we don't have 216 * to worry about the VMALLOC_OFFSET causing problems. We do have to worry 217 * about clashes between our early calls to ioremap() that start growing down 218 * from ioremap_base being run into the VM area allocations (growing upwards 219 * from VMALLOC_START). For this reason we have ioremap_bot to check when 220 * we actually run into our mappings setup in the early boot with the VM 221 * system. This really does become a problem for machines with good amounts 222 * of RAM. -- Cort 223 */ 224#define VMALLOC_OFFSET (0x1000000) /* 16M */ 225 226#define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))) 227 228#ifdef CONFIG_KASAN_VMALLOC 229#define VMALLOC_END ALIGN_DOWN(ioremap_bot, PAGE_SIZE << KASAN_SHADOW_SCALE_SHIFT) 230#else 231#define VMALLOC_END ioremap_bot 232#endif 233 234#define MODULES_END ALIGN_DOWN(PAGE_OFFSET, SZ_256M) 235#define MODULES_VADDR (MODULES_END - SZ_256M) 236 237#ifndef __ASSEMBLY__ 238#include <linux/sched.h> 239#include <linux/threads.h> 240 241/* Bits to mask out from a PGD to get to the PUD page */ 242#define PGD_MASKED_BITS 0 243 244#define pte_ERROR(e) \ 245 pr_err("%s:%d: bad pte %llx.\n", __FILE__, __LINE__, \ 246 (unsigned long long)pte_val(e)) 247#define pgd_ERROR(e) \ 248 pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) 249/* 250 * Bits in a linux-style PTE. These match the bits in the 251 * (hardware-defined) PowerPC PTE as closely as possible. 252 */ 253 254#define pte_clear(mm, addr, ptep) \ 255 do { pte_update(mm, addr, ptep, ~_PAGE_HASHPTE, 0, 0); } while (0) 256 257#define pmd_none(pmd) (!pmd_val(pmd)) 258#define pmd_bad(pmd) (pmd_val(pmd) & _PMD_BAD) 259#define pmd_present(pmd) (pmd_val(pmd) & _PMD_PRESENT_MASK) 260static inline void pmd_clear(pmd_t *pmdp) 261{ 262 *pmdp = __pmd(0); 263} 264 265 266/* 267 * When flushing the tlb entry for a page, we also need to flush the hash 268 * table entry. flush_hash_pages is assembler (for speed) in hashtable.S. 269 */ 270extern int flush_hash_pages(unsigned context, unsigned long va, 271 unsigned long pmdval, int count); 272 273/* Add an HPTE to the hash table */ 274extern void add_hash_page(unsigned context, unsigned long va, 275 unsigned long pmdval); 276 277/* Flush an entry from the TLB/hash table */ 278static inline void flush_hash_entry(struct mm_struct *mm, pte_t *ptep, unsigned long addr) 279{ 280 if (mmu_has_feature(MMU_FTR_HPTE_TABLE)) { 281 unsigned long ptephys = __pa(ptep) & PAGE_MASK; 282 283 flush_hash_pages(mm->context.id, addr, ptephys, 1); 284 } 285} 286 287/* 288 * PTE updates. This function is called whenever an existing 289 * valid PTE is updated. This does -not- include set_pte_at() 290 * which nowadays only sets a new PTE. 291 * 292 * Depending on the type of MMU, we may need to use atomic updates 293 * and the PTE may be either 32 or 64 bit wide. In the later case, 294 * when using atomic updates, only the low part of the PTE is 295 * accessed atomically. 296 */ 297static inline pte_basic_t pte_update(struct mm_struct *mm, unsigned long addr, pte_t *p, 298 unsigned long clr, unsigned long set, int huge) 299{ 300 pte_basic_t old; 301 302 if (mmu_has_feature(MMU_FTR_HPTE_TABLE)) { 303 unsigned long tmp; 304 305 asm volatile( 306#ifndef CONFIG_PTE_64BIT 307 "1: lwarx %0, 0, %3\n" 308 " andc %1, %0, %4\n" 309#else 310 "1: lwarx %L0, 0, %3\n" 311 " lwz %0, -4(%3)\n" 312 " andc %1, %L0, %4\n" 313#endif 314 " or %1, %1, %5\n" 315 " stwcx. %1, 0, %3\n" 316 " bne- 1b" 317 : "=&r" (old), "=&r" (tmp), "=m" (*p) 318#ifndef CONFIG_PTE_64BIT 319 : "r" (p), 320#else 321 : "b" ((unsigned long)(p) + 4), 322#endif 323 "r" (clr), "r" (set), "m" (*p) 324 : "cc" ); 325 } else { 326 old = pte_val(*p); 327 328 *p = __pte((old & ~(pte_basic_t)clr) | set); 329 } 330 331 return old; 332} 333 334/* 335 * 2.6 calls this without flushing the TLB entry; this is wrong 336 * for our hash-based implementation, we fix that up here. 337 */ 338#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 339static inline int __ptep_test_and_clear_young(struct mm_struct *mm, 340 unsigned long addr, pte_t *ptep) 341{ 342 unsigned long old; 343 old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0); 344 if (old & _PAGE_HASHPTE) 345 flush_hash_entry(mm, ptep, addr); 346 347 return (old & _PAGE_ACCESSED) != 0; 348} 349#define ptep_test_and_clear_young(__vma, __addr, __ptep) \ 350 __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep) 351 352#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 353static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, 354 pte_t *ptep) 355{ 356 return __pte(pte_update(mm, addr, ptep, ~_PAGE_HASHPTE, 0, 0)); 357} 358 359#define __HAVE_ARCH_PTEP_SET_WRPROTECT 360static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, 361 pte_t *ptep) 362{ 363 pte_update(mm, addr, ptep, _PAGE_RW, 0, 0); 364} 365 366static inline void __ptep_set_access_flags(struct vm_area_struct *vma, 367 pte_t *ptep, pte_t entry, 368 unsigned long address, 369 int psize) 370{ 371 unsigned long set = pte_val(entry) & 372 (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC); 373 374 pte_update(vma->vm_mm, address, ptep, 0, set, 0); 375 376 flush_tlb_page(vma, address); 377} 378 379#define __HAVE_ARCH_PTE_SAME 380#define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0) 381 382#define pmd_pfn(pmd) (pmd_val(pmd) >> PAGE_SHIFT) 383#define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd)) 384 385/* 386 * Encode and decode a swap entry. 387 * Note that the bits we use in a PTE for representing a swap entry 388 * must not include the _PAGE_PRESENT bit or the _PAGE_HASHPTE bit (if used). 389 * -- paulus 390 */ 391#define __swp_type(entry) ((entry).val & 0x1f) 392#define __swp_offset(entry) ((entry).val >> 5) 393#define __swp_entry(type, offset) ((swp_entry_t) { (type) | ((offset) << 5) }) 394#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 3 }) 395#define __swp_entry_to_pte(x) ((pte_t) { (x).val << 3 }) 396 397/* Generic accessors to PTE bits */ 398static inline int pte_write(pte_t pte) { return !!(pte_val(pte) & _PAGE_RW);} 399static inline int pte_read(pte_t pte) { return 1; } 400static inline int pte_dirty(pte_t pte) { return !!(pte_val(pte) & _PAGE_DIRTY); } 401static inline int pte_young(pte_t pte) { return !!(pte_val(pte) & _PAGE_ACCESSED); } 402static inline int pte_special(pte_t pte) { return !!(pte_val(pte) & _PAGE_SPECIAL); } 403static inline int pte_none(pte_t pte) { return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; } 404static inline bool pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; } 405 406static inline int pte_present(pte_t pte) 407{ 408 return pte_val(pte) & _PAGE_PRESENT; 409} 410 411static inline bool pte_hw_valid(pte_t pte) 412{ 413 return pte_val(pte) & _PAGE_PRESENT; 414} 415 416static inline bool pte_hashpte(pte_t pte) 417{ 418 return !!(pte_val(pte) & _PAGE_HASHPTE); 419} 420 421static inline bool pte_ci(pte_t pte) 422{ 423 return !!(pte_val(pte) & _PAGE_NO_CACHE); 424} 425 426/* 427 * We only find page table entry in the last level 428 * Hence no need for other accessors 429 */ 430#define pte_access_permitted pte_access_permitted 431static inline bool pte_access_permitted(pte_t pte, bool write) 432{ 433 /* 434 * A read-only access is controlled by _PAGE_USER bit. 435 * We have _PAGE_READ set for WRITE and EXECUTE 436 */ 437 if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte)) 438 return false; 439 440 if (write && !pte_write(pte)) 441 return false; 442 443 return true; 444} 445 446/* Conversion functions: convert a page and protection to a page entry, 447 * and a page entry and page directory to the page they refer to. 448 * 449 * Even if PTEs can be unsigned long long, a PFN is always an unsigned 450 * long for now. 451 */ 452static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) 453{ 454 return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) | 455 pgprot_val(pgprot)); 456} 457 458static inline unsigned long pte_pfn(pte_t pte) 459{ 460 return pte_val(pte) >> PTE_RPN_SHIFT; 461} 462 463/* Generic modifiers for PTE bits */ 464static inline pte_t pte_wrprotect(pte_t pte) 465{ 466 return __pte(pte_val(pte) & ~_PAGE_RW); 467} 468 469static inline pte_t pte_exprotect(pte_t pte) 470{ 471 return __pte(pte_val(pte) & ~_PAGE_EXEC); 472} 473 474static inline pte_t pte_mkclean(pte_t pte) 475{ 476 return __pte(pte_val(pte) & ~_PAGE_DIRTY); 477} 478 479static inline pte_t pte_mkold(pte_t pte) 480{ 481 return __pte(pte_val(pte) & ~_PAGE_ACCESSED); 482} 483 484static inline pte_t pte_mkexec(pte_t pte) 485{ 486 return __pte(pte_val(pte) | _PAGE_EXEC); 487} 488 489static inline pte_t pte_mkpte(pte_t pte) 490{ 491 return pte; 492} 493 494static inline pte_t pte_mkwrite(pte_t pte) 495{ 496 return __pte(pte_val(pte) | _PAGE_RW); 497} 498 499static inline pte_t pte_mkdirty(pte_t pte) 500{ 501 return __pte(pte_val(pte) | _PAGE_DIRTY); 502} 503 504static inline pte_t pte_mkyoung(pte_t pte) 505{ 506 return __pte(pte_val(pte) | _PAGE_ACCESSED); 507} 508 509static inline pte_t pte_mkspecial(pte_t pte) 510{ 511 return __pte(pte_val(pte) | _PAGE_SPECIAL); 512} 513 514static inline pte_t pte_mkhuge(pte_t pte) 515{ 516 return pte; 517} 518 519static inline pte_t pte_mkprivileged(pte_t pte) 520{ 521 return __pte(pte_val(pte) & ~_PAGE_USER); 522} 523 524static inline pte_t pte_mkuser(pte_t pte) 525{ 526 return __pte(pte_val(pte) | _PAGE_USER); 527} 528 529static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 530{ 531 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)); 532} 533 534 535 536/* This low level function performs the actual PTE insertion 537 * Setting the PTE depends on the MMU type and other factors. It's 538 * an horrible mess that I'm not going to try to clean up now but 539 * I'm keeping it in one place rather than spread around 540 */ 541static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr, 542 pte_t *ptep, pte_t pte, int percpu) 543{ 544#if defined(CONFIG_SMP) && !defined(CONFIG_PTE_64BIT) 545 /* First case is 32-bit Hash MMU in SMP mode with 32-bit PTEs. We use the 546 * helper pte_update() which does an atomic update. We need to do that 547 * because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a 548 * per-CPU PTE such as a kmap_atomic, we do a simple update preserving 549 * the hash bits instead (ie, same as the non-SMP case) 550 */ 551 if (percpu) 552 *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE) 553 | (pte_val(pte) & ~_PAGE_HASHPTE)); 554 else 555 pte_update(mm, addr, ptep, ~_PAGE_HASHPTE, pte_val(pte), 0); 556 557#elif defined(CONFIG_PTE_64BIT) 558 /* Second case is 32-bit with 64-bit PTE. In this case, we 559 * can just store as long as we do the two halves in the right order 560 * with a barrier in between. This is possible because we take care, 561 * in the hash code, to pre-invalidate if the PTE was already hashed, 562 * which synchronizes us with any concurrent invalidation. 563 * In the percpu case, we also fallback to the simple update preserving 564 * the hash bits 565 */ 566 if (percpu) { 567 *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE) 568 | (pte_val(pte) & ~_PAGE_HASHPTE)); 569 return; 570 } 571 if (pte_val(*ptep) & _PAGE_HASHPTE) 572 flush_hash_entry(mm, ptep, addr); 573 __asm__ __volatile__("\ 574 stw%X0 %2,%0\n\ 575 eieio\n\ 576 stw%X1 %L2,%1" 577 : "=m" (*ptep), "=m" (*((unsigned char *)ptep+4)) 578 : "r" (pte) : "memory"); 579 580#else 581 /* Third case is 32-bit hash table in UP mode, we need to preserve 582 * the _PAGE_HASHPTE bit since we may not have invalidated the previous 583 * translation in the hash yet (done in a subsequent flush_tlb_xxx()) 584 * and see we need to keep track that this PTE needs invalidating 585 */ 586 *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE) 587 | (pte_val(pte) & ~_PAGE_HASHPTE)); 588#endif 589} 590 591/* 592 * Macro to mark a page protection value as "uncacheable". 593 */ 594 595#define _PAGE_CACHE_CTL (_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \ 596 _PAGE_WRITETHRU) 597 598#define pgprot_noncached pgprot_noncached 599static inline pgprot_t pgprot_noncached(pgprot_t prot) 600{ 601 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | 602 _PAGE_NO_CACHE | _PAGE_GUARDED); 603} 604 605#define pgprot_noncached_wc pgprot_noncached_wc 606static inline pgprot_t pgprot_noncached_wc(pgprot_t prot) 607{ 608 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | 609 _PAGE_NO_CACHE); 610} 611 612#define pgprot_cached pgprot_cached 613static inline pgprot_t pgprot_cached(pgprot_t prot) 614{ 615 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | 616 _PAGE_COHERENT); 617} 618 619#define pgprot_cached_wthru pgprot_cached_wthru 620static inline pgprot_t pgprot_cached_wthru(pgprot_t prot) 621{ 622 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | 623 _PAGE_COHERENT | _PAGE_WRITETHRU); 624} 625 626#define pgprot_cached_noncoherent pgprot_cached_noncoherent 627static inline pgprot_t pgprot_cached_noncoherent(pgprot_t prot) 628{ 629 return __pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL); 630} 631 632#define pgprot_writecombine pgprot_writecombine 633static inline pgprot_t pgprot_writecombine(pgprot_t prot) 634{ 635 return pgprot_noncached_wc(prot); 636} 637 638#endif /* !__ASSEMBLY__ */ 639 640#endif /* _ASM_POWERPC_BOOK3S_32_PGTABLE_H */