cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

hash-64k.h (10421B)


      1/* SPDX-License-Identifier: GPL-2.0 */
      2#ifndef _ASM_POWERPC_BOOK3S_64_HASH_64K_H
      3#define _ASM_POWERPC_BOOK3S_64_HASH_64K_H
      4
      5#define H_PTE_INDEX_SIZE   8  // size: 8B <<  8 = 2KB, maps 2^8  x 64KB = 16MB
      6#define H_PMD_INDEX_SIZE  10  // size: 8B << 10 = 8KB, maps 2^10 x 16MB = 16GB
      7#define H_PUD_INDEX_SIZE  10  // size: 8B << 10 = 8KB, maps 2^10 x 16GB = 16TB
      8#define H_PGD_INDEX_SIZE   8  // size: 8B <<  8 = 2KB, maps 2^8  x 16TB =  4PB
      9
     10/*
     11 * If we store section details in page->flags we can't increase the MAX_PHYSMEM_BITS
     12 * if we increase SECTIONS_WIDTH we will not store node details in page->flags and
     13 * page_to_nid does a page->section->node lookup
     14 * Hence only increase for VMEMMAP. Further depending on SPARSEMEM_EXTREME reduce
     15 * memory requirements with large number of sections.
     16 * 51 bits is the max physical real address on POWER9
     17 */
     18#if defined(CONFIG_SPARSEMEM_VMEMMAP) && defined(CONFIG_SPARSEMEM_EXTREME)
     19#define H_MAX_PHYSMEM_BITS	51
     20#else
     21#define H_MAX_PHYSMEM_BITS	46
     22#endif
     23
     24/*
     25 * Each context is 512TB size. SLB miss for first context/default context
     26 * is handled in the hotpath.
     27 */
     28#define MAX_EA_BITS_PER_CONTEXT		49
     29#define REGION_SHIFT		MAX_EA_BITS_PER_CONTEXT
     30
     31/*
     32 * We use one context for each MAP area.
     33 */
     34#define H_KERN_MAP_SIZE		(1UL << MAX_EA_BITS_PER_CONTEXT)
     35
     36/*
     37 * Define the address range of the kernel non-linear virtual area
     38 * 2PB
     39 */
     40#define H_KERN_VIRT_START	ASM_CONST(0xc008000000000000)
     41
     42/*
     43 * 64k aligned address free up few of the lower bits of RPN for us
     44 * We steal that here. For more deatils look at pte_pfn/pfn_pte()
     45 */
     46#define H_PAGE_COMBO	_RPAGE_RPN0 /* this is a combo 4k page */
     47#define H_PAGE_4K_PFN	_RPAGE_RPN1 /* PFN is for a single 4k page */
     48#define H_PAGE_BUSY	_RPAGE_RSV1     /* software: PTE & hash are busy */
     49#define H_PAGE_HASHPTE	_RPAGE_RPN43	/* PTE has associated HPTE */
     50
     51/* memory key bits. */
     52#define H_PTE_PKEY_BIT4		_RPAGE_PKEY_BIT4
     53#define H_PTE_PKEY_BIT3		_RPAGE_PKEY_BIT3
     54#define H_PTE_PKEY_BIT2		_RPAGE_PKEY_BIT2
     55#define H_PTE_PKEY_BIT1		_RPAGE_PKEY_BIT1
     56#define H_PTE_PKEY_BIT0		_RPAGE_PKEY_BIT0
     57
     58/*
     59 * We need to differentiate between explicit huge page and THP huge
     60 * page, since THP huge page also need to track real subpage details
     61 */
     62#define H_PAGE_THP_HUGE  H_PAGE_4K_PFN
     63
     64/* PTE flags to conserve for HPTE identification */
     65#define _PAGE_HPTEFLAGS (H_PAGE_BUSY | H_PAGE_HASHPTE | H_PAGE_COMBO)
     66/*
     67 * We use a 2K PTE page fragment and another 2K for storing
     68 * real_pte_t hash index
     69 * 8 bytes per each pte entry and another 8 bytes for storing
     70 * slot details.
     71 */
     72#define H_PTE_FRAG_SIZE_SHIFT  (H_PTE_INDEX_SIZE + 3 + 1)
     73#define H_PTE_FRAG_NR	(PAGE_SIZE >> H_PTE_FRAG_SIZE_SHIFT)
     74
     75#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
     76#define H_PMD_FRAG_SIZE_SHIFT  (H_PMD_INDEX_SIZE + 3 + 1)
     77#else
     78#define H_PMD_FRAG_SIZE_SHIFT  (H_PMD_INDEX_SIZE + 3)
     79#endif
     80#define H_PMD_FRAG_NR	(PAGE_SIZE >> H_PMD_FRAG_SIZE_SHIFT)
     81
     82#ifndef __ASSEMBLY__
     83#include <asm/errno.h>
     84
     85/*
     86 * With 64K pages on hash table, we have a special PTE format that
     87 * uses a second "half" of the page table to encode sub-page information
     88 * in order to deal with 64K made of 4K HW pages. Thus we override the
     89 * generic accessors and iterators here
     90 */
     91#define __real_pte __real_pte
     92static inline real_pte_t __real_pte(pte_t pte, pte_t *ptep, int offset)
     93{
     94	real_pte_t rpte;
     95	unsigned long *hidxp;
     96
     97	rpte.pte = pte;
     98
     99	/*
    100	 * Ensure that we do not read the hidx before we read the PTE. Because
    101	 * the writer side is expected to finish writing the hidx first followed
    102	 * by the PTE, by using smp_wmb(). pte_set_hash_slot() ensures that.
    103	 */
    104	smp_rmb();
    105
    106	hidxp = (unsigned long *)(ptep + offset);
    107	rpte.hidx = *hidxp;
    108	return rpte;
    109}
    110
    111/*
    112 * shift the hidx representation by one-modulo-0xf; i.e hidx 0 is respresented
    113 * as 1, 1 as 2,... , and 0xf as 0.  This convention lets us represent a
    114 * invalid hidx 0xf with a 0x0 bit value. PTEs are anyway zero'd when
    115 * allocated. We dont have to zero them gain; thus save on the initialization.
    116 */
    117#define HIDX_UNSHIFT_BY_ONE(x) ((x + 0xfUL) & 0xfUL) /* shift backward by one */
    118#define HIDX_SHIFT_BY_ONE(x) ((x + 0x1UL) & 0xfUL)   /* shift forward by one */
    119#define HIDX_BITS(x, index)  (x << (index << 2))
    120#define BITS_TO_HIDX(x, index)  ((x >> (index << 2)) & 0xfUL)
    121#define INVALID_RPTE_HIDX  0x0UL
    122
    123static inline unsigned long __rpte_to_hidx(real_pte_t rpte, unsigned long index)
    124{
    125	return HIDX_UNSHIFT_BY_ONE(BITS_TO_HIDX(rpte.hidx, index));
    126}
    127
    128/*
    129 * Commit the hidx and return PTE bits that needs to be modified. The caller is
    130 * expected to modify the PTE bits accordingly and commit the PTE to memory.
    131 */
    132static inline unsigned long pte_set_hidx(pte_t *ptep, real_pte_t rpte,
    133					 unsigned int subpg_index,
    134					 unsigned long hidx, int offset)
    135{
    136	unsigned long *hidxp = (unsigned long *)(ptep + offset);
    137
    138	rpte.hidx &= ~HIDX_BITS(0xfUL, subpg_index);
    139	*hidxp = rpte.hidx  | HIDX_BITS(HIDX_SHIFT_BY_ONE(hidx), subpg_index);
    140
    141	/*
    142	 * Anyone reading PTE must ensure hidx bits are read after reading the
    143	 * PTE by using the read-side barrier smp_rmb(). __real_pte() can be
    144	 * used for that.
    145	 */
    146	smp_wmb();
    147
    148	/* No PTE bits to be modified, return 0x0UL */
    149	return 0x0UL;
    150}
    151
    152#define __rpte_to_pte(r)	((r).pte)
    153extern bool __rpte_sub_valid(real_pte_t rpte, unsigned long index);
    154/*
    155 * Trick: we set __end to va + 64k, which happens works for
    156 * a 16M page as well as we want only one iteration
    157 */
    158#define pte_iterate_hashed_subpages(rpte, psize, vpn, index, shift)	\
    159	do {								\
    160		unsigned long __end = vpn + (1UL << (PAGE_SHIFT - VPN_SHIFT));	\
    161		unsigned __split = (psize == MMU_PAGE_4K ||		\
    162				    psize == MMU_PAGE_64K_AP);		\
    163		shift = mmu_psize_defs[psize].shift;			\
    164		for (index = 0; vpn < __end; index++,			\
    165			     vpn += (1L << (shift - VPN_SHIFT))) {	\
    166		if (!__split || __rpte_sub_valid(rpte, index))
    167
    168#define pte_iterate_hashed_end()  } } while(0)
    169
    170#define pte_pagesize_index(mm, addr, pte)	\
    171	(((pte) & H_PAGE_COMBO)? MMU_PAGE_4K: MMU_PAGE_64K)
    172
    173extern int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
    174			   unsigned long pfn, unsigned long size, pgprot_t);
    175static inline int hash__remap_4k_pfn(struct vm_area_struct *vma, unsigned long addr,
    176				 unsigned long pfn, pgprot_t prot)
    177{
    178	if (pfn > (PTE_RPN_MASK >> PAGE_SHIFT)) {
    179		WARN(1, "remap_4k_pfn called with wrong pfn value\n");
    180		return -EINVAL;
    181	}
    182	return remap_pfn_range(vma, addr, pfn, PAGE_SIZE,
    183			       __pgprot(pgprot_val(prot) | H_PAGE_4K_PFN));
    184}
    185
    186#define H_PTE_TABLE_SIZE	PTE_FRAG_SIZE
    187#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined (CONFIG_HUGETLB_PAGE)
    188#define H_PMD_TABLE_SIZE	((sizeof(pmd_t) << PMD_INDEX_SIZE) + \
    189				 (sizeof(unsigned long) << PMD_INDEX_SIZE))
    190#else
    191#define H_PMD_TABLE_SIZE	(sizeof(pmd_t) << PMD_INDEX_SIZE)
    192#endif
    193#ifdef CONFIG_HUGETLB_PAGE
    194#define H_PUD_TABLE_SIZE	((sizeof(pud_t) << PUD_INDEX_SIZE) +	\
    195				 (sizeof(unsigned long) << PUD_INDEX_SIZE))
    196#else
    197#define H_PUD_TABLE_SIZE	(sizeof(pud_t) << PUD_INDEX_SIZE)
    198#endif
    199#define H_PGD_TABLE_SIZE	(sizeof(pgd_t) << PGD_INDEX_SIZE)
    200
    201#ifdef CONFIG_TRANSPARENT_HUGEPAGE
    202static inline char *get_hpte_slot_array(pmd_t *pmdp)
    203{
    204	/*
    205	 * The hpte hindex is stored in the pgtable whose address is in the
    206	 * second half of the PMD
    207	 *
    208	 * Order this load with the test for pmd_trans_huge in the caller
    209	 */
    210	smp_rmb();
    211	return *(char **)(pmdp + PTRS_PER_PMD);
    212
    213
    214}
    215/*
    216 * The linux hugepage PMD now include the pmd entries followed by the address
    217 * to the stashed pgtable_t. The stashed pgtable_t contains the hpte bits.
    218 * [ 000 | 1 bit secondary | 3 bit hidx | 1 bit valid]. We use one byte per
    219 * each HPTE entry. With 16MB hugepage and 64K HPTE we need 256 entries and
    220 * with 4K HPTE we need 4096 entries. Both will fit in a 4K pgtable_t.
    221 *
    222 * The top three bits are intentionally left as zero. This memory location
    223 * are also used as normal page PTE pointers. So if we have any pointers
    224 * left around while we collapse a hugepage, we need to make sure
    225 * _PAGE_PRESENT bit of that is zero when we look at them
    226 */
    227static inline unsigned int hpte_valid(unsigned char *hpte_slot_array, int index)
    228{
    229	return hpte_slot_array[index] & 0x1;
    230}
    231
    232static inline unsigned int hpte_hash_index(unsigned char *hpte_slot_array,
    233					   int index)
    234{
    235	return hpte_slot_array[index] >> 1;
    236}
    237
    238static inline void mark_hpte_slot_valid(unsigned char *hpte_slot_array,
    239					unsigned int index, unsigned int hidx)
    240{
    241	hpte_slot_array[index] = (hidx << 1) | 0x1;
    242}
    243
    244/*
    245 *
    246 * For core kernel code by design pmd_trans_huge is never run on any hugetlbfs
    247 * page. The hugetlbfs page table walking and mangling paths are totally
    248 * separated form the core VM paths and they're differentiated by
    249 *  VM_HUGETLB being set on vm_flags well before any pmd_trans_huge could run.
    250 *
    251 * pmd_trans_huge() is defined as false at build time if
    252 * CONFIG_TRANSPARENT_HUGEPAGE=n to optimize away code blocks at build
    253 * time in such case.
    254 *
    255 * For ppc64 we need to differntiate from explicit hugepages from THP, because
    256 * for THP we also track the subpage details at the pmd level. We don't do
    257 * that for explicit huge pages.
    258 *
    259 */
    260static inline int hash__pmd_trans_huge(pmd_t pmd)
    261{
    262	return !!((pmd_val(pmd) & (_PAGE_PTE | H_PAGE_THP_HUGE | _PAGE_DEVMAP)) ==
    263		  (_PAGE_PTE | H_PAGE_THP_HUGE));
    264}
    265
    266static inline int hash__pmd_same(pmd_t pmd_a, pmd_t pmd_b)
    267{
    268	return (((pmd_raw(pmd_a) ^ pmd_raw(pmd_b)) & ~cpu_to_be64(_PAGE_HPTEFLAGS)) == 0);
    269}
    270
    271static inline pmd_t hash__pmd_mkhuge(pmd_t pmd)
    272{
    273	return __pmd(pmd_val(pmd) | (_PAGE_PTE | H_PAGE_THP_HUGE));
    274}
    275
    276extern unsigned long hash__pmd_hugepage_update(struct mm_struct *mm,
    277					   unsigned long addr, pmd_t *pmdp,
    278					   unsigned long clr, unsigned long set);
    279extern pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma,
    280				   unsigned long address, pmd_t *pmdp);
    281extern void hash__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
    282					 pgtable_t pgtable);
    283extern pgtable_t hash__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
    284extern pmd_t hash__pmdp_huge_get_and_clear(struct mm_struct *mm,
    285				       unsigned long addr, pmd_t *pmdp);
    286extern int hash__has_transparent_hugepage(void);
    287#endif /*  CONFIG_TRANSPARENT_HUGEPAGE */
    288
    289static inline pmd_t hash__pmd_mkdevmap(pmd_t pmd)
    290{
    291	return __pmd(pmd_val(pmd) | (_PAGE_PTE | H_PAGE_THP_HUGE | _PAGE_DEVMAP));
    292}
    293
    294#endif	/* __ASSEMBLY__ */
    295
    296#endif /* _ASM_POWERPC_BOOK3S_64_HASH_64K_H */