cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

mmu-hash.h (28984B)


      1/* SPDX-License-Identifier: GPL-2.0-or-later */
      2#ifndef _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_
      3#define _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_
      4/*
      5 * PowerPC64 memory management structures
      6 *
      7 * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
      8 *   PPC64 rework.
      9 */
     10
     11#include <asm/page.h>
     12#include <asm/bug.h>
     13#include <asm/asm-const.h>
     14
     15/*
     16 * This is necessary to get the definition of PGTABLE_RANGE which we
     17 * need for various slices related matters. Note that this isn't the
     18 * complete pgtable.h but only a portion of it.
     19 */
     20#include <asm/book3s/64/pgtable.h>
     21#include <asm/book3s/64/slice.h>
     22#include <asm/task_size_64.h>
     23#include <asm/cpu_has_feature.h>
     24
     25/*
     26 * SLB
     27 */
     28
     29#define SLB_NUM_BOLTED		2
     30#define SLB_CACHE_ENTRIES	8
     31#define SLB_MIN_SIZE		32
     32
     33/* Bits in the SLB ESID word */
     34#define SLB_ESID_V		ASM_CONST(0x0000000008000000) /* valid */
     35
     36/* Bits in the SLB VSID word */
     37#define SLB_VSID_SHIFT		12
     38#define SLB_VSID_SHIFT_256M	SLB_VSID_SHIFT
     39#define SLB_VSID_SHIFT_1T	24
     40#define SLB_VSID_SSIZE_SHIFT	62
     41#define SLB_VSID_B		ASM_CONST(0xc000000000000000)
     42#define SLB_VSID_B_256M		ASM_CONST(0x0000000000000000)
     43#define SLB_VSID_B_1T		ASM_CONST(0x4000000000000000)
     44#define SLB_VSID_KS		ASM_CONST(0x0000000000000800)
     45#define SLB_VSID_KP		ASM_CONST(0x0000000000000400)
     46#define SLB_VSID_N		ASM_CONST(0x0000000000000200) /* no-execute */
     47#define SLB_VSID_L		ASM_CONST(0x0000000000000100)
     48#define SLB_VSID_C		ASM_CONST(0x0000000000000080) /* class */
     49#define SLB_VSID_LP		ASM_CONST(0x0000000000000030)
     50#define SLB_VSID_LP_00		ASM_CONST(0x0000000000000000)
     51#define SLB_VSID_LP_01		ASM_CONST(0x0000000000000010)
     52#define SLB_VSID_LP_10		ASM_CONST(0x0000000000000020)
     53#define SLB_VSID_LP_11		ASM_CONST(0x0000000000000030)
     54#define SLB_VSID_LLP		(SLB_VSID_L|SLB_VSID_LP)
     55
     56#define SLB_VSID_KERNEL		(SLB_VSID_KP)
     57#define SLB_VSID_USER		(SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
     58
     59#define SLBIE_C			(0x08000000)
     60#define SLBIE_SSIZE_SHIFT	25
     61
     62/*
     63 * Hash table
     64 */
     65
     66#define HPTES_PER_GROUP 8
     67
     68#define HPTE_V_SSIZE_SHIFT	62
     69#define HPTE_V_AVPN_SHIFT	7
     70#define HPTE_V_COMMON_BITS	ASM_CONST(0x000fffffffffffff)
     71#define HPTE_V_AVPN		ASM_CONST(0x3fffffffffffff80)
     72#define HPTE_V_AVPN_3_0		ASM_CONST(0x000fffffffffff80)
     73#define HPTE_V_AVPN_VAL(x)	(((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
     74#define HPTE_V_COMPARE(x,y)	(!(((x) ^ (y)) & 0xffffffffffffff80UL))
     75#define HPTE_V_BOLTED		ASM_CONST(0x0000000000000010)
     76#define HPTE_V_LOCK		ASM_CONST(0x0000000000000008)
     77#define HPTE_V_LARGE		ASM_CONST(0x0000000000000004)
     78#define HPTE_V_SECONDARY	ASM_CONST(0x0000000000000002)
     79#define HPTE_V_VALID		ASM_CONST(0x0000000000000001)
     80
     81/*
     82 * ISA 3.0 has a different HPTE format.
     83 */
     84#define HPTE_R_3_0_SSIZE_SHIFT	58
     85#define HPTE_R_3_0_SSIZE_MASK	(3ull << HPTE_R_3_0_SSIZE_SHIFT)
     86#define HPTE_R_PP0		ASM_CONST(0x8000000000000000)
     87#define HPTE_R_TS		ASM_CONST(0x4000000000000000)
     88#define HPTE_R_KEY_HI		ASM_CONST(0x3000000000000000)
     89#define HPTE_R_KEY_BIT4		ASM_CONST(0x2000000000000000)
     90#define HPTE_R_KEY_BIT3		ASM_CONST(0x1000000000000000)
     91#define HPTE_R_RPN_SHIFT	12
     92#define HPTE_R_RPN		ASM_CONST(0x0ffffffffffff000)
     93#define HPTE_R_RPN_3_0		ASM_CONST(0x01fffffffffff000)
     94#define HPTE_R_PP		ASM_CONST(0x0000000000000003)
     95#define HPTE_R_PPP		ASM_CONST(0x8000000000000003)
     96#define HPTE_R_N		ASM_CONST(0x0000000000000004)
     97#define HPTE_R_G		ASM_CONST(0x0000000000000008)
     98#define HPTE_R_M		ASM_CONST(0x0000000000000010)
     99#define HPTE_R_I		ASM_CONST(0x0000000000000020)
    100#define HPTE_R_W		ASM_CONST(0x0000000000000040)
    101#define HPTE_R_WIMG		ASM_CONST(0x0000000000000078)
    102#define HPTE_R_C		ASM_CONST(0x0000000000000080)
    103#define HPTE_R_R		ASM_CONST(0x0000000000000100)
    104#define HPTE_R_KEY_LO		ASM_CONST(0x0000000000000e00)
    105#define HPTE_R_KEY_BIT2		ASM_CONST(0x0000000000000800)
    106#define HPTE_R_KEY_BIT1		ASM_CONST(0x0000000000000400)
    107#define HPTE_R_KEY_BIT0		ASM_CONST(0x0000000000000200)
    108#define HPTE_R_KEY		(HPTE_R_KEY_LO | HPTE_R_KEY_HI)
    109
    110#define HPTE_V_1TB_SEG		ASM_CONST(0x4000000000000000)
    111#define HPTE_V_VRMA_MASK	ASM_CONST(0x4001ffffff000000)
    112
    113/* Values for PP (assumes Ks=0, Kp=1) */
    114#define PP_RWXX	0	/* Supervisor read/write, User none */
    115#define PP_RWRX 1	/* Supervisor read/write, User read */
    116#define PP_RWRW 2	/* Supervisor read/write, User read/write */
    117#define PP_RXRX 3	/* Supervisor read,       User read */
    118#define PP_RXXX	(HPTE_R_PP0 | 2)	/* Supervisor read, user none */
    119
    120/* Fields for tlbiel instruction in architecture 2.06 */
    121#define TLBIEL_INVAL_SEL_MASK	0xc00	/* invalidation selector */
    122#define  TLBIEL_INVAL_PAGE	0x000	/* invalidate a single page */
    123#define  TLBIEL_INVAL_SET_LPID	0x800	/* invalidate a set for current LPID */
    124#define  TLBIEL_INVAL_SET	0xc00	/* invalidate a set for all LPIDs */
    125#define TLBIEL_INVAL_SET_MASK	0xfff000	/* set number to inval. */
    126#define TLBIEL_INVAL_SET_SHIFT	12
    127
    128#define POWER7_TLB_SETS		128	/* # sets in POWER7 TLB */
    129#define POWER8_TLB_SETS		512	/* # sets in POWER8 TLB */
    130#define POWER9_TLB_SETS_HASH	256	/* # sets in POWER9 TLB Hash mode */
    131#define POWER9_TLB_SETS_RADIX	128	/* # sets in POWER9 TLB Radix mode */
    132
    133#ifndef __ASSEMBLY__
    134
    135struct mmu_hash_ops {
    136	void            (*hpte_invalidate)(unsigned long slot,
    137					   unsigned long vpn,
    138					   int bpsize, int apsize,
    139					   int ssize, int local);
    140	long		(*hpte_updatepp)(unsigned long slot,
    141					 unsigned long newpp,
    142					 unsigned long vpn,
    143					 int bpsize, int apsize,
    144					 int ssize, unsigned long flags);
    145	void            (*hpte_updateboltedpp)(unsigned long newpp,
    146					       unsigned long ea,
    147					       int psize, int ssize);
    148	long		(*hpte_insert)(unsigned long hpte_group,
    149				       unsigned long vpn,
    150				       unsigned long prpn,
    151				       unsigned long rflags,
    152				       unsigned long vflags,
    153				       int psize, int apsize,
    154				       int ssize);
    155	long		(*hpte_remove)(unsigned long hpte_group);
    156	int             (*hpte_removebolted)(unsigned long ea,
    157					     int psize, int ssize);
    158	void		(*flush_hash_range)(unsigned long number, int local);
    159	void		(*hugepage_invalidate)(unsigned long vsid,
    160					       unsigned long addr,
    161					       unsigned char *hpte_slot_array,
    162					       int psize, int ssize, int local);
    163	int		(*resize_hpt)(unsigned long shift);
    164	/*
    165	 * Special for kexec.
    166	 * To be called in real mode with interrupts disabled. No locks are
    167	 * taken as such, concurrent access on pre POWER5 hardware could result
    168	 * in a deadlock.
    169	 * The linear mapping is destroyed as well.
    170	 */
    171	void		(*hpte_clear_all)(void);
    172};
    173extern struct mmu_hash_ops mmu_hash_ops;
    174
    175struct hash_pte {
    176	__be64 v;
    177	__be64 r;
    178};
    179
    180extern struct hash_pte *htab_address;
    181extern unsigned long htab_size_bytes;
    182extern unsigned long htab_hash_mask;
    183
    184
    185static inline int shift_to_mmu_psize(unsigned int shift)
    186{
    187	int psize;
    188
    189	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
    190		if (mmu_psize_defs[psize].shift == shift)
    191			return psize;
    192	return -1;
    193}
    194
    195static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
    196{
    197	if (mmu_psize_defs[mmu_psize].shift)
    198		return mmu_psize_defs[mmu_psize].shift;
    199	BUG();
    200}
    201
    202static inline unsigned int ap_to_shift(unsigned long ap)
    203{
    204	int psize;
    205
    206	for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
    207		if (mmu_psize_defs[psize].ap == ap)
    208			return mmu_psize_defs[psize].shift;
    209	}
    210
    211	return -1;
    212}
    213
    214static inline unsigned long get_sllp_encoding(int psize)
    215{
    216	unsigned long sllp;
    217
    218	sllp = ((mmu_psize_defs[psize].sllp & SLB_VSID_L) >> 6) |
    219		((mmu_psize_defs[psize].sllp & SLB_VSID_LP) >> 4);
    220	return sllp;
    221}
    222
    223#endif /* __ASSEMBLY__ */
    224
    225/*
    226 * Segment sizes.
    227 * These are the values used by hardware in the B field of
    228 * SLB entries and the first dword of MMU hashtable entries.
    229 * The B field is 2 bits; the values 2 and 3 are unused and reserved.
    230 */
    231#define MMU_SEGSIZE_256M	0
    232#define MMU_SEGSIZE_1T		1
    233
    234/*
    235 * encode page number shift.
    236 * in order to fit the 78 bit va in a 64 bit variable we shift the va by
    237 * 12 bits. This enable us to address upto 76 bit va.
    238 * For hpt hash from a va we can ignore the page size bits of va and for
    239 * hpte encoding we ignore up to 23 bits of va. So ignoring lower 12 bits ensure
    240 * we work in all cases including 4k page size.
    241 */
    242#define VPN_SHIFT	12
    243
    244/*
    245 * HPTE Large Page (LP) details
    246 */
    247#define LP_SHIFT	12
    248#define LP_BITS		8
    249#define LP_MASK(i)	((0xFF >> (i)) << LP_SHIFT)
    250
    251#ifndef __ASSEMBLY__
    252
    253static inline int slb_vsid_shift(int ssize)
    254{
    255	if (ssize == MMU_SEGSIZE_256M)
    256		return SLB_VSID_SHIFT;
    257	return SLB_VSID_SHIFT_1T;
    258}
    259
    260static inline int segment_shift(int ssize)
    261{
    262	if (ssize == MMU_SEGSIZE_256M)
    263		return SID_SHIFT;
    264	return SID_SHIFT_1T;
    265}
    266
    267/*
    268 * This array is indexed by the LP field of the HPTE second dword.
    269 * Since this field may contain some RPN bits, some entries are
    270 * replicated so that we get the same value irrespective of RPN.
    271 * The top 4 bits are the page size index (MMU_PAGE_*) for the
    272 * actual page size, the bottom 4 bits are the base page size.
    273 */
    274extern u8 hpte_page_sizes[1 << LP_BITS];
    275
    276static inline unsigned long __hpte_page_size(unsigned long h, unsigned long l,
    277					     bool is_base_size)
    278{
    279	unsigned int i, lp;
    280
    281	if (!(h & HPTE_V_LARGE))
    282		return 1ul << 12;
    283
    284	/* Look at the 8 bit LP value */
    285	lp = (l >> LP_SHIFT) & ((1 << LP_BITS) - 1);
    286	i = hpte_page_sizes[lp];
    287	if (!i)
    288		return 0;
    289	if (!is_base_size)
    290		i >>= 4;
    291	return 1ul << mmu_psize_defs[i & 0xf].shift;
    292}
    293
    294static inline unsigned long hpte_page_size(unsigned long h, unsigned long l)
    295{
    296	return __hpte_page_size(h, l, 0);
    297}
    298
    299static inline unsigned long hpte_base_page_size(unsigned long h, unsigned long l)
    300{
    301	return __hpte_page_size(h, l, 1);
    302}
    303
    304/*
    305 * The current system page and segment sizes
    306 */
    307extern int mmu_kernel_ssize;
    308extern int mmu_highuser_ssize;
    309extern u16 mmu_slb_size;
    310extern unsigned long tce_alloc_start, tce_alloc_end;
    311
    312/*
    313 * If the processor supports 64k normal pages but not 64k cache
    314 * inhibited pages, we have to be prepared to switch processes
    315 * to use 4k pages when they create cache-inhibited mappings.
    316 * If this is the case, mmu_ci_restrictions will be set to 1.
    317 */
    318extern int mmu_ci_restrictions;
    319
    320/*
    321 * This computes the AVPN and B fields of the first dword of a HPTE,
    322 * for use when we want to match an existing PTE.  The bottom 7 bits
    323 * of the returned value are zero.
    324 */
    325static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize,
    326					     int ssize)
    327{
    328	unsigned long v;
    329	/*
    330	 * The AVA field omits the low-order 23 bits of the 78 bits VA.
    331	 * These bits are not needed in the PTE, because the
    332	 * low-order b of these bits are part of the byte offset
    333	 * into the virtual page and, if b < 23, the high-order
    334	 * 23-b of these bits are always used in selecting the
    335	 * PTEGs to be searched
    336	 */
    337	v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm);
    338	v <<= HPTE_V_AVPN_SHIFT;
    339	v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
    340	return v;
    341}
    342
    343/*
    344 * ISA v3.0 defines a new HPTE format, which differs from the old
    345 * format in having smaller AVPN and ARPN fields, and the B field
    346 * in the second dword instead of the first.
    347 */
    348static inline unsigned long hpte_old_to_new_v(unsigned long v)
    349{
    350	/* trim AVPN, drop B */
    351	return v & HPTE_V_COMMON_BITS;
    352}
    353
    354static inline unsigned long hpte_old_to_new_r(unsigned long v, unsigned long r)
    355{
    356	/* move B field from 1st to 2nd dword, trim ARPN */
    357	return (r & ~HPTE_R_3_0_SSIZE_MASK) |
    358		(((v) >> HPTE_V_SSIZE_SHIFT) << HPTE_R_3_0_SSIZE_SHIFT);
    359}
    360
    361static inline unsigned long hpte_new_to_old_v(unsigned long v, unsigned long r)
    362{
    363	/* insert B field */
    364	return (v & HPTE_V_COMMON_BITS) |
    365		((r & HPTE_R_3_0_SSIZE_MASK) <<
    366		 (HPTE_V_SSIZE_SHIFT - HPTE_R_3_0_SSIZE_SHIFT));
    367}
    368
    369static inline unsigned long hpte_new_to_old_r(unsigned long r)
    370{
    371	/* clear out B field */
    372	return r & ~HPTE_R_3_0_SSIZE_MASK;
    373}
    374
    375static inline unsigned long hpte_get_old_v(struct hash_pte *hptep)
    376{
    377	unsigned long hpte_v;
    378
    379	hpte_v = be64_to_cpu(hptep->v);
    380	if (cpu_has_feature(CPU_FTR_ARCH_300))
    381		hpte_v = hpte_new_to_old_v(hpte_v, be64_to_cpu(hptep->r));
    382	return hpte_v;
    383}
    384
    385/*
    386 * This function sets the AVPN and L fields of the HPTE  appropriately
    387 * using the base page size and actual page size.
    388 */
    389static inline unsigned long hpte_encode_v(unsigned long vpn, int base_psize,
    390					  int actual_psize, int ssize)
    391{
    392	unsigned long v;
    393	v = hpte_encode_avpn(vpn, base_psize, ssize);
    394	if (actual_psize != MMU_PAGE_4K)
    395		v |= HPTE_V_LARGE;
    396	return v;
    397}
    398
    399/*
    400 * This function sets the ARPN, and LP fields of the HPTE appropriately
    401 * for the page size. We assume the pa is already "clean" that is properly
    402 * aligned for the requested page size
    403 */
    404static inline unsigned long hpte_encode_r(unsigned long pa, int base_psize,
    405					  int actual_psize)
    406{
    407	/* A 4K page needs no special encoding */
    408	if (actual_psize == MMU_PAGE_4K)
    409		return pa & HPTE_R_RPN;
    410	else {
    411		unsigned int penc = mmu_psize_defs[base_psize].penc[actual_psize];
    412		unsigned int shift = mmu_psize_defs[actual_psize].shift;
    413		return (pa & ~((1ul << shift) - 1)) | (penc << LP_SHIFT);
    414	}
    415}
    416
    417/*
    418 * Build a VPN_SHIFT bit shifted va given VSID, EA and segment size.
    419 */
    420static inline unsigned long hpt_vpn(unsigned long ea,
    421				    unsigned long vsid, int ssize)
    422{
    423	unsigned long mask;
    424	int s_shift = segment_shift(ssize);
    425
    426	mask = (1ul << (s_shift - VPN_SHIFT)) - 1;
    427	return (vsid << (s_shift - VPN_SHIFT)) | ((ea >> VPN_SHIFT) & mask);
    428}
    429
    430/*
    431 * This hashes a virtual address
    432 */
    433static inline unsigned long hpt_hash(unsigned long vpn,
    434				     unsigned int shift, int ssize)
    435{
    436	unsigned long mask;
    437	unsigned long hash, vsid;
    438
    439	/* VPN_SHIFT can be atmost 12 */
    440	if (ssize == MMU_SEGSIZE_256M) {
    441		mask = (1ul << (SID_SHIFT - VPN_SHIFT)) - 1;
    442		hash = (vpn >> (SID_SHIFT - VPN_SHIFT)) ^
    443			((vpn & mask) >> (shift - VPN_SHIFT));
    444	} else {
    445		mask = (1ul << (SID_SHIFT_1T - VPN_SHIFT)) - 1;
    446		vsid = vpn >> (SID_SHIFT_1T - VPN_SHIFT);
    447		hash = vsid ^ (vsid << 25) ^
    448			((vpn & mask) >> (shift - VPN_SHIFT)) ;
    449	}
    450	return hash & 0x7fffffffffUL;
    451}
    452
    453#define HPTE_LOCAL_UPDATE	0x1
    454#define HPTE_NOHPTE_UPDATE	0x2
    455#define HPTE_USE_KERNEL_KEY	0x4
    456
    457long hpte_insert_repeating(unsigned long hash, unsigned long vpn, unsigned long pa,
    458			   unsigned long rlags, unsigned long vflags, int psize, int ssize);
    459extern int __hash_page_4K(unsigned long ea, unsigned long access,
    460			  unsigned long vsid, pte_t *ptep, unsigned long trap,
    461			  unsigned long flags, int ssize, int subpage_prot);
    462extern int __hash_page_64K(unsigned long ea, unsigned long access,
    463			   unsigned long vsid, pte_t *ptep, unsigned long trap,
    464			   unsigned long flags, int ssize);
    465struct mm_struct;
    466unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap);
    467extern int hash_page_mm(struct mm_struct *mm, unsigned long ea,
    468			unsigned long access, unsigned long trap,
    469			unsigned long flags);
    470extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
    471		     unsigned long dsisr);
    472void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc);
    473int __hash_page(unsigned long trap, unsigned long ea, unsigned long dsisr, unsigned long msr);
    474int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid,
    475		     pte_t *ptep, unsigned long trap, unsigned long flags,
    476		     int ssize, unsigned int shift, unsigned int mmu_psize);
    477#ifdef CONFIG_TRANSPARENT_HUGEPAGE
    478extern int __hash_page_thp(unsigned long ea, unsigned long access,
    479			   unsigned long vsid, pmd_t *pmdp, unsigned long trap,
    480			   unsigned long flags, int ssize, unsigned int psize);
    481#else
    482static inline int __hash_page_thp(unsigned long ea, unsigned long access,
    483				  unsigned long vsid, pmd_t *pmdp,
    484				  unsigned long trap, unsigned long flags,
    485				  int ssize, unsigned int psize)
    486{
    487	BUG();
    488	return -1;
    489}
    490#endif
    491extern void hash_failure_debug(unsigned long ea, unsigned long access,
    492			       unsigned long vsid, unsigned long trap,
    493			       int ssize, int psize, int lpsize,
    494			       unsigned long pte);
    495extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
    496			     unsigned long pstart, unsigned long prot,
    497			     int psize, int ssize);
    498int htab_remove_mapping(unsigned long vstart, unsigned long vend,
    499			int psize, int ssize);
    500extern void pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages);
    501extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
    502
    503extern void hash__setup_new_exec(void);
    504
    505#ifdef CONFIG_PPC_PSERIES
    506void hpte_init_pseries(void);
    507#else
    508static inline void hpte_init_pseries(void) { }
    509#endif
    510
    511extern void hpte_init_native(void);
    512
    513struct slb_entry {
    514	u64	esid;
    515	u64	vsid;
    516};
    517
    518extern void slb_initialize(void);
    519void slb_flush_and_restore_bolted(void);
    520void slb_flush_all_realmode(void);
    521void __slb_restore_bolted_realmode(void);
    522void slb_restore_bolted_realmode(void);
    523void slb_save_contents(struct slb_entry *slb_ptr);
    524void slb_dump_contents(struct slb_entry *slb_ptr);
    525
    526extern void slb_vmalloc_update(void);
    527void preload_new_slb_context(unsigned long start, unsigned long sp);
    528
    529#ifdef CONFIG_PPC_64S_HASH_MMU
    530void slb_set_size(u16 size);
    531#else
    532static inline void slb_set_size(u16 size) { }
    533#endif
    534
    535#endif /* __ASSEMBLY__ */
    536
    537/*
    538 * VSID allocation (256MB segment)
    539 *
    540 * We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated
    541 * from mmu context id and effective segment id of the address.
    542 *
    543 * For user processes max context id is limited to MAX_USER_CONTEXT.
    544 * more details in get_user_context
    545 *
    546 * For kernel space get_kernel_context
    547 *
    548 * The proto-VSIDs are then scrambled into real VSIDs with the
    549 * multiplicative hash:
    550 *
    551 *	VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
    552 *
    553 * VSID_MULTIPLIER is prime, so in particular it is
    554 * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
    555 * Because the modulus is 2^n-1 we can compute it efficiently without
    556 * a divide or extra multiply (see below). The scramble function gives
    557 * robust scattering in the hash table (at least based on some initial
    558 * results).
    559 *
    560 * We use VSID 0 to indicate an invalid VSID. The means we can't use context id
    561 * 0, because a context id of 0 and an EA of 0 gives a proto-VSID of 0, which
    562 * will produce a VSID of 0.
    563 *
    564 * We also need to avoid the last segment of the last context, because that
    565 * would give a protovsid of 0x1fffffffff. That will result in a VSID 0
    566 * because of the modulo operation in vsid scramble.
    567 */
    568
    569/*
    570 * Max Va bits we support as of now is 68 bits. We want 19 bit
    571 * context ID.
    572 * Restrictions:
    573 * GPU has restrictions of not able to access beyond 128TB
    574 * (47 bit effective address). We also cannot do more than 20bit PID.
    575 * For p4 and p5 which can only do 65 bit VA, we restrict our CONTEXT_BITS
    576 * to 16 bits (ie, we can only have 2^16 pids at the same time).
    577 */
    578#define VA_BITS			68
    579#define CONTEXT_BITS		19
    580#define ESID_BITS		(VA_BITS - (SID_SHIFT + CONTEXT_BITS))
    581#define ESID_BITS_1T		(VA_BITS - (SID_SHIFT_1T + CONTEXT_BITS))
    582
    583#define ESID_BITS_MASK		((1 << ESID_BITS) - 1)
    584#define ESID_BITS_1T_MASK	((1 << ESID_BITS_1T) - 1)
    585
    586/*
    587 * Now certain config support MAX_PHYSMEM more than 512TB. Hence we will need
    588 * to use more than one context for linear mapping the kernel.
    589 * For vmalloc and memmap, we use just one context with 512TB. With 64 byte
    590 * struct page size, we need ony 32 TB in memmap for 2PB (51 bits (MAX_PHYSMEM_BITS)).
    591 */
    592#if (H_MAX_PHYSMEM_BITS > MAX_EA_BITS_PER_CONTEXT)
    593#define MAX_KERNEL_CTX_CNT	(1UL << (H_MAX_PHYSMEM_BITS - MAX_EA_BITS_PER_CONTEXT))
    594#else
    595#define MAX_KERNEL_CTX_CNT	1
    596#endif
    597
    598#define MAX_VMALLOC_CTX_CNT	1
    599#define MAX_IO_CTX_CNT		1
    600#define MAX_VMEMMAP_CTX_CNT	1
    601
    602/*
    603 * 256MB segment
    604 * The proto-VSID space has 2^(CONTEX_BITS + ESID_BITS) - 1 segments
    605 * available for user + kernel mapping. VSID 0 is reserved as invalid, contexts
    606 * 1-4 are used for kernel mapping. Each segment contains 2^28 bytes. Each
    607 * context maps 2^49 bytes (512TB).
    608 *
    609 * We also need to avoid the last segment of the last context, because that
    610 * would give a protovsid of 0x1fffffffff. That will result in a VSID 0
    611 * because of the modulo operation in vsid scramble.
    612 *
    613 */
    614#define MAX_USER_CONTEXT	((ASM_CONST(1) << CONTEXT_BITS) - 2)
    615
    616// The + 2 accounts for INVALID_REGION and 1 more to avoid overlap with kernel
    617#define MIN_USER_CONTEXT	(MAX_KERNEL_CTX_CNT + MAX_VMALLOC_CTX_CNT + \
    618				 MAX_IO_CTX_CNT + MAX_VMEMMAP_CTX_CNT + 2)
    619
    620/*
    621 * For platforms that support on 65bit VA we limit the context bits
    622 */
    623#define MAX_USER_CONTEXT_65BIT_VA ((ASM_CONST(1) << (65 - (SID_SHIFT + ESID_BITS))) - 2)
    624
    625/*
    626 * This should be computed such that protovosid * vsid_mulitplier
    627 * doesn't overflow 64 bits. The vsid_mutliplier should also be
    628 * co-prime to vsid_modulus. We also need to make sure that number
    629 * of bits in multiplied result (dividend) is less than twice the number of
    630 * protovsid bits for our modulus optmization to work.
    631 *
    632 * The below table shows the current values used.
    633 * |-------+------------+----------------------+------------+-------------------|
    634 * |       | Prime Bits | proto VSID_BITS_65VA | Total Bits | 2* prot VSID_BITS |
    635 * |-------+------------+----------------------+------------+-------------------|
    636 * | 1T    |         24 |                   25 |         49 |                50 |
    637 * |-------+------------+----------------------+------------+-------------------|
    638 * | 256MB |         24 |                   37 |         61 |                74 |
    639 * |-------+------------+----------------------+------------+-------------------|
    640 *
    641 * |-------+------------+----------------------+------------+--------------------|
    642 * |       | Prime Bits | proto VSID_BITS_68VA | Total Bits | 2* proto VSID_BITS |
    643 * |-------+------------+----------------------+------------+--------------------|
    644 * | 1T    |         24 |                   28 |         52 |                 56 |
    645 * |-------+------------+----------------------+------------+--------------------|
    646 * | 256MB |         24 |                   40 |         64 |                 80 |
    647 * |-------+------------+----------------------+------------+--------------------|
    648 *
    649 */
    650#define VSID_MULTIPLIER_256M	ASM_CONST(12538073)	/* 24-bit prime */
    651#define VSID_BITS_256M		(VA_BITS - SID_SHIFT)
    652#define VSID_BITS_65_256M	(65 - SID_SHIFT)
    653/*
    654 * Modular multiplicative inverse of VSID_MULTIPLIER under modulo VSID_MODULUS
    655 */
    656#define VSID_MULINV_256M	ASM_CONST(665548017062)
    657
    658#define VSID_MULTIPLIER_1T	ASM_CONST(12538073)	/* 24-bit prime */
    659#define VSID_BITS_1T		(VA_BITS - SID_SHIFT_1T)
    660#define VSID_BITS_65_1T		(65 - SID_SHIFT_1T)
    661#define VSID_MULINV_1T		ASM_CONST(209034062)
    662
    663/* 1TB VSID reserved for VRMA */
    664#define VRMA_VSID	0x1ffffffUL
    665#define USER_VSID_RANGE	(1UL << (ESID_BITS + SID_SHIFT))
    666
    667/* 4 bits per slice and we have one slice per 1TB */
    668#define SLICE_ARRAY_SIZE	(H_PGTABLE_RANGE >> 41)
    669#define LOW_SLICE_ARRAY_SZ	(BITS_PER_LONG / BITS_PER_BYTE)
    670#define TASK_SLICE_ARRAY_SZ(x)	((x)->hash_context->slb_addr_limit >> 41)
    671#ifndef __ASSEMBLY__
    672
    673#ifdef CONFIG_PPC_SUBPAGE_PROT
    674/*
    675 * For the sub-page protection option, we extend the PGD with one of
    676 * these.  Basically we have a 3-level tree, with the top level being
    677 * the protptrs array.  To optimize speed and memory consumption when
    678 * only addresses < 4GB are being protected, pointers to the first
    679 * four pages of sub-page protection words are stored in the low_prot
    680 * array.
    681 * Each page of sub-page protection words protects 1GB (4 bytes
    682 * protects 64k).  For the 3-level tree, each page of pointers then
    683 * protects 8TB.
    684 */
    685struct subpage_prot_table {
    686	unsigned long maxaddr;	/* only addresses < this are protected */
    687	unsigned int **protptrs[(TASK_SIZE_USER64 >> 43)];
    688	unsigned int *low_prot[4];
    689};
    690
    691#define SBP_L1_BITS		(PAGE_SHIFT - 2)
    692#define SBP_L2_BITS		(PAGE_SHIFT - 3)
    693#define SBP_L1_COUNT		(1 << SBP_L1_BITS)
    694#define SBP_L2_COUNT		(1 << SBP_L2_BITS)
    695#define SBP_L2_SHIFT		(PAGE_SHIFT + SBP_L1_BITS)
    696#define SBP_L3_SHIFT		(SBP_L2_SHIFT + SBP_L2_BITS)
    697
    698extern void subpage_prot_free(struct mm_struct *mm);
    699#else
    700static inline void subpage_prot_free(struct mm_struct *mm) {}
    701#endif /* CONFIG_PPC_SUBPAGE_PROT */
    702
    703/*
    704 * One bit per slice. We have lower slices which cover 256MB segments
    705 * upto 4G range. That gets us 16 low slices. For the rest we track slices
    706 * in 1TB size.
    707 */
    708struct slice_mask {
    709	u64 low_slices;
    710	DECLARE_BITMAP(high_slices, SLICE_NUM_HIGH);
    711};
    712
    713struct hash_mm_context {
    714	u16 user_psize; /* page size index */
    715
    716	/* SLB page size encodings*/
    717	unsigned char low_slices_psize[LOW_SLICE_ARRAY_SZ];
    718	unsigned char high_slices_psize[SLICE_ARRAY_SIZE];
    719	unsigned long slb_addr_limit;
    720#ifdef CONFIG_PPC_64K_PAGES
    721	struct slice_mask mask_64k;
    722#endif
    723	struct slice_mask mask_4k;
    724#ifdef CONFIG_HUGETLB_PAGE
    725	struct slice_mask mask_16m;
    726	struct slice_mask mask_16g;
    727#endif
    728
    729#ifdef CONFIG_PPC_SUBPAGE_PROT
    730	struct subpage_prot_table *spt;
    731#endif /* CONFIG_PPC_SUBPAGE_PROT */
    732};
    733
    734#if 0
    735/*
    736 * The code below is equivalent to this function for arguments
    737 * < 2^VSID_BITS, which is all this should ever be called
    738 * with.  However gcc is not clever enough to compute the
    739 * modulus (2^n-1) without a second multiply.
    740 */
    741#define vsid_scramble(protovsid, size) \
    742	((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
    743
    744/* simplified form avoiding mod operation */
    745#define vsid_scramble(protovsid, size) \
    746	({								 \
    747		unsigned long x;					 \
    748		x = (protovsid) * VSID_MULTIPLIER_##size;		 \
    749		x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
    750		(x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
    751	})
    752
    753#else /* 1 */
    754static inline unsigned long vsid_scramble(unsigned long protovsid,
    755				  unsigned long vsid_multiplier, int vsid_bits)
    756{
    757	unsigned long vsid;
    758	unsigned long vsid_modulus = ((1UL << vsid_bits) - 1);
    759	/*
    760	 * We have same multipler for both 256 and 1T segements now
    761	 */
    762	vsid = protovsid * vsid_multiplier;
    763	vsid = (vsid >> vsid_bits) + (vsid & vsid_modulus);
    764	return (vsid + ((vsid + 1) >> vsid_bits)) & vsid_modulus;
    765}
    766
    767#endif /* 1 */
    768
    769/* Returns the segment size indicator for a user address */
    770static inline int user_segment_size(unsigned long addr)
    771{
    772	/* Use 1T segments if possible for addresses >= 1T */
    773	if (addr >= (1UL << SID_SHIFT_1T))
    774		return mmu_highuser_ssize;
    775	return MMU_SEGSIZE_256M;
    776}
    777
    778static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
    779				     int ssize)
    780{
    781	unsigned long va_bits = VA_BITS;
    782	unsigned long vsid_bits;
    783	unsigned long protovsid;
    784
    785	/*
    786	 * Bad address. We return VSID 0 for that
    787	 */
    788	if ((ea & EA_MASK)  >= H_PGTABLE_RANGE)
    789		return 0;
    790
    791	if (!mmu_has_feature(MMU_FTR_68_BIT_VA))
    792		va_bits = 65;
    793
    794	if (ssize == MMU_SEGSIZE_256M) {
    795		vsid_bits = va_bits - SID_SHIFT;
    796		protovsid = (context << ESID_BITS) |
    797			((ea >> SID_SHIFT) & ESID_BITS_MASK);
    798		return vsid_scramble(protovsid, VSID_MULTIPLIER_256M, vsid_bits);
    799	}
    800	/* 1T segment */
    801	vsid_bits = va_bits - SID_SHIFT_1T;
    802	protovsid = (context << ESID_BITS_1T) |
    803		((ea >> SID_SHIFT_1T) & ESID_BITS_1T_MASK);
    804	return vsid_scramble(protovsid, VSID_MULTIPLIER_1T, vsid_bits);
    805}
    806
    807/*
    808 * For kernel space, we use context ids as
    809 * below. Range is 512TB per context.
    810 *
    811 * 0x00001 -  [ 0xc000000000000000 - 0xc001ffffffffffff]
    812 * 0x00002 -  [ 0xc002000000000000 - 0xc003ffffffffffff]
    813 * 0x00003 -  [ 0xc004000000000000 - 0xc005ffffffffffff]
    814 * 0x00004 -  [ 0xc006000000000000 - 0xc007ffffffffffff]
    815 *
    816 * vmap, IO, vmemap
    817 *
    818 * 0x00005 -  [ 0xc008000000000000 - 0xc009ffffffffffff]
    819 * 0x00006 -  [ 0xc00a000000000000 - 0xc00bffffffffffff]
    820 * 0x00007 -  [ 0xc00c000000000000 - 0xc00dffffffffffff]
    821 *
    822 */
    823static inline unsigned long get_kernel_context(unsigned long ea)
    824{
    825	unsigned long region_id = get_region_id(ea);
    826	unsigned long ctx;
    827	/*
    828	 * Depending on Kernel config, kernel region can have one context
    829	 * or more.
    830	 */
    831	if (region_id == LINEAR_MAP_REGION_ID) {
    832		/*
    833		 * We already verified ea to be not beyond the addr limit.
    834		 */
    835		ctx =  1 + ((ea & EA_MASK) >> MAX_EA_BITS_PER_CONTEXT);
    836	} else
    837		ctx = region_id + MAX_KERNEL_CTX_CNT - 1;
    838	return ctx;
    839}
    840
    841/*
    842 * This is only valid for addresses >= PAGE_OFFSET
    843 */
    844static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
    845{
    846	unsigned long context;
    847
    848	if (!is_kernel_addr(ea))
    849		return 0;
    850
    851	context = get_kernel_context(ea);
    852	return get_vsid(context, ea, ssize);
    853}
    854
    855unsigned htab_shift_for_mem_size(unsigned long mem_size);
    856
    857enum slb_index {
    858	LINEAR_INDEX	= 0, /* Kernel linear map  (0xc000000000000000) */
    859	KSTACK_INDEX	= 1, /* Kernel stack map */
    860};
    861
    862#define slb_esid_mask(ssize)	\
    863	(((ssize) == MMU_SEGSIZE_256M) ? ESID_MASK : ESID_MASK_1T)
    864
    865static inline unsigned long mk_esid_data(unsigned long ea, int ssize,
    866					 enum slb_index index)
    867{
    868	return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | index;
    869}
    870
    871static inline unsigned long __mk_vsid_data(unsigned long vsid, int ssize,
    872					   unsigned long flags)
    873{
    874	return (vsid << slb_vsid_shift(ssize)) | flags |
    875		((unsigned long)ssize << SLB_VSID_SSIZE_SHIFT);
    876}
    877
    878static inline unsigned long mk_vsid_data(unsigned long ea, int ssize,
    879					 unsigned long flags)
    880{
    881	return __mk_vsid_data(get_kernel_vsid(ea, ssize), ssize, flags);
    882}
    883
    884#endif /* __ASSEMBLY__ */
    885#endif /* _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_ */