cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

pgtable.h (11072B)


      1/* SPDX-License-Identifier: GPL-2.0 */
      2#ifndef _ASM_POWERPC_NOHASH_32_PGTABLE_H
      3#define _ASM_POWERPC_NOHASH_32_PGTABLE_H
      4
      5#include <asm-generic/pgtable-nopmd.h>
      6
      7#ifndef __ASSEMBLY__
      8#include <linux/sched.h>
      9#include <linux/threads.h>
     10#include <asm/mmu.h>			/* For sub-arch specific PPC_PIN_SIZE */
     11
     12#ifdef CONFIG_44x
     13extern int icache_44x_need_flush;
     14#endif
     15
     16#endif /* __ASSEMBLY__ */
     17
     18#define PTE_INDEX_SIZE	PTE_SHIFT
     19#define PMD_INDEX_SIZE	0
     20#define PUD_INDEX_SIZE	0
     21#define PGD_INDEX_SIZE	(32 - PGDIR_SHIFT)
     22
     23#define PMD_CACHE_INDEX	PMD_INDEX_SIZE
     24#define PUD_CACHE_INDEX	PUD_INDEX_SIZE
     25
     26#ifndef __ASSEMBLY__
     27#define PTE_TABLE_SIZE	(sizeof(pte_t) << PTE_INDEX_SIZE)
     28#define PMD_TABLE_SIZE	0
     29#define PUD_TABLE_SIZE	0
     30#define PGD_TABLE_SIZE	(sizeof(pgd_t) << PGD_INDEX_SIZE)
     31
     32#define PMD_MASKED_BITS (PTE_TABLE_SIZE - 1)
     33#endif	/* __ASSEMBLY__ */
     34
     35#define PTRS_PER_PTE	(1 << PTE_INDEX_SIZE)
     36#define PTRS_PER_PGD	(1 << PGD_INDEX_SIZE)
     37
     38/*
     39 * The normal case is that PTEs are 32-bits and we have a 1-page
     40 * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages.  -- paulus
     41 *
     42 * For any >32-bit physical address platform, we can use the following
     43 * two level page table layout where the pgdir is 8KB and the MS 13 bits
     44 * are an index to the second level table.  The combined pgdir/pmd first
     45 * level has 2048 entries and the second level has 512 64-bit PTE entries.
     46 * -Matt
     47 */
     48/* PGDIR_SHIFT determines what a top-level page table entry can map */
     49#define PGDIR_SHIFT	(PAGE_SHIFT + PTE_INDEX_SIZE)
     50#define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
     51#define PGDIR_MASK	(~(PGDIR_SIZE-1))
     52
     53/* Bits to mask out from a PGD to get to the PUD page */
     54#define PGD_MASKED_BITS		0
     55
     56#define USER_PTRS_PER_PGD	(TASK_SIZE / PGDIR_SIZE)
     57
     58#define pte_ERROR(e) \
     59	pr_err("%s:%d: bad pte %llx.\n", __FILE__, __LINE__, \
     60		(unsigned long long)pte_val(e))
     61#define pgd_ERROR(e) \
     62	pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
     63
     64#ifndef __ASSEMBLY__
     65
     66int map_kernel_page(unsigned long va, phys_addr_t pa, pgprot_t prot);
     67void unmap_kernel_page(unsigned long va);
     68
     69#endif /* !__ASSEMBLY__ */
     70
     71
     72/*
     73 * This is the bottom of the PKMAP area with HIGHMEM or an arbitrary
     74 * value (for now) on others, from where we can start layout kernel
     75 * virtual space that goes below PKMAP and FIXMAP
     76 */
     77#include <asm/fixmap.h>
     78
     79/*
     80 * ioremap_bot starts at that address. Early ioremaps move down from there,
     81 * until mem_init() at which point this becomes the top of the vmalloc
     82 * and ioremap space
     83 */
     84#ifdef CONFIG_HIGHMEM
     85#define IOREMAP_TOP	PKMAP_BASE
     86#else
     87#define IOREMAP_TOP	FIXADDR_START
     88#endif
     89
     90/* PPC32 shares vmalloc area with ioremap */
     91#define IOREMAP_START	VMALLOC_START
     92#define IOREMAP_END	VMALLOC_END
     93
     94/*
     95 * Just any arbitrary offset to the start of the vmalloc VM area: the
     96 * current 16MB value just means that there will be a 64MB "hole" after the
     97 * physical memory until the kernel virtual memory starts.  That means that
     98 * any out-of-bounds memory accesses will hopefully be caught.
     99 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
    100 * area for the same reason. ;)
    101 *
    102 * We no longer map larger than phys RAM with the BATs so we don't have
    103 * to worry about the VMALLOC_OFFSET causing problems.  We do have to worry
    104 * about clashes between our early calls to ioremap() that start growing down
    105 * from IOREMAP_TOP being run into the VM area allocations (growing upwards
    106 * from VMALLOC_START).  For this reason we have ioremap_bot to check when
    107 * we actually run into our mappings setup in the early boot with the VM
    108 * system.  This really does become a problem for machines with good amounts
    109 * of RAM.  -- Cort
    110 */
    111#define VMALLOC_OFFSET (0x1000000) /* 16M */
    112#ifdef PPC_PIN_SIZE
    113#define VMALLOC_START (((ALIGN((long)high_memory, PPC_PIN_SIZE) + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
    114#else
    115#define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
    116#endif
    117
    118#ifdef CONFIG_KASAN_VMALLOC
    119#define VMALLOC_END	ALIGN_DOWN(ioremap_bot, PAGE_SIZE << KASAN_SHADOW_SCALE_SHIFT)
    120#else
    121#define VMALLOC_END	ioremap_bot
    122#endif
    123
    124/*
    125 * Bits in a linux-style PTE.  These match the bits in the
    126 * (hardware-defined) PowerPC PTE as closely as possible.
    127 */
    128
    129#if defined(CONFIG_40x)
    130#include <asm/nohash/32/pte-40x.h>
    131#elif defined(CONFIG_44x)
    132#include <asm/nohash/32/pte-44x.h>
    133#elif defined(CONFIG_FSL_BOOKE) && defined(CONFIG_PTE_64BIT)
    134#include <asm/nohash/pte-book3e.h>
    135#elif defined(CONFIG_FSL_BOOKE)
    136#include <asm/nohash/32/pte-fsl-booke.h>
    137#elif defined(CONFIG_PPC_8xx)
    138#include <asm/nohash/32/pte-8xx.h>
    139#endif
    140
    141/*
    142 * Location of the PFN in the PTE. Most 32-bit platforms use the same
    143 * as _PAGE_SHIFT here (ie, naturally aligned).
    144 * Platform who don't just pre-define the value so we don't override it here.
    145 */
    146#ifndef PTE_RPN_SHIFT
    147#define PTE_RPN_SHIFT	(PAGE_SHIFT)
    148#endif
    149
    150/*
    151 * The mask covered by the RPN must be a ULL on 32-bit platforms with
    152 * 64-bit PTEs.
    153 */
    154#if defined(CONFIG_PPC32) && defined(CONFIG_PTE_64BIT)
    155#define PTE_RPN_MASK	(~((1ULL << PTE_RPN_SHIFT) - 1))
    156#define MAX_POSSIBLE_PHYSMEM_BITS 36
    157#else
    158#define PTE_RPN_MASK	(~((1UL << PTE_RPN_SHIFT) - 1))
    159#define MAX_POSSIBLE_PHYSMEM_BITS 32
    160#endif
    161
    162/*
    163 * _PAGE_CHG_MASK masks of bits that are to be preserved across
    164 * pgprot changes.
    165 */
    166#define _PAGE_CHG_MASK	(PTE_RPN_MASK | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_SPECIAL)
    167
    168#ifndef __ASSEMBLY__
    169
    170#define pte_clear(mm, addr, ptep) \
    171	do { pte_update(mm, addr, ptep, ~0, 0, 0); } while (0)
    172
    173#ifndef pte_mkwrite
    174static inline pte_t pte_mkwrite(pte_t pte)
    175{
    176	return __pte(pte_val(pte) | _PAGE_RW);
    177}
    178#endif
    179
    180static inline pte_t pte_mkdirty(pte_t pte)
    181{
    182	return __pte(pte_val(pte) | _PAGE_DIRTY);
    183}
    184
    185static inline pte_t pte_mkyoung(pte_t pte)
    186{
    187	return __pte(pte_val(pte) | _PAGE_ACCESSED);
    188}
    189
    190#ifndef pte_wrprotect
    191static inline pte_t pte_wrprotect(pte_t pte)
    192{
    193	return __pte(pte_val(pte) & ~_PAGE_RW);
    194}
    195#endif
    196
    197#ifndef pte_mkexec
    198static inline pte_t pte_mkexec(pte_t pte)
    199{
    200	return __pte(pte_val(pte) | _PAGE_EXEC);
    201}
    202#endif
    203
    204#define pmd_none(pmd)		(!pmd_val(pmd))
    205#define	pmd_bad(pmd)		(pmd_val(pmd) & _PMD_BAD)
    206#define	pmd_present(pmd)	(pmd_val(pmd) & _PMD_PRESENT_MASK)
    207static inline void pmd_clear(pmd_t *pmdp)
    208{
    209	*pmdp = __pmd(0);
    210}
    211
    212/*
    213 * PTE updates. This function is called whenever an existing
    214 * valid PTE is updated. This does -not- include set_pte_at()
    215 * which nowadays only sets a new PTE.
    216 *
    217 * Depending on the type of MMU, we may need to use atomic updates
    218 * and the PTE may be either 32 or 64 bit wide. In the later case,
    219 * when using atomic updates, only the low part of the PTE is
    220 * accessed atomically.
    221 *
    222 * In addition, on 44x, we also maintain a global flag indicating
    223 * that an executable user mapping was modified, which is needed
    224 * to properly flush the virtually tagged instruction cache of
    225 * those implementations.
    226 *
    227 * On the 8xx, the page tables are a bit special. For 16k pages, we have
    228 * 4 identical entries. For 512k pages, we have 128 entries as if it was
    229 * 4k pages, but they are flagged as 512k pages for the hardware.
    230 * For other page sizes, we have a single entry in the table.
    231 */
    232#ifdef CONFIG_PPC_8xx
    233static pmd_t *pmd_off(struct mm_struct *mm, unsigned long addr);
    234static int hugepd_ok(hugepd_t hpd);
    235
    236static int number_of_cells_per_pte(pmd_t *pmd, pte_basic_t val, int huge)
    237{
    238	if (!huge)
    239		return PAGE_SIZE / SZ_4K;
    240	else if (hugepd_ok(*((hugepd_t *)pmd)))
    241		return 1;
    242	else if (IS_ENABLED(CONFIG_PPC_4K_PAGES) && !(val & _PAGE_HUGE))
    243		return SZ_16K / SZ_4K;
    244	else
    245		return SZ_512K / SZ_4K;
    246}
    247
    248static inline pte_basic_t pte_update(struct mm_struct *mm, unsigned long addr, pte_t *p,
    249				     unsigned long clr, unsigned long set, int huge)
    250{
    251	pte_basic_t *entry = (pte_basic_t *)p;
    252	pte_basic_t old = pte_val(*p);
    253	pte_basic_t new = (old & ~(pte_basic_t)clr) | set;
    254	int num, i;
    255	pmd_t *pmd = pmd_off(mm, addr);
    256
    257	num = number_of_cells_per_pte(pmd, new, huge);
    258
    259	for (i = 0; i < num; i++, entry++, new += SZ_4K)
    260		*entry = new;
    261
    262	return old;
    263}
    264
    265#ifdef CONFIG_PPC_16K_PAGES
    266#define __HAVE_ARCH_PTEP_GET
    267static inline pte_t ptep_get(pte_t *ptep)
    268{
    269	pte_basic_t val = READ_ONCE(ptep->pte);
    270	pte_t pte = {val, val, val, val};
    271
    272	return pte;
    273}
    274#endif /* CONFIG_PPC_16K_PAGES */
    275
    276#else
    277static inline pte_basic_t pte_update(struct mm_struct *mm, unsigned long addr, pte_t *p,
    278				     unsigned long clr, unsigned long set, int huge)
    279{
    280	pte_basic_t old = pte_val(*p);
    281	pte_basic_t new = (old & ~(pte_basic_t)clr) | set;
    282
    283	*p = __pte(new);
    284
    285#ifdef CONFIG_44x
    286	if ((old & _PAGE_USER) && (old & _PAGE_EXEC))
    287		icache_44x_need_flush = 1;
    288#endif
    289	return old;
    290}
    291#endif
    292
    293#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
    294static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
    295					      unsigned long addr, pte_t *ptep)
    296{
    297	unsigned long old;
    298	old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
    299	return (old & _PAGE_ACCESSED) != 0;
    300}
    301#define ptep_test_and_clear_young(__vma, __addr, __ptep) \
    302	__ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep)
    303
    304#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
    305static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
    306				       pte_t *ptep)
    307{
    308	return __pte(pte_update(mm, addr, ptep, ~0, 0, 0));
    309}
    310
    311#define __HAVE_ARCH_PTEP_SET_WRPROTECT
    312#ifndef ptep_set_wrprotect
    313static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
    314				      pte_t *ptep)
    315{
    316	pte_update(mm, addr, ptep, _PAGE_RW, 0, 0);
    317}
    318#endif
    319
    320#ifndef __ptep_set_access_flags
    321static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
    322					   pte_t *ptep, pte_t entry,
    323					   unsigned long address,
    324					   int psize)
    325{
    326	unsigned long set = pte_val(entry) &
    327			    (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
    328	int huge = psize > mmu_virtual_psize ? 1 : 0;
    329
    330	pte_update(vma->vm_mm, address, ptep, 0, set, huge);
    331
    332	flush_tlb_page(vma, address);
    333}
    334#endif
    335
    336static inline int pte_young(pte_t pte)
    337{
    338	return pte_val(pte) & _PAGE_ACCESSED;
    339}
    340
    341/*
    342 * Note that on Book E processors, the pmd contains the kernel virtual
    343 * (lowmem) address of the pte page.  The physical address is less useful
    344 * because everything runs with translation enabled (even the TLB miss
    345 * handler).  On everything else the pmd contains the physical address
    346 * of the pte page.  -- paulus
    347 */
    348#ifndef CONFIG_BOOKE
    349#define pmd_pfn(pmd)		(pmd_val(pmd) >> PAGE_SHIFT)
    350#else
    351#define pmd_page_vaddr(pmd)	\
    352	((unsigned long)(pmd_val(pmd) & ~(PTE_TABLE_SIZE - 1)))
    353#define pmd_pfn(pmd)		(__pa(pmd_val(pmd)) >> PAGE_SHIFT)
    354#endif
    355
    356#define pmd_page(pmd)		pfn_to_page(pmd_pfn(pmd))
    357/*
    358 * Encode and decode a swap entry.
    359 * Note that the bits we use in a PTE for representing a swap entry
    360 * must not include the _PAGE_PRESENT bit.
    361 *   -- paulus
    362 */
    363#define __swp_type(entry)		((entry).val & 0x1f)
    364#define __swp_offset(entry)		((entry).val >> 5)
    365#define __swp_entry(type, offset)	((swp_entry_t) { (type) | ((offset) << 5) })
    366#define __pte_to_swp_entry(pte)		((swp_entry_t) { pte_val(pte) >> 3 })
    367#define __swp_entry_to_pte(x)		((pte_t) { (x).val << 3 })
    368
    369#endif /* !__ASSEMBLY__ */
    370
    371#endif /* __ASM_POWERPC_NOHASH_32_PGTABLE_H */