pgtable.h (8813B)
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _ASM_POWERPC_NOHASH_PGTABLE_H 3#define _ASM_POWERPC_NOHASH_PGTABLE_H 4 5#if defined(CONFIG_PPC64) 6#include <asm/nohash/64/pgtable.h> 7#else 8#include <asm/nohash/32/pgtable.h> 9#endif 10 11/* Permission masks used for kernel mappings */ 12#define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_KERNEL_RW) 13#define PAGE_KERNEL_NC __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NO_CACHE) 14#define PAGE_KERNEL_NCG __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \ 15 _PAGE_NO_CACHE | _PAGE_GUARDED) 16#define PAGE_KERNEL_X __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX) 17#define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_KERNEL_RO) 18#define PAGE_KERNEL_ROX __pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX) 19 20/* 21 * Protection used for kernel text. We want the debuggers to be able to 22 * set breakpoints anywhere, so don't write protect the kernel text 23 * on platforms where such control is possible. 24 */ 25#if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) ||\ 26 defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE) 27#define PAGE_KERNEL_TEXT PAGE_KERNEL_X 28#else 29#define PAGE_KERNEL_TEXT PAGE_KERNEL_ROX 30#endif 31 32/* Make modules code happy. We don't set RO yet */ 33#define PAGE_KERNEL_EXEC PAGE_KERNEL_X 34 35/* Advertise special mapping type for AGP */ 36#define PAGE_AGP (PAGE_KERNEL_NC) 37#define HAVE_PAGE_AGP 38 39#ifndef __ASSEMBLY__ 40 41/* Generic accessors to PTE bits */ 42#ifndef pte_write 43static inline int pte_write(pte_t pte) 44{ 45 return pte_val(pte) & _PAGE_RW; 46} 47#endif 48static inline int pte_read(pte_t pte) { return 1; } 49static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } 50static inline int pte_special(pte_t pte) { return pte_val(pte) & _PAGE_SPECIAL; } 51static inline int pte_none(pte_t pte) { return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; } 52static inline bool pte_hashpte(pte_t pte) { return false; } 53static inline bool pte_ci(pte_t pte) { return pte_val(pte) & _PAGE_NO_CACHE; } 54static inline bool pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; } 55 56#ifdef CONFIG_NUMA_BALANCING 57/* 58 * These work without NUMA balancing but the kernel does not care. See the 59 * comment in include/linux/pgtable.h . On powerpc, this will only 60 * work for user pages and always return true for kernel pages. 61 */ 62static inline int pte_protnone(pte_t pte) 63{ 64 return pte_present(pte) && !pte_user(pte); 65} 66 67static inline int pmd_protnone(pmd_t pmd) 68{ 69 return pte_protnone(pmd_pte(pmd)); 70} 71#endif /* CONFIG_NUMA_BALANCING */ 72 73static inline int pte_present(pte_t pte) 74{ 75 return pte_val(pte) & _PAGE_PRESENT; 76} 77 78static inline bool pte_hw_valid(pte_t pte) 79{ 80 return pte_val(pte) & _PAGE_PRESENT; 81} 82 83/* 84 * Don't just check for any non zero bits in __PAGE_USER, since for book3e 85 * and PTE_64BIT, PAGE_KERNEL_X contains _PAGE_BAP_SR which is also in 86 * _PAGE_USER. Need to explicitly match _PAGE_BAP_UR bit in that case too. 87 */ 88#ifndef pte_user 89static inline bool pte_user(pte_t pte) 90{ 91 return (pte_val(pte) & _PAGE_USER) == _PAGE_USER; 92} 93#endif 94 95/* 96 * We only find page table entry in the last level 97 * Hence no need for other accessors 98 */ 99#define pte_access_permitted pte_access_permitted 100static inline bool pte_access_permitted(pte_t pte, bool write) 101{ 102 /* 103 * A read-only access is controlled by _PAGE_USER bit. 104 * We have _PAGE_READ set for WRITE and EXECUTE 105 */ 106 if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte)) 107 return false; 108 109 if (write && !pte_write(pte)) 110 return false; 111 112 return true; 113} 114 115/* Conversion functions: convert a page and protection to a page entry, 116 * and a page entry and page directory to the page they refer to. 117 * 118 * Even if PTEs can be unsigned long long, a PFN is always an unsigned 119 * long for now. 120 */ 121static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) { 122 return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) | 123 pgprot_val(pgprot)); } 124static inline unsigned long pte_pfn(pte_t pte) { 125 return pte_val(pte) >> PTE_RPN_SHIFT; } 126 127/* Generic modifiers for PTE bits */ 128static inline pte_t pte_exprotect(pte_t pte) 129{ 130 return __pte(pte_val(pte) & ~_PAGE_EXEC); 131} 132 133static inline pte_t pte_mkclean(pte_t pte) 134{ 135 return __pte(pte_val(pte) & ~_PAGE_DIRTY); 136} 137 138static inline pte_t pte_mkold(pte_t pte) 139{ 140 return __pte(pte_val(pte) & ~_PAGE_ACCESSED); 141} 142 143static inline pte_t pte_mkspecial(pte_t pte) 144{ 145 return __pte(pte_val(pte) | _PAGE_SPECIAL); 146} 147 148#ifndef pte_mkhuge 149static inline pte_t pte_mkhuge(pte_t pte) 150{ 151 return __pte(pte_val(pte)); 152} 153#endif 154 155#ifndef pte_mkprivileged 156static inline pte_t pte_mkprivileged(pte_t pte) 157{ 158 return __pte(pte_val(pte) & ~_PAGE_USER); 159} 160#endif 161 162#ifndef pte_mkuser 163static inline pte_t pte_mkuser(pte_t pte) 164{ 165 return __pte(pte_val(pte) | _PAGE_USER); 166} 167#endif 168 169static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 170{ 171 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)); 172} 173 174/* Insert a PTE, top-level function is out of line. It uses an inline 175 * low level function in the respective pgtable-* files 176 */ 177extern void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, 178 pte_t pte); 179 180/* This low level function performs the actual PTE insertion 181 * Setting the PTE depends on the MMU type and other factors. It's 182 * an horrible mess that I'm not going to try to clean up now but 183 * I'm keeping it in one place rather than spread around 184 */ 185static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr, 186 pte_t *ptep, pte_t pte, int percpu) 187{ 188 /* Second case is 32-bit with 64-bit PTE. In this case, we 189 * can just store as long as we do the two halves in the right order 190 * with a barrier in between. 191 * In the percpu case, we also fallback to the simple update 192 */ 193 if (IS_ENABLED(CONFIG_PPC32) && IS_ENABLED(CONFIG_PTE_64BIT) && !percpu) { 194 __asm__ __volatile__("\ 195 stw%X0 %2,%0\n\ 196 eieio\n\ 197 stw%X1 %L2,%1" 198 : "=m" (*ptep), "=m" (*((unsigned char *)ptep+4)) 199 : "r" (pte) : "memory"); 200 return; 201 } 202 /* Anything else just stores the PTE normally. That covers all 64-bit 203 * cases, and 32-bit non-hash with 32-bit PTEs. 204 */ 205#if defined(CONFIG_PPC_8xx) && defined(CONFIG_PPC_16K_PAGES) 206 ptep->pte = ptep->pte1 = ptep->pte2 = ptep->pte3 = pte_val(pte); 207#else 208 *ptep = pte; 209#endif 210 211 /* 212 * With hardware tablewalk, a sync is needed to ensure that 213 * subsequent accesses see the PTE we just wrote. Unlike userspace 214 * mappings, we can't tolerate spurious faults, so make sure 215 * the new PTE will be seen the first time. 216 */ 217 if (IS_ENABLED(CONFIG_PPC_BOOK3E_64) && is_kernel_addr(addr)) 218 mb(); 219} 220 221 222#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 223extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address, 224 pte_t *ptep, pte_t entry, int dirty); 225 226/* 227 * Macro to mark a page protection value as "uncacheable". 228 */ 229 230#define _PAGE_CACHE_CTL (_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \ 231 _PAGE_WRITETHRU) 232 233#define pgprot_noncached(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ 234 _PAGE_NO_CACHE | _PAGE_GUARDED)) 235 236#define pgprot_noncached_wc(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ 237 _PAGE_NO_CACHE)) 238 239#define pgprot_cached(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ 240 _PAGE_COHERENT)) 241 242#if _PAGE_WRITETHRU != 0 243#define pgprot_cached_wthru(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ 244 _PAGE_COHERENT | _PAGE_WRITETHRU)) 245#else 246#define pgprot_cached_wthru(prot) pgprot_noncached(prot) 247#endif 248 249#define pgprot_cached_noncoherent(prot) \ 250 (__pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL)) 251 252#define pgprot_writecombine pgprot_noncached_wc 253 254struct file; 255extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, 256 unsigned long size, pgprot_t vma_prot); 257#define __HAVE_PHYS_MEM_ACCESS_PROT 258 259#ifdef CONFIG_HUGETLB_PAGE 260static inline int hugepd_ok(hugepd_t hpd) 261{ 262#ifdef CONFIG_PPC_8xx 263 return ((hpd_val(hpd) & _PMD_PAGE_MASK) == _PMD_PAGE_8M); 264#else 265 /* We clear the top bit to indicate hugepd */ 266 return (hpd_val(hpd) && (hpd_val(hpd) & PD_HUGE) == 0); 267#endif 268} 269 270static inline int pmd_huge(pmd_t pmd) 271{ 272 return 0; 273} 274 275static inline int pud_huge(pud_t pud) 276{ 277 return 0; 278} 279 280static inline int pgd_huge(pgd_t pgd) 281{ 282 return 0; 283} 284#define pgd_huge pgd_huge 285 286#define is_hugepd(hpd) (hugepd_ok(hpd)) 287#endif 288 289/* 290 * This gets called at the end of handling a page fault, when 291 * the kernel has put a new PTE into the page table for the process. 292 * We use it to ensure coherency between the i-cache and d-cache 293 * for the page which has just been mapped in. 294 */ 295#if defined(CONFIG_PPC_FSL_BOOK3E) && defined(CONFIG_HUGETLB_PAGE) 296void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep); 297#else 298static inline 299void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) {} 300#endif 301 302#endif /* __ASSEMBLY__ */ 303#endif