cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

eeh_cache.c (8007B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * PCI address cache; allows the lookup of PCI devices based on I/O address
      4 *
      5 * Copyright IBM Corporation 2004
      6 * Copyright Linas Vepstas <linas@austin.ibm.com> 2004
      7 */
      8
      9#include <linux/list.h>
     10#include <linux/pci.h>
     11#include <linux/rbtree.h>
     12#include <linux/slab.h>
     13#include <linux/spinlock.h>
     14#include <linux/atomic.h>
     15#include <linux/debugfs.h>
     16#include <asm/pci-bridge.h>
     17#include <asm/ppc-pci.h>
     18
     19
     20/**
     21 * DOC: Overview
     22 *
     23 * The pci address cache subsystem.  This subsystem places
     24 * PCI device address resources into a red-black tree, sorted
     25 * according to the address range, so that given only an i/o
     26 * address, the corresponding PCI device can be **quickly**
     27 * found. It is safe to perform an address lookup in an interrupt
     28 * context; this ability is an important feature.
     29 *
     30 * Currently, the only customer of this code is the EEH subsystem;
     31 * thus, this code has been somewhat tailored to suit EEH better.
     32 * In particular, the cache does *not* hold the addresses of devices
     33 * for which EEH is not enabled.
     34 *
     35 * (Implementation Note: The RB tree seems to be better/faster
     36 * than any hash algo I could think of for this problem, even
     37 * with the penalty of slow pointer chases for d-cache misses).
     38 */
     39
     40struct pci_io_addr_range {
     41	struct rb_node rb_node;
     42	resource_size_t addr_lo;
     43	resource_size_t addr_hi;
     44	struct eeh_dev *edev;
     45	struct pci_dev *pcidev;
     46	unsigned long flags;
     47};
     48
     49static struct pci_io_addr_cache {
     50	struct rb_root rb_root;
     51	spinlock_t piar_lock;
     52} pci_io_addr_cache_root;
     53
     54static inline struct eeh_dev *__eeh_addr_cache_get_device(unsigned long addr)
     55{
     56	struct rb_node *n = pci_io_addr_cache_root.rb_root.rb_node;
     57
     58	while (n) {
     59		struct pci_io_addr_range *piar;
     60		piar = rb_entry(n, struct pci_io_addr_range, rb_node);
     61
     62		if (addr < piar->addr_lo)
     63			n = n->rb_left;
     64		else if (addr > piar->addr_hi)
     65			n = n->rb_right;
     66		else
     67			return piar->edev;
     68	}
     69
     70	return NULL;
     71}
     72
     73/**
     74 * eeh_addr_cache_get_dev - Get device, given only address
     75 * @addr: mmio (PIO) phys address or i/o port number
     76 *
     77 * Given an mmio phys address, or a port number, find a pci device
     78 * that implements this address.  I/O port numbers are assumed to be offset
     79 * from zero (that is, they do *not* have pci_io_addr added in).
     80 * It is safe to call this function within an interrupt.
     81 */
     82struct eeh_dev *eeh_addr_cache_get_dev(unsigned long addr)
     83{
     84	struct eeh_dev *edev;
     85	unsigned long flags;
     86
     87	spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
     88	edev = __eeh_addr_cache_get_device(addr);
     89	spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
     90	return edev;
     91}
     92
     93#ifdef DEBUG
     94/*
     95 * Handy-dandy debug print routine, does nothing more
     96 * than print out the contents of our addr cache.
     97 */
     98static void eeh_addr_cache_print(struct pci_io_addr_cache *cache)
     99{
    100	struct rb_node *n;
    101	int cnt = 0;
    102
    103	n = rb_first(&cache->rb_root);
    104	while (n) {
    105		struct pci_io_addr_range *piar;
    106		piar = rb_entry(n, struct pci_io_addr_range, rb_node);
    107		pr_info("PCI: %s addr range %d [%pap-%pap]: %s\n",
    108		       (piar->flags & IORESOURCE_IO) ? "i/o" : "mem", cnt,
    109		       &piar->addr_lo, &piar->addr_hi, pci_name(piar->pcidev));
    110		cnt++;
    111		n = rb_next(n);
    112	}
    113}
    114#endif
    115
    116/* Insert address range into the rb tree. */
    117static struct pci_io_addr_range *
    118eeh_addr_cache_insert(struct pci_dev *dev, resource_size_t alo,
    119		      resource_size_t ahi, unsigned long flags)
    120{
    121	struct rb_node **p = &pci_io_addr_cache_root.rb_root.rb_node;
    122	struct rb_node *parent = NULL;
    123	struct pci_io_addr_range *piar;
    124
    125	/* Walk tree, find a place to insert into tree */
    126	while (*p) {
    127		parent = *p;
    128		piar = rb_entry(parent, struct pci_io_addr_range, rb_node);
    129		if (ahi < piar->addr_lo) {
    130			p = &parent->rb_left;
    131		} else if (alo > piar->addr_hi) {
    132			p = &parent->rb_right;
    133		} else {
    134			if (dev != piar->pcidev ||
    135			    alo != piar->addr_lo || ahi != piar->addr_hi) {
    136				pr_warn("PIAR: overlapping address range\n");
    137			}
    138			return piar;
    139		}
    140	}
    141	piar = kzalloc(sizeof(struct pci_io_addr_range), GFP_ATOMIC);
    142	if (!piar)
    143		return NULL;
    144
    145	piar->addr_lo = alo;
    146	piar->addr_hi = ahi;
    147	piar->edev = pci_dev_to_eeh_dev(dev);
    148	piar->pcidev = dev;
    149	piar->flags = flags;
    150
    151	eeh_edev_dbg(piar->edev, "PIAR: insert range=[%pap:%pap]\n",
    152		 &alo, &ahi);
    153
    154	rb_link_node(&piar->rb_node, parent, p);
    155	rb_insert_color(&piar->rb_node, &pci_io_addr_cache_root.rb_root);
    156
    157	return piar;
    158}
    159
    160static void __eeh_addr_cache_insert_dev(struct pci_dev *dev)
    161{
    162	struct eeh_dev *edev;
    163	int i;
    164
    165	edev = pci_dev_to_eeh_dev(dev);
    166	if (!edev) {
    167		pr_warn("PCI: no EEH dev found for %s\n",
    168			pci_name(dev));
    169		return;
    170	}
    171
    172	/* Skip any devices for which EEH is not enabled. */
    173	if (!edev->pe) {
    174		dev_dbg(&dev->dev, "EEH: Skip building address cache\n");
    175		return;
    176	}
    177
    178	/*
    179	 * Walk resources on this device, poke the first 7 (6 normal BAR and 1
    180	 * ROM BAR) into the tree.
    181	 */
    182	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
    183		resource_size_t start = pci_resource_start(dev,i);
    184		resource_size_t end = pci_resource_end(dev,i);
    185		unsigned long flags = pci_resource_flags(dev,i);
    186
    187		/* We are interested only bus addresses, not dma or other stuff */
    188		if (0 == (flags & (IORESOURCE_IO | IORESOURCE_MEM)))
    189			continue;
    190		if (start == 0 || ~start == 0 || end == 0 || ~end == 0)
    191			 continue;
    192		eeh_addr_cache_insert(dev, start, end, flags);
    193	}
    194}
    195
    196/**
    197 * eeh_addr_cache_insert_dev - Add a device to the address cache
    198 * @dev: PCI device whose I/O addresses we are interested in.
    199 *
    200 * In order to support the fast lookup of devices based on addresses,
    201 * we maintain a cache of devices that can be quickly searched.
    202 * This routine adds a device to that cache.
    203 */
    204void eeh_addr_cache_insert_dev(struct pci_dev *dev)
    205{
    206	unsigned long flags;
    207
    208	spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
    209	__eeh_addr_cache_insert_dev(dev);
    210	spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
    211}
    212
    213static inline void __eeh_addr_cache_rmv_dev(struct pci_dev *dev)
    214{
    215	struct rb_node *n;
    216
    217restart:
    218	n = rb_first(&pci_io_addr_cache_root.rb_root);
    219	while (n) {
    220		struct pci_io_addr_range *piar;
    221		piar = rb_entry(n, struct pci_io_addr_range, rb_node);
    222
    223		if (piar->pcidev == dev) {
    224			eeh_edev_dbg(piar->edev, "PIAR: remove range=[%pap:%pap]\n",
    225				 &piar->addr_lo, &piar->addr_hi);
    226			rb_erase(n, &pci_io_addr_cache_root.rb_root);
    227			kfree(piar);
    228			goto restart;
    229		}
    230		n = rb_next(n);
    231	}
    232}
    233
    234/**
    235 * eeh_addr_cache_rmv_dev - remove pci device from addr cache
    236 * @dev: device to remove
    237 *
    238 * Remove a device from the addr-cache tree.
    239 * This is potentially expensive, since it will walk
    240 * the tree multiple times (once per resource).
    241 * But so what; device removal doesn't need to be that fast.
    242 */
    243void eeh_addr_cache_rmv_dev(struct pci_dev *dev)
    244{
    245	unsigned long flags;
    246
    247	spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
    248	__eeh_addr_cache_rmv_dev(dev);
    249	spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
    250}
    251
    252/**
    253 * eeh_addr_cache_init - Initialize a cache of I/O addresses
    254 *
    255 * Initialize a cache of pci i/o addresses.  This cache will be used to
    256 * find the pci device that corresponds to a given address.
    257 */
    258void eeh_addr_cache_init(void)
    259{
    260	spin_lock_init(&pci_io_addr_cache_root.piar_lock);
    261}
    262
    263static int eeh_addr_cache_show(struct seq_file *s, void *v)
    264{
    265	struct pci_io_addr_range *piar;
    266	struct rb_node *n;
    267	unsigned long flags;
    268
    269	spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
    270	for (n = rb_first(&pci_io_addr_cache_root.rb_root); n; n = rb_next(n)) {
    271		piar = rb_entry(n, struct pci_io_addr_range, rb_node);
    272
    273		seq_printf(s, "%s addr range [%pap-%pap]: %s\n",
    274		       (piar->flags & IORESOURCE_IO) ? "i/o" : "mem",
    275		       &piar->addr_lo, &piar->addr_hi, pci_name(piar->pcidev));
    276	}
    277	spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
    278
    279	return 0;
    280}
    281DEFINE_SHOW_ATTRIBUTE(eeh_addr_cache);
    282
    283void __init eeh_cache_debugfs_init(void)
    284{
    285	debugfs_create_file_unsafe("eeh_address_cache", 0400,
    286			arch_debugfs_dir, NULL,
    287			&eeh_addr_cache_fops);
    288}