cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

fadump.c (44730B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
      4 * dump with assistance from firmware. This approach does not use kexec,
      5 * instead firmware assists in booting the kdump kernel while preserving
      6 * memory contents. The most of the code implementation has been adapted
      7 * from phyp assisted dump implementation written by Linas Vepstas and
      8 * Manish Ahuja
      9 *
     10 * Copyright 2011 IBM Corporation
     11 * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
     12 */
     13
     14#undef DEBUG
     15#define pr_fmt(fmt) "fadump: " fmt
     16
     17#include <linux/string.h>
     18#include <linux/memblock.h>
     19#include <linux/delay.h>
     20#include <linux/seq_file.h>
     21#include <linux/crash_dump.h>
     22#include <linux/kobject.h>
     23#include <linux/sysfs.h>
     24#include <linux/slab.h>
     25#include <linux/cma.h>
     26#include <linux/hugetlb.h>
     27#include <linux/debugfs.h>
     28#include <linux/of.h>
     29#include <linux/of_fdt.h>
     30
     31#include <asm/page.h>
     32#include <asm/fadump.h>
     33#include <asm/fadump-internal.h>
     34#include <asm/setup.h>
     35#include <asm/interrupt.h>
     36
     37/*
     38 * The CPU who acquired the lock to trigger the fadump crash should
     39 * wait for other CPUs to enter.
     40 *
     41 * The timeout is in milliseconds.
     42 */
     43#define CRASH_TIMEOUT		500
     44
     45static struct fw_dump fw_dump;
     46
     47static void __init fadump_reserve_crash_area(u64 base);
     48
     49#ifndef CONFIG_PRESERVE_FA_DUMP
     50
     51static struct kobject *fadump_kobj;
     52
     53static atomic_t cpus_in_fadump;
     54static DEFINE_MUTEX(fadump_mutex);
     55
     56static struct fadump_mrange_info crash_mrange_info = { "crash", NULL, 0, 0, 0, false };
     57
     58#define RESERVED_RNGS_SZ	16384 /* 16K - 128 entries */
     59#define RESERVED_RNGS_CNT	(RESERVED_RNGS_SZ / \
     60				 sizeof(struct fadump_memory_range))
     61static struct fadump_memory_range rngs[RESERVED_RNGS_CNT];
     62static struct fadump_mrange_info
     63reserved_mrange_info = { "reserved", rngs, RESERVED_RNGS_SZ, 0, RESERVED_RNGS_CNT, true };
     64
     65static void __init early_init_dt_scan_reserved_ranges(unsigned long node);
     66
     67#ifdef CONFIG_CMA
     68static struct cma *fadump_cma;
     69
     70/*
     71 * fadump_cma_init() - Initialize CMA area from a fadump reserved memory
     72 *
     73 * This function initializes CMA area from fadump reserved memory.
     74 * The total size of fadump reserved memory covers for boot memory size
     75 * + cpu data size + hpte size and metadata.
     76 * Initialize only the area equivalent to boot memory size for CMA use.
     77 * The remaining portion of fadump reserved memory will be not given
     78 * to CMA and pages for those will stay reserved. boot memory size is
     79 * aligned per CMA requirement to satisy cma_init_reserved_mem() call.
     80 * But for some reason even if it fails we still have the memory reservation
     81 * with us and we can still continue doing fadump.
     82 */
     83static int __init fadump_cma_init(void)
     84{
     85	unsigned long long base, size;
     86	int rc;
     87
     88	if (!fw_dump.fadump_enabled)
     89		return 0;
     90
     91	/*
     92	 * Do not use CMA if user has provided fadump=nocma kernel parameter.
     93	 * Return 1 to continue with fadump old behaviour.
     94	 */
     95	if (fw_dump.nocma)
     96		return 1;
     97
     98	base = fw_dump.reserve_dump_area_start;
     99	size = fw_dump.boot_memory_size;
    100
    101	if (!size)
    102		return 0;
    103
    104	rc = cma_init_reserved_mem(base, size, 0, "fadump_cma", &fadump_cma);
    105	if (rc) {
    106		pr_err("Failed to init cma area for firmware-assisted dump,%d\n", rc);
    107		/*
    108		 * Though the CMA init has failed we still have memory
    109		 * reservation with us. The reserved memory will be
    110		 * blocked from production system usage.  Hence return 1,
    111		 * so that we can continue with fadump.
    112		 */
    113		return 1;
    114	}
    115
    116	/*
    117	 *  If CMA activation fails, keep the pages reserved, instead of
    118	 *  exposing them to buddy allocator. Same as 'fadump=nocma' case.
    119	 */
    120	cma_reserve_pages_on_error(fadump_cma);
    121
    122	/*
    123	 * So we now have successfully initialized cma area for fadump.
    124	 */
    125	pr_info("Initialized 0x%lx bytes cma area at %ldMB from 0x%lx "
    126		"bytes of memory reserved for firmware-assisted dump\n",
    127		cma_get_size(fadump_cma),
    128		(unsigned long)cma_get_base(fadump_cma) >> 20,
    129		fw_dump.reserve_dump_area_size);
    130	return 1;
    131}
    132#else
    133static int __init fadump_cma_init(void) { return 1; }
    134#endif /* CONFIG_CMA */
    135
    136/* Scan the Firmware Assisted dump configuration details. */
    137int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
    138				      int depth, void *data)
    139{
    140	if (depth == 0) {
    141		early_init_dt_scan_reserved_ranges(node);
    142		return 0;
    143	}
    144
    145	if (depth != 1)
    146		return 0;
    147
    148	if (strcmp(uname, "rtas") == 0) {
    149		rtas_fadump_dt_scan(&fw_dump, node);
    150		return 1;
    151	}
    152
    153	if (strcmp(uname, "ibm,opal") == 0) {
    154		opal_fadump_dt_scan(&fw_dump, node);
    155		return 1;
    156	}
    157
    158	return 0;
    159}
    160
    161/*
    162 * If fadump is registered, check if the memory provided
    163 * falls within boot memory area and reserved memory area.
    164 */
    165int is_fadump_memory_area(u64 addr, unsigned long size)
    166{
    167	u64 d_start, d_end;
    168
    169	if (!fw_dump.dump_registered)
    170		return 0;
    171
    172	if (!size)
    173		return 0;
    174
    175	d_start = fw_dump.reserve_dump_area_start;
    176	d_end = d_start + fw_dump.reserve_dump_area_size;
    177	if (((addr + size) > d_start) && (addr <= d_end))
    178		return 1;
    179
    180	return (addr <= fw_dump.boot_mem_top);
    181}
    182
    183int should_fadump_crash(void)
    184{
    185	if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
    186		return 0;
    187	return 1;
    188}
    189
    190int is_fadump_active(void)
    191{
    192	return fw_dump.dump_active;
    193}
    194
    195/*
    196 * Returns true, if there are no holes in memory area between d_start to d_end,
    197 * false otherwise.
    198 */
    199static bool is_fadump_mem_area_contiguous(u64 d_start, u64 d_end)
    200{
    201	phys_addr_t reg_start, reg_end;
    202	bool ret = false;
    203	u64 i, start, end;
    204
    205	for_each_mem_range(i, &reg_start, &reg_end) {
    206		start = max_t(u64, d_start, reg_start);
    207		end = min_t(u64, d_end, reg_end);
    208		if (d_start < end) {
    209			/* Memory hole from d_start to start */
    210			if (start > d_start)
    211				break;
    212
    213			if (end == d_end) {
    214				ret = true;
    215				break;
    216			}
    217
    218			d_start = end + 1;
    219		}
    220	}
    221
    222	return ret;
    223}
    224
    225/*
    226 * Returns true, if there are no holes in boot memory area,
    227 * false otherwise.
    228 */
    229bool is_fadump_boot_mem_contiguous(void)
    230{
    231	unsigned long d_start, d_end;
    232	bool ret = false;
    233	int i;
    234
    235	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
    236		d_start = fw_dump.boot_mem_addr[i];
    237		d_end   = d_start + fw_dump.boot_mem_sz[i];
    238
    239		ret = is_fadump_mem_area_contiguous(d_start, d_end);
    240		if (!ret)
    241			break;
    242	}
    243
    244	return ret;
    245}
    246
    247/*
    248 * Returns true, if there are no holes in reserved memory area,
    249 * false otherwise.
    250 */
    251bool is_fadump_reserved_mem_contiguous(void)
    252{
    253	u64 d_start, d_end;
    254
    255	d_start	= fw_dump.reserve_dump_area_start;
    256	d_end	= d_start + fw_dump.reserve_dump_area_size;
    257	return is_fadump_mem_area_contiguous(d_start, d_end);
    258}
    259
    260/* Print firmware assisted dump configurations for debugging purpose. */
    261static void __init fadump_show_config(void)
    262{
    263	int i;
    264
    265	pr_debug("Support for firmware-assisted dump (fadump): %s\n",
    266			(fw_dump.fadump_supported ? "present" : "no support"));
    267
    268	if (!fw_dump.fadump_supported)
    269		return;
    270
    271	pr_debug("Fadump enabled    : %s\n",
    272				(fw_dump.fadump_enabled ? "yes" : "no"));
    273	pr_debug("Dump Active       : %s\n",
    274				(fw_dump.dump_active ? "yes" : "no"));
    275	pr_debug("Dump section sizes:\n");
    276	pr_debug("    CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
    277	pr_debug("    HPTE region size   : %lx\n", fw_dump.hpte_region_size);
    278	pr_debug("    Boot memory size   : %lx\n", fw_dump.boot_memory_size);
    279	pr_debug("    Boot memory top    : %llx\n", fw_dump.boot_mem_top);
    280	pr_debug("Boot memory regions cnt: %llx\n", fw_dump.boot_mem_regs_cnt);
    281	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
    282		pr_debug("[%03d] base = %llx, size = %llx\n", i,
    283			 fw_dump.boot_mem_addr[i], fw_dump.boot_mem_sz[i]);
    284	}
    285}
    286
    287/**
    288 * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
    289 *
    290 * Function to find the largest memory size we need to reserve during early
    291 * boot process. This will be the size of the memory that is required for a
    292 * kernel to boot successfully.
    293 *
    294 * This function has been taken from phyp-assisted dump feature implementation.
    295 *
    296 * returns larger of 256MB or 5% rounded down to multiples of 256MB.
    297 *
    298 * TODO: Come up with better approach to find out more accurate memory size
    299 * that is required for a kernel to boot successfully.
    300 *
    301 */
    302static __init u64 fadump_calculate_reserve_size(void)
    303{
    304	u64 base, size, bootmem_min;
    305	int ret;
    306
    307	if (fw_dump.reserve_bootvar)
    308		pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n");
    309
    310	/*
    311	 * Check if the size is specified through crashkernel= cmdline
    312	 * option. If yes, then use that but ignore base as fadump reserves
    313	 * memory at a predefined offset.
    314	 */
    315	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
    316				&size, &base);
    317	if (ret == 0 && size > 0) {
    318		unsigned long max_size;
    319
    320		if (fw_dump.reserve_bootvar)
    321			pr_info("Using 'crashkernel=' parameter for memory reservation.\n");
    322
    323		fw_dump.reserve_bootvar = (unsigned long)size;
    324
    325		/*
    326		 * Adjust if the boot memory size specified is above
    327		 * the upper limit.
    328		 */
    329		max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO;
    330		if (fw_dump.reserve_bootvar > max_size) {
    331			fw_dump.reserve_bootvar = max_size;
    332			pr_info("Adjusted boot memory size to %luMB\n",
    333				(fw_dump.reserve_bootvar >> 20));
    334		}
    335
    336		return fw_dump.reserve_bootvar;
    337	} else if (fw_dump.reserve_bootvar) {
    338		/*
    339		 * 'fadump_reserve_mem=' is being used to reserve memory
    340		 * for firmware-assisted dump.
    341		 */
    342		return fw_dump.reserve_bootvar;
    343	}
    344
    345	/* divide by 20 to get 5% of value */
    346	size = memblock_phys_mem_size() / 20;
    347
    348	/* round it down in multiples of 256 */
    349	size = size & ~0x0FFFFFFFUL;
    350
    351	/* Truncate to memory_limit. We don't want to over reserve the memory.*/
    352	if (memory_limit && size > memory_limit)
    353		size = memory_limit;
    354
    355	bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
    356	return (size > bootmem_min ? size : bootmem_min);
    357}
    358
    359/*
    360 * Calculate the total memory size required to be reserved for
    361 * firmware-assisted dump registration.
    362 */
    363static unsigned long __init get_fadump_area_size(void)
    364{
    365	unsigned long size = 0;
    366
    367	size += fw_dump.cpu_state_data_size;
    368	size += fw_dump.hpte_region_size;
    369	/*
    370	 * Account for pagesize alignment of boot memory area destination address.
    371	 * This faciliates in mmap reading of first kernel's memory.
    372	 */
    373	size = PAGE_ALIGN(size);
    374	size += fw_dump.boot_memory_size;
    375	size += sizeof(struct fadump_crash_info_header);
    376	size += sizeof(struct elfhdr); /* ELF core header.*/
    377	size += sizeof(struct elf_phdr); /* place holder for cpu notes */
    378	/* Program headers for crash memory regions. */
    379	size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2);
    380
    381	size = PAGE_ALIGN(size);
    382
    383	/* This is to hold kernel metadata on platforms that support it */
    384	size += (fw_dump.ops->fadump_get_metadata_size ?
    385		 fw_dump.ops->fadump_get_metadata_size() : 0);
    386	return size;
    387}
    388
    389static int __init add_boot_mem_region(unsigned long rstart,
    390				      unsigned long rsize)
    391{
    392	int i = fw_dump.boot_mem_regs_cnt++;
    393
    394	if (fw_dump.boot_mem_regs_cnt > FADUMP_MAX_MEM_REGS) {
    395		fw_dump.boot_mem_regs_cnt = FADUMP_MAX_MEM_REGS;
    396		return 0;
    397	}
    398
    399	pr_debug("Added boot memory range[%d] [%#016lx-%#016lx)\n",
    400		 i, rstart, (rstart + rsize));
    401	fw_dump.boot_mem_addr[i] = rstart;
    402	fw_dump.boot_mem_sz[i] = rsize;
    403	return 1;
    404}
    405
    406/*
    407 * Firmware usually has a hard limit on the data it can copy per region.
    408 * Honour that by splitting a memory range into multiple regions.
    409 */
    410static int __init add_boot_mem_regions(unsigned long mstart,
    411				       unsigned long msize)
    412{
    413	unsigned long rstart, rsize, max_size;
    414	int ret = 1;
    415
    416	rstart = mstart;
    417	max_size = fw_dump.max_copy_size ? fw_dump.max_copy_size : msize;
    418	while (msize) {
    419		if (msize > max_size)
    420			rsize = max_size;
    421		else
    422			rsize = msize;
    423
    424		ret = add_boot_mem_region(rstart, rsize);
    425		if (!ret)
    426			break;
    427
    428		msize -= rsize;
    429		rstart += rsize;
    430	}
    431
    432	return ret;
    433}
    434
    435static int __init fadump_get_boot_mem_regions(void)
    436{
    437	unsigned long size, cur_size, hole_size, last_end;
    438	unsigned long mem_size = fw_dump.boot_memory_size;
    439	phys_addr_t reg_start, reg_end;
    440	int ret = 1;
    441	u64 i;
    442
    443	fw_dump.boot_mem_regs_cnt = 0;
    444
    445	last_end = 0;
    446	hole_size = 0;
    447	cur_size = 0;
    448	for_each_mem_range(i, &reg_start, &reg_end) {
    449		size = reg_end - reg_start;
    450		hole_size += (reg_start - last_end);
    451
    452		if ((cur_size + size) >= mem_size) {
    453			size = (mem_size - cur_size);
    454			ret = add_boot_mem_regions(reg_start, size);
    455			break;
    456		}
    457
    458		mem_size -= size;
    459		cur_size += size;
    460		ret = add_boot_mem_regions(reg_start, size);
    461		if (!ret)
    462			break;
    463
    464		last_end = reg_end;
    465	}
    466	fw_dump.boot_mem_top = PAGE_ALIGN(fw_dump.boot_memory_size + hole_size);
    467
    468	return ret;
    469}
    470
    471/*
    472 * Returns true, if the given range overlaps with reserved memory ranges
    473 * starting at idx. Also, updates idx to index of overlapping memory range
    474 * with the given memory range.
    475 * False, otherwise.
    476 */
    477static bool __init overlaps_reserved_ranges(u64 base, u64 end, int *idx)
    478{
    479	bool ret = false;
    480	int i;
    481
    482	for (i = *idx; i < reserved_mrange_info.mem_range_cnt; i++) {
    483		u64 rbase = reserved_mrange_info.mem_ranges[i].base;
    484		u64 rend = rbase + reserved_mrange_info.mem_ranges[i].size;
    485
    486		if (end <= rbase)
    487			break;
    488
    489		if ((end > rbase) &&  (base < rend)) {
    490			*idx = i;
    491			ret = true;
    492			break;
    493		}
    494	}
    495
    496	return ret;
    497}
    498
    499/*
    500 * Locate a suitable memory area to reserve memory for FADump. While at it,
    501 * lookup reserved-ranges & avoid overlap with them, as they are used by F/W.
    502 */
    503static u64 __init fadump_locate_reserve_mem(u64 base, u64 size)
    504{
    505	struct fadump_memory_range *mrngs;
    506	phys_addr_t mstart, mend;
    507	int idx = 0;
    508	u64 i, ret = 0;
    509
    510	mrngs = reserved_mrange_info.mem_ranges;
    511	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
    512				&mstart, &mend, NULL) {
    513		pr_debug("%llu) mstart: %llx, mend: %llx, base: %llx\n",
    514			 i, mstart, mend, base);
    515
    516		if (mstart > base)
    517			base = PAGE_ALIGN(mstart);
    518
    519		while ((mend > base) && ((mend - base) >= size)) {
    520			if (!overlaps_reserved_ranges(base, base+size, &idx)) {
    521				ret = base;
    522				goto out;
    523			}
    524
    525			base = mrngs[idx].base + mrngs[idx].size;
    526			base = PAGE_ALIGN(base);
    527		}
    528	}
    529
    530out:
    531	return ret;
    532}
    533
    534int __init fadump_reserve_mem(void)
    535{
    536	u64 base, size, mem_boundary, bootmem_min;
    537	int ret = 1;
    538
    539	if (!fw_dump.fadump_enabled)
    540		return 0;
    541
    542	if (!fw_dump.fadump_supported) {
    543		pr_info("Firmware-Assisted Dump is not supported on this hardware\n");
    544		goto error_out;
    545	}
    546
    547	/*
    548	 * Initialize boot memory size
    549	 * If dump is active then we have already calculated the size during
    550	 * first kernel.
    551	 */
    552	if (!fw_dump.dump_active) {
    553		fw_dump.boot_memory_size =
    554			PAGE_ALIGN(fadump_calculate_reserve_size());
    555#ifdef CONFIG_CMA
    556		if (!fw_dump.nocma) {
    557			fw_dump.boot_memory_size =
    558				ALIGN(fw_dump.boot_memory_size,
    559				      CMA_MIN_ALIGNMENT_BYTES);
    560		}
    561#endif
    562
    563		bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
    564		if (fw_dump.boot_memory_size < bootmem_min) {
    565			pr_err("Can't enable fadump with boot memory size (0x%lx) less than 0x%llx\n",
    566			       fw_dump.boot_memory_size, bootmem_min);
    567			goto error_out;
    568		}
    569
    570		if (!fadump_get_boot_mem_regions()) {
    571			pr_err("Too many holes in boot memory area to enable fadump\n");
    572			goto error_out;
    573		}
    574	}
    575
    576	/*
    577	 * Calculate the memory boundary.
    578	 * If memory_limit is less than actual memory boundary then reserve
    579	 * the memory for fadump beyond the memory_limit and adjust the
    580	 * memory_limit accordingly, so that the running kernel can run with
    581	 * specified memory_limit.
    582	 */
    583	if (memory_limit && memory_limit < memblock_end_of_DRAM()) {
    584		size = get_fadump_area_size();
    585		if ((memory_limit + size) < memblock_end_of_DRAM())
    586			memory_limit += size;
    587		else
    588			memory_limit = memblock_end_of_DRAM();
    589		printk(KERN_INFO "Adjusted memory_limit for firmware-assisted"
    590				" dump, now %#016llx\n", memory_limit);
    591	}
    592	if (memory_limit)
    593		mem_boundary = memory_limit;
    594	else
    595		mem_boundary = memblock_end_of_DRAM();
    596
    597	base = fw_dump.boot_mem_top;
    598	size = get_fadump_area_size();
    599	fw_dump.reserve_dump_area_size = size;
    600	if (fw_dump.dump_active) {
    601		pr_info("Firmware-assisted dump is active.\n");
    602
    603#ifdef CONFIG_HUGETLB_PAGE
    604		/*
    605		 * FADump capture kernel doesn't care much about hugepages.
    606		 * In fact, handling hugepages in capture kernel is asking for
    607		 * trouble. So, disable HugeTLB support when fadump is active.
    608		 */
    609		hugetlb_disabled = true;
    610#endif
    611		/*
    612		 * If last boot has crashed then reserve all the memory
    613		 * above boot memory size so that we don't touch it until
    614		 * dump is written to disk by userspace tool. This memory
    615		 * can be released for general use by invalidating fadump.
    616		 */
    617		fadump_reserve_crash_area(base);
    618
    619		pr_debug("fadumphdr_addr = %#016lx\n", fw_dump.fadumphdr_addr);
    620		pr_debug("Reserve dump area start address: 0x%lx\n",
    621			 fw_dump.reserve_dump_area_start);
    622	} else {
    623		/*
    624		 * Reserve memory at an offset closer to bottom of the RAM to
    625		 * minimize the impact of memory hot-remove operation.
    626		 */
    627		base = fadump_locate_reserve_mem(base, size);
    628
    629		if (!base || (base + size > mem_boundary)) {
    630			pr_err("Failed to find memory chunk for reservation!\n");
    631			goto error_out;
    632		}
    633		fw_dump.reserve_dump_area_start = base;
    634
    635		/*
    636		 * Calculate the kernel metadata address and register it with
    637		 * f/w if the platform supports.
    638		 */
    639		if (fw_dump.ops->fadump_setup_metadata &&
    640		    (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
    641			goto error_out;
    642
    643		if (memblock_reserve(base, size)) {
    644			pr_err("Failed to reserve memory!\n");
    645			goto error_out;
    646		}
    647
    648		pr_info("Reserved %lldMB of memory at %#016llx (System RAM: %lldMB)\n",
    649			(size >> 20), base, (memblock_phys_mem_size() >> 20));
    650
    651		ret = fadump_cma_init();
    652	}
    653
    654	return ret;
    655error_out:
    656	fw_dump.fadump_enabled = 0;
    657	return 0;
    658}
    659
    660/* Look for fadump= cmdline option. */
    661static int __init early_fadump_param(char *p)
    662{
    663	if (!p)
    664		return 1;
    665
    666	if (strncmp(p, "on", 2) == 0)
    667		fw_dump.fadump_enabled = 1;
    668	else if (strncmp(p, "off", 3) == 0)
    669		fw_dump.fadump_enabled = 0;
    670	else if (strncmp(p, "nocma", 5) == 0) {
    671		fw_dump.fadump_enabled = 1;
    672		fw_dump.nocma = 1;
    673	}
    674
    675	return 0;
    676}
    677early_param("fadump", early_fadump_param);
    678
    679/*
    680 * Look for fadump_reserve_mem= cmdline option
    681 * TODO: Remove references to 'fadump_reserve_mem=' parameter,
    682 *       the sooner 'crashkernel=' parameter is accustomed to.
    683 */
    684static int __init early_fadump_reserve_mem(char *p)
    685{
    686	if (p)
    687		fw_dump.reserve_bootvar = memparse(p, &p);
    688	return 0;
    689}
    690early_param("fadump_reserve_mem", early_fadump_reserve_mem);
    691
    692void crash_fadump(struct pt_regs *regs, const char *str)
    693{
    694	unsigned int msecs;
    695	struct fadump_crash_info_header *fdh = NULL;
    696	int old_cpu, this_cpu;
    697	/* Do not include first CPU */
    698	unsigned int ncpus = num_online_cpus() - 1;
    699
    700	if (!should_fadump_crash())
    701		return;
    702
    703	/*
    704	 * old_cpu == -1 means this is the first CPU which has come here,
    705	 * go ahead and trigger fadump.
    706	 *
    707	 * old_cpu != -1 means some other CPU has already on it's way
    708	 * to trigger fadump, just keep looping here.
    709	 */
    710	this_cpu = smp_processor_id();
    711	old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu);
    712
    713	if (old_cpu != -1) {
    714		atomic_inc(&cpus_in_fadump);
    715
    716		/*
    717		 * We can't loop here indefinitely. Wait as long as fadump
    718		 * is in force. If we race with fadump un-registration this
    719		 * loop will break and then we go down to normal panic path
    720		 * and reboot. If fadump is in force the first crashing
    721		 * cpu will definitely trigger fadump.
    722		 */
    723		while (fw_dump.dump_registered)
    724			cpu_relax();
    725		return;
    726	}
    727
    728	fdh = __va(fw_dump.fadumphdr_addr);
    729	fdh->crashing_cpu = crashing_cpu;
    730	crash_save_vmcoreinfo();
    731
    732	if (regs)
    733		fdh->regs = *regs;
    734	else
    735		ppc_save_regs(&fdh->regs);
    736
    737	fdh->cpu_mask = *cpu_online_mask;
    738
    739	/*
    740	 * If we came in via system reset, wait a while for the secondary
    741	 * CPUs to enter.
    742	 */
    743	if (TRAP(&(fdh->regs)) == INTERRUPT_SYSTEM_RESET) {
    744		msecs = CRASH_TIMEOUT;
    745		while ((atomic_read(&cpus_in_fadump) < ncpus) && (--msecs > 0))
    746			mdelay(1);
    747	}
    748
    749	fw_dump.ops->fadump_trigger(fdh, str);
    750}
    751
    752u32 *__init fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
    753{
    754	struct elf_prstatus prstatus;
    755
    756	memset(&prstatus, 0, sizeof(prstatus));
    757	/*
    758	 * FIXME: How do i get PID? Do I really need it?
    759	 * prstatus.pr_pid = ????
    760	 */
    761	elf_core_copy_regs(&prstatus.pr_reg, regs);
    762	buf = append_elf_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS,
    763			      &prstatus, sizeof(prstatus));
    764	return buf;
    765}
    766
    767void __init fadump_update_elfcore_header(char *bufp)
    768{
    769	struct elf_phdr *phdr;
    770
    771	bufp += sizeof(struct elfhdr);
    772
    773	/* First note is a place holder for cpu notes info. */
    774	phdr = (struct elf_phdr *)bufp;
    775
    776	if (phdr->p_type == PT_NOTE) {
    777		phdr->p_paddr	= __pa(fw_dump.cpu_notes_buf_vaddr);
    778		phdr->p_offset	= phdr->p_paddr;
    779		phdr->p_filesz	= fw_dump.cpu_notes_buf_size;
    780		phdr->p_memsz = fw_dump.cpu_notes_buf_size;
    781	}
    782	return;
    783}
    784
    785static void *__init fadump_alloc_buffer(unsigned long size)
    786{
    787	unsigned long count, i;
    788	struct page *page;
    789	void *vaddr;
    790
    791	vaddr = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
    792	if (!vaddr)
    793		return NULL;
    794
    795	count = PAGE_ALIGN(size) / PAGE_SIZE;
    796	page = virt_to_page(vaddr);
    797	for (i = 0; i < count; i++)
    798		mark_page_reserved(page + i);
    799	return vaddr;
    800}
    801
    802static void fadump_free_buffer(unsigned long vaddr, unsigned long size)
    803{
    804	free_reserved_area((void *)vaddr, (void *)(vaddr + size), -1, NULL);
    805}
    806
    807s32 __init fadump_setup_cpu_notes_buf(u32 num_cpus)
    808{
    809	/* Allocate buffer to hold cpu crash notes. */
    810	fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
    811	fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
    812	fw_dump.cpu_notes_buf_vaddr =
    813		(unsigned long)fadump_alloc_buffer(fw_dump.cpu_notes_buf_size);
    814	if (!fw_dump.cpu_notes_buf_vaddr) {
    815		pr_err("Failed to allocate %ld bytes for CPU notes buffer\n",
    816		       fw_dump.cpu_notes_buf_size);
    817		return -ENOMEM;
    818	}
    819
    820	pr_debug("Allocated buffer for cpu notes of size %ld at 0x%lx\n",
    821		 fw_dump.cpu_notes_buf_size,
    822		 fw_dump.cpu_notes_buf_vaddr);
    823	return 0;
    824}
    825
    826void fadump_free_cpu_notes_buf(void)
    827{
    828	if (!fw_dump.cpu_notes_buf_vaddr)
    829		return;
    830
    831	fadump_free_buffer(fw_dump.cpu_notes_buf_vaddr,
    832			   fw_dump.cpu_notes_buf_size);
    833	fw_dump.cpu_notes_buf_vaddr = 0;
    834	fw_dump.cpu_notes_buf_size = 0;
    835}
    836
    837static void fadump_free_mem_ranges(struct fadump_mrange_info *mrange_info)
    838{
    839	if (mrange_info->is_static) {
    840		mrange_info->mem_range_cnt = 0;
    841		return;
    842	}
    843
    844	kfree(mrange_info->mem_ranges);
    845	memset((void *)((u64)mrange_info + RNG_NAME_SZ), 0,
    846	       (sizeof(struct fadump_mrange_info) - RNG_NAME_SZ));
    847}
    848
    849/*
    850 * Allocate or reallocate mem_ranges array in incremental units
    851 * of PAGE_SIZE.
    852 */
    853static int fadump_alloc_mem_ranges(struct fadump_mrange_info *mrange_info)
    854{
    855	struct fadump_memory_range *new_array;
    856	u64 new_size;
    857
    858	new_size = mrange_info->mem_ranges_sz + PAGE_SIZE;
    859	pr_debug("Allocating %llu bytes of memory for %s memory ranges\n",
    860		 new_size, mrange_info->name);
    861
    862	new_array = krealloc(mrange_info->mem_ranges, new_size, GFP_KERNEL);
    863	if (new_array == NULL) {
    864		pr_err("Insufficient memory for setting up %s memory ranges\n",
    865		       mrange_info->name);
    866		fadump_free_mem_ranges(mrange_info);
    867		return -ENOMEM;
    868	}
    869
    870	mrange_info->mem_ranges = new_array;
    871	mrange_info->mem_ranges_sz = new_size;
    872	mrange_info->max_mem_ranges = (new_size /
    873				       sizeof(struct fadump_memory_range));
    874	return 0;
    875}
    876static inline int fadump_add_mem_range(struct fadump_mrange_info *mrange_info,
    877				       u64 base, u64 end)
    878{
    879	struct fadump_memory_range *mem_ranges = mrange_info->mem_ranges;
    880	bool is_adjacent = false;
    881	u64 start, size;
    882
    883	if (base == end)
    884		return 0;
    885
    886	/*
    887	 * Fold adjacent memory ranges to bring down the memory ranges/
    888	 * PT_LOAD segments count.
    889	 */
    890	if (mrange_info->mem_range_cnt) {
    891		start = mem_ranges[mrange_info->mem_range_cnt - 1].base;
    892		size  = mem_ranges[mrange_info->mem_range_cnt - 1].size;
    893
    894		/*
    895		 * Boot memory area needs separate PT_LOAD segment(s) as it
    896		 * is moved to a different location at the time of crash.
    897		 * So, fold only if the region is not boot memory area.
    898		 */
    899		if ((start + size) == base && start >= fw_dump.boot_mem_top)
    900			is_adjacent = true;
    901	}
    902	if (!is_adjacent) {
    903		/* resize the array on reaching the limit */
    904		if (mrange_info->mem_range_cnt == mrange_info->max_mem_ranges) {
    905			int ret;
    906
    907			if (mrange_info->is_static) {
    908				pr_err("Reached array size limit for %s memory ranges\n",
    909				       mrange_info->name);
    910				return -ENOSPC;
    911			}
    912
    913			ret = fadump_alloc_mem_ranges(mrange_info);
    914			if (ret)
    915				return ret;
    916
    917			/* Update to the new resized array */
    918			mem_ranges = mrange_info->mem_ranges;
    919		}
    920
    921		start = base;
    922		mem_ranges[mrange_info->mem_range_cnt].base = start;
    923		mrange_info->mem_range_cnt++;
    924	}
    925
    926	mem_ranges[mrange_info->mem_range_cnt - 1].size = (end - start);
    927	pr_debug("%s_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
    928		 mrange_info->name, (mrange_info->mem_range_cnt - 1),
    929		 start, end - 1, (end - start));
    930	return 0;
    931}
    932
    933static int fadump_exclude_reserved_area(u64 start, u64 end)
    934{
    935	u64 ra_start, ra_end;
    936	int ret = 0;
    937
    938	ra_start = fw_dump.reserve_dump_area_start;
    939	ra_end = ra_start + fw_dump.reserve_dump_area_size;
    940
    941	if ((ra_start < end) && (ra_end > start)) {
    942		if ((start < ra_start) && (end > ra_end)) {
    943			ret = fadump_add_mem_range(&crash_mrange_info,
    944						   start, ra_start);
    945			if (ret)
    946				return ret;
    947
    948			ret = fadump_add_mem_range(&crash_mrange_info,
    949						   ra_end, end);
    950		} else if (start < ra_start) {
    951			ret = fadump_add_mem_range(&crash_mrange_info,
    952						   start, ra_start);
    953		} else if (ra_end < end) {
    954			ret = fadump_add_mem_range(&crash_mrange_info,
    955						   ra_end, end);
    956		}
    957	} else
    958		ret = fadump_add_mem_range(&crash_mrange_info, start, end);
    959
    960	return ret;
    961}
    962
    963static int fadump_init_elfcore_header(char *bufp)
    964{
    965	struct elfhdr *elf;
    966
    967	elf = (struct elfhdr *) bufp;
    968	bufp += sizeof(struct elfhdr);
    969	memcpy(elf->e_ident, ELFMAG, SELFMAG);
    970	elf->e_ident[EI_CLASS] = ELF_CLASS;
    971	elf->e_ident[EI_DATA] = ELF_DATA;
    972	elf->e_ident[EI_VERSION] = EV_CURRENT;
    973	elf->e_ident[EI_OSABI] = ELF_OSABI;
    974	memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
    975	elf->e_type = ET_CORE;
    976	elf->e_machine = ELF_ARCH;
    977	elf->e_version = EV_CURRENT;
    978	elf->e_entry = 0;
    979	elf->e_phoff = sizeof(struct elfhdr);
    980	elf->e_shoff = 0;
    981
    982	if (IS_ENABLED(CONFIG_PPC64_ELF_ABI_V2))
    983		elf->e_flags = 2;
    984	else if (IS_ENABLED(CONFIG_PPC64_ELF_ABI_V1))
    985		elf->e_flags = 1;
    986	else
    987		elf->e_flags = 0;
    988
    989	elf->e_ehsize = sizeof(struct elfhdr);
    990	elf->e_phentsize = sizeof(struct elf_phdr);
    991	elf->e_phnum = 0;
    992	elf->e_shentsize = 0;
    993	elf->e_shnum = 0;
    994	elf->e_shstrndx = 0;
    995
    996	return 0;
    997}
    998
    999/*
   1000 * Traverse through memblock structure and setup crash memory ranges. These
   1001 * ranges will be used create PT_LOAD program headers in elfcore header.
   1002 */
   1003static int fadump_setup_crash_memory_ranges(void)
   1004{
   1005	u64 i, start, end;
   1006	int ret;
   1007
   1008	pr_debug("Setup crash memory ranges.\n");
   1009	crash_mrange_info.mem_range_cnt = 0;
   1010
   1011	/*
   1012	 * Boot memory region(s) registered with firmware are moved to
   1013	 * different location at the time of crash. Create separate program
   1014	 * header(s) for this memory chunk(s) with the correct offset.
   1015	 */
   1016	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
   1017		start = fw_dump.boot_mem_addr[i];
   1018		end = start + fw_dump.boot_mem_sz[i];
   1019		ret = fadump_add_mem_range(&crash_mrange_info, start, end);
   1020		if (ret)
   1021			return ret;
   1022	}
   1023
   1024	for_each_mem_range(i, &start, &end) {
   1025		/*
   1026		 * skip the memory chunk that is already added
   1027		 * (0 through boot_memory_top).
   1028		 */
   1029		if (start < fw_dump.boot_mem_top) {
   1030			if (end > fw_dump.boot_mem_top)
   1031				start = fw_dump.boot_mem_top;
   1032			else
   1033				continue;
   1034		}
   1035
   1036		/* add this range excluding the reserved dump area. */
   1037		ret = fadump_exclude_reserved_area(start, end);
   1038		if (ret)
   1039			return ret;
   1040	}
   1041
   1042	return 0;
   1043}
   1044
   1045/*
   1046 * If the given physical address falls within the boot memory region then
   1047 * return the relocated address that points to the dump region reserved
   1048 * for saving initial boot memory contents.
   1049 */
   1050static inline unsigned long fadump_relocate(unsigned long paddr)
   1051{
   1052	unsigned long raddr, rstart, rend, rlast, hole_size;
   1053	int i;
   1054
   1055	hole_size = 0;
   1056	rlast = 0;
   1057	raddr = paddr;
   1058	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
   1059		rstart = fw_dump.boot_mem_addr[i];
   1060		rend = rstart + fw_dump.boot_mem_sz[i];
   1061		hole_size += (rstart - rlast);
   1062
   1063		if (paddr >= rstart && paddr < rend) {
   1064			raddr += fw_dump.boot_mem_dest_addr - hole_size;
   1065			break;
   1066		}
   1067
   1068		rlast = rend;
   1069	}
   1070
   1071	pr_debug("vmcoreinfo: paddr = 0x%lx, raddr = 0x%lx\n", paddr, raddr);
   1072	return raddr;
   1073}
   1074
   1075static int fadump_create_elfcore_headers(char *bufp)
   1076{
   1077	unsigned long long raddr, offset;
   1078	struct elf_phdr *phdr;
   1079	struct elfhdr *elf;
   1080	int i, j;
   1081
   1082	fadump_init_elfcore_header(bufp);
   1083	elf = (struct elfhdr *)bufp;
   1084	bufp += sizeof(struct elfhdr);
   1085
   1086	/*
   1087	 * setup ELF PT_NOTE, place holder for cpu notes info. The notes info
   1088	 * will be populated during second kernel boot after crash. Hence
   1089	 * this PT_NOTE will always be the first elf note.
   1090	 *
   1091	 * NOTE: Any new ELF note addition should be placed after this note.
   1092	 */
   1093	phdr = (struct elf_phdr *)bufp;
   1094	bufp += sizeof(struct elf_phdr);
   1095	phdr->p_type = PT_NOTE;
   1096	phdr->p_flags = 0;
   1097	phdr->p_vaddr = 0;
   1098	phdr->p_align = 0;
   1099
   1100	phdr->p_offset = 0;
   1101	phdr->p_paddr = 0;
   1102	phdr->p_filesz = 0;
   1103	phdr->p_memsz = 0;
   1104
   1105	(elf->e_phnum)++;
   1106
   1107	/* setup ELF PT_NOTE for vmcoreinfo */
   1108	phdr = (struct elf_phdr *)bufp;
   1109	bufp += sizeof(struct elf_phdr);
   1110	phdr->p_type	= PT_NOTE;
   1111	phdr->p_flags	= 0;
   1112	phdr->p_vaddr	= 0;
   1113	phdr->p_align	= 0;
   1114
   1115	phdr->p_paddr	= fadump_relocate(paddr_vmcoreinfo_note());
   1116	phdr->p_offset	= phdr->p_paddr;
   1117	phdr->p_memsz	= phdr->p_filesz = VMCOREINFO_NOTE_SIZE;
   1118
   1119	/* Increment number of program headers. */
   1120	(elf->e_phnum)++;
   1121
   1122	/* setup PT_LOAD sections. */
   1123	j = 0;
   1124	offset = 0;
   1125	raddr = fw_dump.boot_mem_addr[0];
   1126	for (i = 0; i < crash_mrange_info.mem_range_cnt; i++) {
   1127		u64 mbase, msize;
   1128
   1129		mbase = crash_mrange_info.mem_ranges[i].base;
   1130		msize = crash_mrange_info.mem_ranges[i].size;
   1131		if (!msize)
   1132			continue;
   1133
   1134		phdr = (struct elf_phdr *)bufp;
   1135		bufp += sizeof(struct elf_phdr);
   1136		phdr->p_type	= PT_LOAD;
   1137		phdr->p_flags	= PF_R|PF_W|PF_X;
   1138		phdr->p_offset	= mbase;
   1139
   1140		if (mbase == raddr) {
   1141			/*
   1142			 * The entire real memory region will be moved by
   1143			 * firmware to the specified destination_address.
   1144			 * Hence set the correct offset.
   1145			 */
   1146			phdr->p_offset = fw_dump.boot_mem_dest_addr + offset;
   1147			if (j < (fw_dump.boot_mem_regs_cnt - 1)) {
   1148				offset += fw_dump.boot_mem_sz[j];
   1149				raddr = fw_dump.boot_mem_addr[++j];
   1150			}
   1151		}
   1152
   1153		phdr->p_paddr = mbase;
   1154		phdr->p_vaddr = (unsigned long)__va(mbase);
   1155		phdr->p_filesz = msize;
   1156		phdr->p_memsz = msize;
   1157		phdr->p_align = 0;
   1158
   1159		/* Increment number of program headers. */
   1160		(elf->e_phnum)++;
   1161	}
   1162	return 0;
   1163}
   1164
   1165static unsigned long init_fadump_header(unsigned long addr)
   1166{
   1167	struct fadump_crash_info_header *fdh;
   1168
   1169	if (!addr)
   1170		return 0;
   1171
   1172	fdh = __va(addr);
   1173	addr += sizeof(struct fadump_crash_info_header);
   1174
   1175	memset(fdh, 0, sizeof(struct fadump_crash_info_header));
   1176	fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
   1177	fdh->elfcorehdr_addr = addr;
   1178	/* We will set the crashing cpu id in crash_fadump() during crash. */
   1179	fdh->crashing_cpu = FADUMP_CPU_UNKNOWN;
   1180	/*
   1181	 * When LPAR is terminated by PYHP, ensure all possible CPUs'
   1182	 * register data is processed while exporting the vmcore.
   1183	 */
   1184	fdh->cpu_mask = *cpu_possible_mask;
   1185
   1186	return addr;
   1187}
   1188
   1189static int register_fadump(void)
   1190{
   1191	unsigned long addr;
   1192	void *vaddr;
   1193	int ret;
   1194
   1195	/*
   1196	 * If no memory is reserved then we can not register for firmware-
   1197	 * assisted dump.
   1198	 */
   1199	if (!fw_dump.reserve_dump_area_size)
   1200		return -ENODEV;
   1201
   1202	ret = fadump_setup_crash_memory_ranges();
   1203	if (ret)
   1204		return ret;
   1205
   1206	addr = fw_dump.fadumphdr_addr;
   1207
   1208	/* Initialize fadump crash info header. */
   1209	addr = init_fadump_header(addr);
   1210	vaddr = __va(addr);
   1211
   1212	pr_debug("Creating ELF core headers at %#016lx\n", addr);
   1213	fadump_create_elfcore_headers(vaddr);
   1214
   1215	/* register the future kernel dump with firmware. */
   1216	pr_debug("Registering for firmware-assisted kernel dump...\n");
   1217	return fw_dump.ops->fadump_register(&fw_dump);
   1218}
   1219
   1220void fadump_cleanup(void)
   1221{
   1222	if (!fw_dump.fadump_supported)
   1223		return;
   1224
   1225	/* Invalidate the registration only if dump is active. */
   1226	if (fw_dump.dump_active) {
   1227		pr_debug("Invalidating firmware-assisted dump registration\n");
   1228		fw_dump.ops->fadump_invalidate(&fw_dump);
   1229	} else if (fw_dump.dump_registered) {
   1230		/* Un-register Firmware-assisted dump if it was registered. */
   1231		fw_dump.ops->fadump_unregister(&fw_dump);
   1232		fadump_free_mem_ranges(&crash_mrange_info);
   1233	}
   1234
   1235	if (fw_dump.ops->fadump_cleanup)
   1236		fw_dump.ops->fadump_cleanup(&fw_dump);
   1237}
   1238
   1239static void fadump_free_reserved_memory(unsigned long start_pfn,
   1240					unsigned long end_pfn)
   1241{
   1242	unsigned long pfn;
   1243	unsigned long time_limit = jiffies + HZ;
   1244
   1245	pr_info("freeing reserved memory (0x%llx - 0x%llx)\n",
   1246		PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
   1247
   1248	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
   1249		free_reserved_page(pfn_to_page(pfn));
   1250
   1251		if (time_after(jiffies, time_limit)) {
   1252			cond_resched();
   1253			time_limit = jiffies + HZ;
   1254		}
   1255	}
   1256}
   1257
   1258/*
   1259 * Skip memory holes and free memory that was actually reserved.
   1260 */
   1261static void fadump_release_reserved_area(u64 start, u64 end)
   1262{
   1263	unsigned long reg_spfn, reg_epfn;
   1264	u64 tstart, tend, spfn, epfn;
   1265	int i;
   1266
   1267	spfn = PHYS_PFN(start);
   1268	epfn = PHYS_PFN(end);
   1269
   1270	for_each_mem_pfn_range(i, MAX_NUMNODES, &reg_spfn, &reg_epfn, NULL) {
   1271		tstart = max_t(u64, spfn, reg_spfn);
   1272		tend   = min_t(u64, epfn, reg_epfn);
   1273
   1274		if (tstart < tend) {
   1275			fadump_free_reserved_memory(tstart, tend);
   1276
   1277			if (tend == epfn)
   1278				break;
   1279
   1280			spfn = tend;
   1281		}
   1282	}
   1283}
   1284
   1285/*
   1286 * Sort the mem ranges in-place and merge adjacent ranges
   1287 * to minimize the memory ranges count.
   1288 */
   1289static void sort_and_merge_mem_ranges(struct fadump_mrange_info *mrange_info)
   1290{
   1291	struct fadump_memory_range *mem_ranges;
   1292	u64 base, size;
   1293	int i, j, idx;
   1294
   1295	if (!reserved_mrange_info.mem_range_cnt)
   1296		return;
   1297
   1298	/* Sort the memory ranges */
   1299	mem_ranges = mrange_info->mem_ranges;
   1300	for (i = 0; i < mrange_info->mem_range_cnt; i++) {
   1301		idx = i;
   1302		for (j = (i + 1); j < mrange_info->mem_range_cnt; j++) {
   1303			if (mem_ranges[idx].base > mem_ranges[j].base)
   1304				idx = j;
   1305		}
   1306		if (idx != i)
   1307			swap(mem_ranges[idx], mem_ranges[i]);
   1308	}
   1309
   1310	/* Merge adjacent reserved ranges */
   1311	idx = 0;
   1312	for (i = 1; i < mrange_info->mem_range_cnt; i++) {
   1313		base = mem_ranges[i-1].base;
   1314		size = mem_ranges[i-1].size;
   1315		if (mem_ranges[i].base == (base + size))
   1316			mem_ranges[idx].size += mem_ranges[i].size;
   1317		else {
   1318			idx++;
   1319			if (i == idx)
   1320				continue;
   1321
   1322			mem_ranges[idx] = mem_ranges[i];
   1323		}
   1324	}
   1325	mrange_info->mem_range_cnt = idx + 1;
   1326}
   1327
   1328/*
   1329 * Scan reserved-ranges to consider them while reserving/releasing
   1330 * memory for FADump.
   1331 */
   1332static void __init early_init_dt_scan_reserved_ranges(unsigned long node)
   1333{
   1334	const __be32 *prop;
   1335	int len, ret = -1;
   1336	unsigned long i;
   1337
   1338	/* reserved-ranges already scanned */
   1339	if (reserved_mrange_info.mem_range_cnt != 0)
   1340		return;
   1341
   1342	prop = of_get_flat_dt_prop(node, "reserved-ranges", &len);
   1343	if (!prop)
   1344		return;
   1345
   1346	/*
   1347	 * Each reserved range is an (address,size) pair, 2 cells each,
   1348	 * totalling 4 cells per range.
   1349	 */
   1350	for (i = 0; i < len / (sizeof(*prop) * 4); i++) {
   1351		u64 base, size;
   1352
   1353		base = of_read_number(prop + (i * 4) + 0, 2);
   1354		size = of_read_number(prop + (i * 4) + 2, 2);
   1355
   1356		if (size) {
   1357			ret = fadump_add_mem_range(&reserved_mrange_info,
   1358						   base, base + size);
   1359			if (ret < 0) {
   1360				pr_warn("some reserved ranges are ignored!\n");
   1361				break;
   1362			}
   1363		}
   1364	}
   1365
   1366	/* Compact reserved ranges */
   1367	sort_and_merge_mem_ranges(&reserved_mrange_info);
   1368}
   1369
   1370/*
   1371 * Release the memory that was reserved during early boot to preserve the
   1372 * crash'ed kernel's memory contents except reserved dump area (permanent
   1373 * reservation) and reserved ranges used by F/W. The released memory will
   1374 * be available for general use.
   1375 */
   1376static void fadump_release_memory(u64 begin, u64 end)
   1377{
   1378	u64 ra_start, ra_end, tstart;
   1379	int i, ret;
   1380
   1381	ra_start = fw_dump.reserve_dump_area_start;
   1382	ra_end = ra_start + fw_dump.reserve_dump_area_size;
   1383
   1384	/*
   1385	 * If reserved ranges array limit is hit, overwrite the last reserved
   1386	 * memory range with reserved dump area to ensure it is excluded from
   1387	 * the memory being released (reused for next FADump registration).
   1388	 */
   1389	if (reserved_mrange_info.mem_range_cnt ==
   1390	    reserved_mrange_info.max_mem_ranges)
   1391		reserved_mrange_info.mem_range_cnt--;
   1392
   1393	ret = fadump_add_mem_range(&reserved_mrange_info, ra_start, ra_end);
   1394	if (ret != 0)
   1395		return;
   1396
   1397	/* Get the reserved ranges list in order first. */
   1398	sort_and_merge_mem_ranges(&reserved_mrange_info);
   1399
   1400	/* Exclude reserved ranges and release remaining memory */
   1401	tstart = begin;
   1402	for (i = 0; i < reserved_mrange_info.mem_range_cnt; i++) {
   1403		ra_start = reserved_mrange_info.mem_ranges[i].base;
   1404		ra_end = ra_start + reserved_mrange_info.mem_ranges[i].size;
   1405
   1406		if (tstart >= ra_end)
   1407			continue;
   1408
   1409		if (tstart < ra_start)
   1410			fadump_release_reserved_area(tstart, ra_start);
   1411		tstart = ra_end;
   1412	}
   1413
   1414	if (tstart < end)
   1415		fadump_release_reserved_area(tstart, end);
   1416}
   1417
   1418static void fadump_invalidate_release_mem(void)
   1419{
   1420	mutex_lock(&fadump_mutex);
   1421	if (!fw_dump.dump_active) {
   1422		mutex_unlock(&fadump_mutex);
   1423		return;
   1424	}
   1425
   1426	fadump_cleanup();
   1427	mutex_unlock(&fadump_mutex);
   1428
   1429	fadump_release_memory(fw_dump.boot_mem_top, memblock_end_of_DRAM());
   1430	fadump_free_cpu_notes_buf();
   1431
   1432	/*
   1433	 * Setup kernel metadata and initialize the kernel dump
   1434	 * memory structure for FADump re-registration.
   1435	 */
   1436	if (fw_dump.ops->fadump_setup_metadata &&
   1437	    (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
   1438		pr_warn("Failed to setup kernel metadata!\n");
   1439	fw_dump.ops->fadump_init_mem_struct(&fw_dump);
   1440}
   1441
   1442static ssize_t release_mem_store(struct kobject *kobj,
   1443				 struct kobj_attribute *attr,
   1444				 const char *buf, size_t count)
   1445{
   1446	int input = -1;
   1447
   1448	if (!fw_dump.dump_active)
   1449		return -EPERM;
   1450
   1451	if (kstrtoint(buf, 0, &input))
   1452		return -EINVAL;
   1453
   1454	if (input == 1) {
   1455		/*
   1456		 * Take away the '/proc/vmcore'. We are releasing the dump
   1457		 * memory, hence it will not be valid anymore.
   1458		 */
   1459#ifdef CONFIG_PROC_VMCORE
   1460		vmcore_cleanup();
   1461#endif
   1462		fadump_invalidate_release_mem();
   1463
   1464	} else
   1465		return -EINVAL;
   1466	return count;
   1467}
   1468
   1469/* Release the reserved memory and disable the FADump */
   1470static void __init unregister_fadump(void)
   1471{
   1472	fadump_cleanup();
   1473	fadump_release_memory(fw_dump.reserve_dump_area_start,
   1474			      fw_dump.reserve_dump_area_size);
   1475	fw_dump.fadump_enabled = 0;
   1476	kobject_put(fadump_kobj);
   1477}
   1478
   1479static ssize_t enabled_show(struct kobject *kobj,
   1480			    struct kobj_attribute *attr,
   1481			    char *buf)
   1482{
   1483	return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
   1484}
   1485
   1486static ssize_t mem_reserved_show(struct kobject *kobj,
   1487				 struct kobj_attribute *attr,
   1488				 char *buf)
   1489{
   1490	return sprintf(buf, "%ld\n", fw_dump.reserve_dump_area_size);
   1491}
   1492
   1493static ssize_t registered_show(struct kobject *kobj,
   1494			       struct kobj_attribute *attr,
   1495			       char *buf)
   1496{
   1497	return sprintf(buf, "%d\n", fw_dump.dump_registered);
   1498}
   1499
   1500static ssize_t registered_store(struct kobject *kobj,
   1501				struct kobj_attribute *attr,
   1502				const char *buf, size_t count)
   1503{
   1504	int ret = 0;
   1505	int input = -1;
   1506
   1507	if (!fw_dump.fadump_enabled || fw_dump.dump_active)
   1508		return -EPERM;
   1509
   1510	if (kstrtoint(buf, 0, &input))
   1511		return -EINVAL;
   1512
   1513	mutex_lock(&fadump_mutex);
   1514
   1515	switch (input) {
   1516	case 0:
   1517		if (fw_dump.dump_registered == 0) {
   1518			goto unlock_out;
   1519		}
   1520
   1521		/* Un-register Firmware-assisted dump */
   1522		pr_debug("Un-register firmware-assisted dump\n");
   1523		fw_dump.ops->fadump_unregister(&fw_dump);
   1524		break;
   1525	case 1:
   1526		if (fw_dump.dump_registered == 1) {
   1527			/* Un-register Firmware-assisted dump */
   1528			fw_dump.ops->fadump_unregister(&fw_dump);
   1529		}
   1530		/* Register Firmware-assisted dump */
   1531		ret = register_fadump();
   1532		break;
   1533	default:
   1534		ret = -EINVAL;
   1535		break;
   1536	}
   1537
   1538unlock_out:
   1539	mutex_unlock(&fadump_mutex);
   1540	return ret < 0 ? ret : count;
   1541}
   1542
   1543static int fadump_region_show(struct seq_file *m, void *private)
   1544{
   1545	if (!fw_dump.fadump_enabled)
   1546		return 0;
   1547
   1548	mutex_lock(&fadump_mutex);
   1549	fw_dump.ops->fadump_region_show(&fw_dump, m);
   1550	mutex_unlock(&fadump_mutex);
   1551	return 0;
   1552}
   1553
   1554static struct kobj_attribute release_attr = __ATTR_WO(release_mem);
   1555static struct kobj_attribute enable_attr = __ATTR_RO(enabled);
   1556static struct kobj_attribute register_attr = __ATTR_RW(registered);
   1557static struct kobj_attribute mem_reserved_attr = __ATTR_RO(mem_reserved);
   1558
   1559static struct attribute *fadump_attrs[] = {
   1560	&enable_attr.attr,
   1561	&register_attr.attr,
   1562	&mem_reserved_attr.attr,
   1563	NULL,
   1564};
   1565
   1566ATTRIBUTE_GROUPS(fadump);
   1567
   1568DEFINE_SHOW_ATTRIBUTE(fadump_region);
   1569
   1570static void __init fadump_init_files(void)
   1571{
   1572	int rc = 0;
   1573
   1574	fadump_kobj = kobject_create_and_add("fadump", kernel_kobj);
   1575	if (!fadump_kobj) {
   1576		pr_err("failed to create fadump kobject\n");
   1577		return;
   1578	}
   1579
   1580	debugfs_create_file("fadump_region", 0444, arch_debugfs_dir, NULL,
   1581			    &fadump_region_fops);
   1582
   1583	if (fw_dump.dump_active) {
   1584		rc = sysfs_create_file(fadump_kobj, &release_attr.attr);
   1585		if (rc)
   1586			pr_err("unable to create release_mem sysfs file (%d)\n",
   1587			       rc);
   1588	}
   1589
   1590	rc = sysfs_create_groups(fadump_kobj, fadump_groups);
   1591	if (rc) {
   1592		pr_err("sysfs group creation failed (%d), unregistering FADump",
   1593		       rc);
   1594		unregister_fadump();
   1595		return;
   1596	}
   1597
   1598	/*
   1599	 * The FADump sysfs are moved from kernel_kobj to fadump_kobj need to
   1600	 * create symlink at old location to maintain backward compatibility.
   1601	 *
   1602	 *      - fadump_enabled -> fadump/enabled
   1603	 *      - fadump_registered -> fadump/registered
   1604	 *      - fadump_release_mem -> fadump/release_mem
   1605	 */
   1606	rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj,
   1607						  "enabled", "fadump_enabled");
   1608	if (rc) {
   1609		pr_err("unable to create fadump_enabled symlink (%d)", rc);
   1610		return;
   1611	}
   1612
   1613	rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj,
   1614						  "registered",
   1615						  "fadump_registered");
   1616	if (rc) {
   1617		pr_err("unable to create fadump_registered symlink (%d)", rc);
   1618		sysfs_remove_link(kernel_kobj, "fadump_enabled");
   1619		return;
   1620	}
   1621
   1622	if (fw_dump.dump_active) {
   1623		rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj,
   1624							  fadump_kobj,
   1625							  "release_mem",
   1626							  "fadump_release_mem");
   1627		if (rc)
   1628			pr_err("unable to create fadump_release_mem symlink (%d)",
   1629			       rc);
   1630	}
   1631	return;
   1632}
   1633
   1634/*
   1635 * Prepare for firmware-assisted dump.
   1636 */
   1637int __init setup_fadump(void)
   1638{
   1639	if (!fw_dump.fadump_supported)
   1640		return 0;
   1641
   1642	fadump_init_files();
   1643	fadump_show_config();
   1644
   1645	if (!fw_dump.fadump_enabled)
   1646		return 1;
   1647
   1648	/*
   1649	 * If dump data is available then see if it is valid and prepare for
   1650	 * saving it to the disk.
   1651	 */
   1652	if (fw_dump.dump_active) {
   1653		/*
   1654		 * if dump process fails then invalidate the registration
   1655		 * and release memory before proceeding for re-registration.
   1656		 */
   1657		if (fw_dump.ops->fadump_process(&fw_dump) < 0)
   1658			fadump_invalidate_release_mem();
   1659	}
   1660	/* Initialize the kernel dump memory structure and register with f/w */
   1661	else if (fw_dump.reserve_dump_area_size) {
   1662		fw_dump.ops->fadump_init_mem_struct(&fw_dump);
   1663		register_fadump();
   1664	}
   1665
   1666	/*
   1667	 * In case of panic, fadump is triggered via ppc_panic_event()
   1668	 * panic notifier. Setting crash_kexec_post_notifiers to 'true'
   1669	 * lets panic() function take crash friendly path before panic
   1670	 * notifiers are invoked.
   1671	 */
   1672	crash_kexec_post_notifiers = true;
   1673
   1674	return 1;
   1675}
   1676/*
   1677 * Use subsys_initcall_sync() here because there is dependency with
   1678 * crash_save_vmcoreinfo_init(), which must run first to ensure vmcoreinfo initialization
   1679 * is done before registering with f/w.
   1680 */
   1681subsys_initcall_sync(setup_fadump);
   1682#else /* !CONFIG_PRESERVE_FA_DUMP */
   1683
   1684/* Scan the Firmware Assisted dump configuration details. */
   1685int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
   1686				      int depth, void *data)
   1687{
   1688	if ((depth != 1) || (strcmp(uname, "ibm,opal") != 0))
   1689		return 0;
   1690
   1691	opal_fadump_dt_scan(&fw_dump, node);
   1692	return 1;
   1693}
   1694
   1695/*
   1696 * When dump is active but PRESERVE_FA_DUMP is enabled on the kernel,
   1697 * preserve crash data. The subsequent memory preserving kernel boot
   1698 * is likely to process this crash data.
   1699 */
   1700int __init fadump_reserve_mem(void)
   1701{
   1702	if (fw_dump.dump_active) {
   1703		/*
   1704		 * If last boot has crashed then reserve all the memory
   1705		 * above boot memory to preserve crash data.
   1706		 */
   1707		pr_info("Preserving crash data for processing in next boot.\n");
   1708		fadump_reserve_crash_area(fw_dump.boot_mem_top);
   1709	} else
   1710		pr_debug("FADump-aware kernel..\n");
   1711
   1712	return 1;
   1713}
   1714#endif /* CONFIG_PRESERVE_FA_DUMP */
   1715
   1716/* Preserve everything above the base address */
   1717static void __init fadump_reserve_crash_area(u64 base)
   1718{
   1719	u64 i, mstart, mend, msize;
   1720
   1721	for_each_mem_range(i, &mstart, &mend) {
   1722		msize  = mend - mstart;
   1723
   1724		if ((mstart + msize) < base)
   1725			continue;
   1726
   1727		if (mstart < base) {
   1728			msize -= (base - mstart);
   1729			mstart = base;
   1730		}
   1731
   1732		pr_info("Reserving %lluMB of memory at %#016llx for preserving crash data",
   1733			(msize >> 20), mstart);
   1734		memblock_reserve(mstart, msize);
   1735	}
   1736}
   1737
   1738unsigned long __init arch_reserved_kernel_pages(void)
   1739{
   1740	return memblock_reserved_size() / PAGE_SIZE;
   1741}