cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

process.c (59938B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 *  Derived from "arch/i386/kernel/process.c"
      4 *    Copyright (C) 1995  Linus Torvalds
      5 *
      6 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
      7 *  Paul Mackerras (paulus@cs.anu.edu.au)
      8 *
      9 *  PowerPC version
     10 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
     11 */
     12
     13#include <linux/errno.h>
     14#include <linux/sched.h>
     15#include <linux/sched/debug.h>
     16#include <linux/sched/task.h>
     17#include <linux/sched/task_stack.h>
     18#include <linux/kernel.h>
     19#include <linux/mm.h>
     20#include <linux/smp.h>
     21#include <linux/stddef.h>
     22#include <linux/unistd.h>
     23#include <linux/ptrace.h>
     24#include <linux/slab.h>
     25#include <linux/user.h>
     26#include <linux/elf.h>
     27#include <linux/prctl.h>
     28#include <linux/init_task.h>
     29#include <linux/export.h>
     30#include <linux/kallsyms.h>
     31#include <linux/mqueue.h>
     32#include <linux/hardirq.h>
     33#include <linux/utsname.h>
     34#include <linux/ftrace.h>
     35#include <linux/kernel_stat.h>
     36#include <linux/personality.h>
     37#include <linux/hw_breakpoint.h>
     38#include <linux/uaccess.h>
     39#include <linux/pkeys.h>
     40#include <linux/seq_buf.h>
     41
     42#include <asm/interrupt.h>
     43#include <asm/io.h>
     44#include <asm/processor.h>
     45#include <asm/mmu.h>
     46#include <asm/machdep.h>
     47#include <asm/time.h>
     48#include <asm/runlatch.h>
     49#include <asm/syscalls.h>
     50#include <asm/switch_to.h>
     51#include <asm/tm.h>
     52#include <asm/debug.h>
     53#ifdef CONFIG_PPC64
     54#include <asm/firmware.h>
     55#include <asm/hw_irq.h>
     56#endif
     57#include <asm/code-patching.h>
     58#include <asm/exec.h>
     59#include <asm/livepatch.h>
     60#include <asm/cpu_has_feature.h>
     61#include <asm/asm-prototypes.h>
     62#include <asm/stacktrace.h>
     63#include <asm/hw_breakpoint.h>
     64
     65#include <linux/kprobes.h>
     66#include <linux/kdebug.h>
     67
     68/* Transactional Memory debug */
     69#ifdef TM_DEBUG_SW
     70#define TM_DEBUG(x...) printk(KERN_INFO x)
     71#else
     72#define TM_DEBUG(x...) do { } while(0)
     73#endif
     74
     75extern unsigned long _get_SP(void);
     76
     77#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
     78/*
     79 * Are we running in "Suspend disabled" mode? If so we have to block any
     80 * sigreturn that would get us into suspended state, and we also warn in some
     81 * other paths that we should never reach with suspend disabled.
     82 */
     83bool tm_suspend_disabled __ro_after_init = false;
     84
     85static void check_if_tm_restore_required(struct task_struct *tsk)
     86{
     87	/*
     88	 * If we are saving the current thread's registers, and the
     89	 * thread is in a transactional state, set the TIF_RESTORE_TM
     90	 * bit so that we know to restore the registers before
     91	 * returning to userspace.
     92	 */
     93	if (tsk == current && tsk->thread.regs &&
     94	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
     95	    !test_thread_flag(TIF_RESTORE_TM)) {
     96		regs_set_return_msr(&tsk->thread.ckpt_regs,
     97						tsk->thread.regs->msr);
     98		set_thread_flag(TIF_RESTORE_TM);
     99	}
    100}
    101
    102#else
    103static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
    104#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
    105
    106bool strict_msr_control;
    107EXPORT_SYMBOL(strict_msr_control);
    108
    109static int __init enable_strict_msr_control(char *str)
    110{
    111	strict_msr_control = true;
    112	pr_info("Enabling strict facility control\n");
    113
    114	return 0;
    115}
    116early_param("ppc_strict_facility_enable", enable_strict_msr_control);
    117
    118/* notrace because it's called by restore_math */
    119unsigned long notrace msr_check_and_set(unsigned long bits)
    120{
    121	unsigned long oldmsr = mfmsr();
    122	unsigned long newmsr;
    123
    124	newmsr = oldmsr | bits;
    125
    126	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
    127		newmsr |= MSR_VSX;
    128
    129	if (oldmsr != newmsr)
    130		mtmsr_isync(newmsr);
    131
    132	return newmsr;
    133}
    134EXPORT_SYMBOL_GPL(msr_check_and_set);
    135
    136/* notrace because it's called by restore_math */
    137void notrace __msr_check_and_clear(unsigned long bits)
    138{
    139	unsigned long oldmsr = mfmsr();
    140	unsigned long newmsr;
    141
    142	newmsr = oldmsr & ~bits;
    143
    144	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
    145		newmsr &= ~MSR_VSX;
    146
    147	if (oldmsr != newmsr)
    148		mtmsr_isync(newmsr);
    149}
    150EXPORT_SYMBOL(__msr_check_and_clear);
    151
    152#ifdef CONFIG_PPC_FPU
    153static void __giveup_fpu(struct task_struct *tsk)
    154{
    155	unsigned long msr;
    156
    157	save_fpu(tsk);
    158	msr = tsk->thread.regs->msr;
    159	msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
    160	if (cpu_has_feature(CPU_FTR_VSX))
    161		msr &= ~MSR_VSX;
    162	regs_set_return_msr(tsk->thread.regs, msr);
    163}
    164
    165void giveup_fpu(struct task_struct *tsk)
    166{
    167	check_if_tm_restore_required(tsk);
    168
    169	msr_check_and_set(MSR_FP);
    170	__giveup_fpu(tsk);
    171	msr_check_and_clear(MSR_FP);
    172}
    173EXPORT_SYMBOL(giveup_fpu);
    174
    175/*
    176 * Make sure the floating-point register state in the
    177 * the thread_struct is up to date for task tsk.
    178 */
    179void flush_fp_to_thread(struct task_struct *tsk)
    180{
    181	if (tsk->thread.regs) {
    182		/*
    183		 * We need to disable preemption here because if we didn't,
    184		 * another process could get scheduled after the regs->msr
    185		 * test but before we have finished saving the FP registers
    186		 * to the thread_struct.  That process could take over the
    187		 * FPU, and then when we get scheduled again we would store
    188		 * bogus values for the remaining FP registers.
    189		 */
    190		preempt_disable();
    191		if (tsk->thread.regs->msr & MSR_FP) {
    192			/*
    193			 * This should only ever be called for current or
    194			 * for a stopped child process.  Since we save away
    195			 * the FP register state on context switch,
    196			 * there is something wrong if a stopped child appears
    197			 * to still have its FP state in the CPU registers.
    198			 */
    199			BUG_ON(tsk != current);
    200			giveup_fpu(tsk);
    201		}
    202		preempt_enable();
    203	}
    204}
    205EXPORT_SYMBOL_GPL(flush_fp_to_thread);
    206
    207void enable_kernel_fp(void)
    208{
    209	unsigned long cpumsr;
    210
    211	WARN_ON(preemptible());
    212
    213	cpumsr = msr_check_and_set(MSR_FP);
    214
    215	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
    216		check_if_tm_restore_required(current);
    217		/*
    218		 * If a thread has already been reclaimed then the
    219		 * checkpointed registers are on the CPU but have definitely
    220		 * been saved by the reclaim code. Don't need to and *cannot*
    221		 * giveup as this would save  to the 'live' structure not the
    222		 * checkpointed structure.
    223		 */
    224		if (!MSR_TM_ACTIVE(cpumsr) &&
    225		     MSR_TM_ACTIVE(current->thread.regs->msr))
    226			return;
    227		__giveup_fpu(current);
    228	}
    229}
    230EXPORT_SYMBOL(enable_kernel_fp);
    231#else
    232static inline void __giveup_fpu(struct task_struct *tsk) { }
    233#endif /* CONFIG_PPC_FPU */
    234
    235#ifdef CONFIG_ALTIVEC
    236static void __giveup_altivec(struct task_struct *tsk)
    237{
    238	unsigned long msr;
    239
    240	save_altivec(tsk);
    241	msr = tsk->thread.regs->msr;
    242	msr &= ~MSR_VEC;
    243	if (cpu_has_feature(CPU_FTR_VSX))
    244		msr &= ~MSR_VSX;
    245	regs_set_return_msr(tsk->thread.regs, msr);
    246}
    247
    248void giveup_altivec(struct task_struct *tsk)
    249{
    250	check_if_tm_restore_required(tsk);
    251
    252	msr_check_and_set(MSR_VEC);
    253	__giveup_altivec(tsk);
    254	msr_check_and_clear(MSR_VEC);
    255}
    256EXPORT_SYMBOL(giveup_altivec);
    257
    258void enable_kernel_altivec(void)
    259{
    260	unsigned long cpumsr;
    261
    262	WARN_ON(preemptible());
    263
    264	cpumsr = msr_check_and_set(MSR_VEC);
    265
    266	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
    267		check_if_tm_restore_required(current);
    268		/*
    269		 * If a thread has already been reclaimed then the
    270		 * checkpointed registers are on the CPU but have definitely
    271		 * been saved by the reclaim code. Don't need to and *cannot*
    272		 * giveup as this would save  to the 'live' structure not the
    273		 * checkpointed structure.
    274		 */
    275		if (!MSR_TM_ACTIVE(cpumsr) &&
    276		     MSR_TM_ACTIVE(current->thread.regs->msr))
    277			return;
    278		__giveup_altivec(current);
    279	}
    280}
    281EXPORT_SYMBOL(enable_kernel_altivec);
    282
    283/*
    284 * Make sure the VMX/Altivec register state in the
    285 * the thread_struct is up to date for task tsk.
    286 */
    287void flush_altivec_to_thread(struct task_struct *tsk)
    288{
    289	if (tsk->thread.regs) {
    290		preempt_disable();
    291		if (tsk->thread.regs->msr & MSR_VEC) {
    292			BUG_ON(tsk != current);
    293			giveup_altivec(tsk);
    294		}
    295		preempt_enable();
    296	}
    297}
    298EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
    299#endif /* CONFIG_ALTIVEC */
    300
    301#ifdef CONFIG_VSX
    302static void __giveup_vsx(struct task_struct *tsk)
    303{
    304	unsigned long msr = tsk->thread.regs->msr;
    305
    306	/*
    307	 * We should never be setting MSR_VSX without also setting
    308	 * MSR_FP and MSR_VEC
    309	 */
    310	WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
    311
    312	/* __giveup_fpu will clear MSR_VSX */
    313	if (msr & MSR_FP)
    314		__giveup_fpu(tsk);
    315	if (msr & MSR_VEC)
    316		__giveup_altivec(tsk);
    317}
    318
    319static void giveup_vsx(struct task_struct *tsk)
    320{
    321	check_if_tm_restore_required(tsk);
    322
    323	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
    324	__giveup_vsx(tsk);
    325	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
    326}
    327
    328void enable_kernel_vsx(void)
    329{
    330	unsigned long cpumsr;
    331
    332	WARN_ON(preemptible());
    333
    334	cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
    335
    336	if (current->thread.regs &&
    337	    (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
    338		check_if_tm_restore_required(current);
    339		/*
    340		 * If a thread has already been reclaimed then the
    341		 * checkpointed registers are on the CPU but have definitely
    342		 * been saved by the reclaim code. Don't need to and *cannot*
    343		 * giveup as this would save  to the 'live' structure not the
    344		 * checkpointed structure.
    345		 */
    346		if (!MSR_TM_ACTIVE(cpumsr) &&
    347		     MSR_TM_ACTIVE(current->thread.regs->msr))
    348			return;
    349		__giveup_vsx(current);
    350	}
    351}
    352EXPORT_SYMBOL(enable_kernel_vsx);
    353
    354void flush_vsx_to_thread(struct task_struct *tsk)
    355{
    356	if (tsk->thread.regs) {
    357		preempt_disable();
    358		if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
    359			BUG_ON(tsk != current);
    360			giveup_vsx(tsk);
    361		}
    362		preempt_enable();
    363	}
    364}
    365EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
    366#endif /* CONFIG_VSX */
    367
    368#ifdef CONFIG_SPE
    369void giveup_spe(struct task_struct *tsk)
    370{
    371	check_if_tm_restore_required(tsk);
    372
    373	msr_check_and_set(MSR_SPE);
    374	__giveup_spe(tsk);
    375	msr_check_and_clear(MSR_SPE);
    376}
    377EXPORT_SYMBOL(giveup_spe);
    378
    379void enable_kernel_spe(void)
    380{
    381	WARN_ON(preemptible());
    382
    383	msr_check_and_set(MSR_SPE);
    384
    385	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
    386		check_if_tm_restore_required(current);
    387		__giveup_spe(current);
    388	}
    389}
    390EXPORT_SYMBOL(enable_kernel_spe);
    391
    392void flush_spe_to_thread(struct task_struct *tsk)
    393{
    394	if (tsk->thread.regs) {
    395		preempt_disable();
    396		if (tsk->thread.regs->msr & MSR_SPE) {
    397			BUG_ON(tsk != current);
    398			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
    399			giveup_spe(tsk);
    400		}
    401		preempt_enable();
    402	}
    403}
    404#endif /* CONFIG_SPE */
    405
    406static unsigned long msr_all_available;
    407
    408static int __init init_msr_all_available(void)
    409{
    410	if (IS_ENABLED(CONFIG_PPC_FPU))
    411		msr_all_available |= MSR_FP;
    412	if (cpu_has_feature(CPU_FTR_ALTIVEC))
    413		msr_all_available |= MSR_VEC;
    414	if (cpu_has_feature(CPU_FTR_VSX))
    415		msr_all_available |= MSR_VSX;
    416	if (cpu_has_feature(CPU_FTR_SPE))
    417		msr_all_available |= MSR_SPE;
    418
    419	return 0;
    420}
    421early_initcall(init_msr_all_available);
    422
    423void giveup_all(struct task_struct *tsk)
    424{
    425	unsigned long usermsr;
    426
    427	if (!tsk->thread.regs)
    428		return;
    429
    430	check_if_tm_restore_required(tsk);
    431
    432	usermsr = tsk->thread.regs->msr;
    433
    434	if ((usermsr & msr_all_available) == 0)
    435		return;
    436
    437	msr_check_and_set(msr_all_available);
    438
    439	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
    440
    441	if (usermsr & MSR_FP)
    442		__giveup_fpu(tsk);
    443	if (usermsr & MSR_VEC)
    444		__giveup_altivec(tsk);
    445	if (usermsr & MSR_SPE)
    446		__giveup_spe(tsk);
    447
    448	msr_check_and_clear(msr_all_available);
    449}
    450EXPORT_SYMBOL(giveup_all);
    451
    452#ifdef CONFIG_PPC_BOOK3S_64
    453#ifdef CONFIG_PPC_FPU
    454static bool should_restore_fp(void)
    455{
    456	if (current->thread.load_fp) {
    457		current->thread.load_fp++;
    458		return true;
    459	}
    460	return false;
    461}
    462
    463static void do_restore_fp(void)
    464{
    465	load_fp_state(&current->thread.fp_state);
    466}
    467#else
    468static bool should_restore_fp(void) { return false; }
    469static void do_restore_fp(void) { }
    470#endif /* CONFIG_PPC_FPU */
    471
    472#ifdef CONFIG_ALTIVEC
    473static bool should_restore_altivec(void)
    474{
    475	if (cpu_has_feature(CPU_FTR_ALTIVEC) && (current->thread.load_vec)) {
    476		current->thread.load_vec++;
    477		return true;
    478	}
    479	return false;
    480}
    481
    482static void do_restore_altivec(void)
    483{
    484	load_vr_state(&current->thread.vr_state);
    485	current->thread.used_vr = 1;
    486}
    487#else
    488static bool should_restore_altivec(void) { return false; }
    489static void do_restore_altivec(void) { }
    490#endif /* CONFIG_ALTIVEC */
    491
    492static bool should_restore_vsx(void)
    493{
    494	if (cpu_has_feature(CPU_FTR_VSX))
    495		return true;
    496	return false;
    497}
    498#ifdef CONFIG_VSX
    499static void do_restore_vsx(void)
    500{
    501	current->thread.used_vsr = 1;
    502}
    503#else
    504static void do_restore_vsx(void) { }
    505#endif /* CONFIG_VSX */
    506
    507/*
    508 * The exception exit path calls restore_math() with interrupts hard disabled
    509 * but the soft irq state not "reconciled". ftrace code that calls
    510 * local_irq_save/restore causes warnings.
    511 *
    512 * Rather than complicate the exit path, just don't trace restore_math. This
    513 * could be done by having ftrace entry code check for this un-reconciled
    514 * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
    515 * temporarily fix it up for the duration of the ftrace call.
    516 */
    517void notrace restore_math(struct pt_regs *regs)
    518{
    519	unsigned long msr;
    520	unsigned long new_msr = 0;
    521
    522	msr = regs->msr;
    523
    524	/*
    525	 * new_msr tracks the facilities that are to be restored. Only reload
    526	 * if the bit is not set in the user MSR (if it is set, the registers
    527	 * are live for the user thread).
    528	 */
    529	if ((!(msr & MSR_FP)) && should_restore_fp())
    530		new_msr |= MSR_FP;
    531
    532	if ((!(msr & MSR_VEC)) && should_restore_altivec())
    533		new_msr |= MSR_VEC;
    534
    535	if ((!(msr & MSR_VSX)) && should_restore_vsx()) {
    536		if (((msr | new_msr) & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC))
    537			new_msr |= MSR_VSX;
    538	}
    539
    540	if (new_msr) {
    541		unsigned long fpexc_mode = 0;
    542
    543		msr_check_and_set(new_msr);
    544
    545		if (new_msr & MSR_FP) {
    546			do_restore_fp();
    547
    548			// This also covers VSX, because VSX implies FP
    549			fpexc_mode = current->thread.fpexc_mode;
    550		}
    551
    552		if (new_msr & MSR_VEC)
    553			do_restore_altivec();
    554
    555		if (new_msr & MSR_VSX)
    556			do_restore_vsx();
    557
    558		msr_check_and_clear(new_msr);
    559
    560		regs_set_return_msr(regs, regs->msr | new_msr | fpexc_mode);
    561	}
    562}
    563#endif /* CONFIG_PPC_BOOK3S_64 */
    564
    565static void save_all(struct task_struct *tsk)
    566{
    567	unsigned long usermsr;
    568
    569	if (!tsk->thread.regs)
    570		return;
    571
    572	usermsr = tsk->thread.regs->msr;
    573
    574	if ((usermsr & msr_all_available) == 0)
    575		return;
    576
    577	msr_check_and_set(msr_all_available);
    578
    579	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
    580
    581	if (usermsr & MSR_FP)
    582		save_fpu(tsk);
    583
    584	if (usermsr & MSR_VEC)
    585		save_altivec(tsk);
    586
    587	if (usermsr & MSR_SPE)
    588		__giveup_spe(tsk);
    589
    590	msr_check_and_clear(msr_all_available);
    591}
    592
    593void flush_all_to_thread(struct task_struct *tsk)
    594{
    595	if (tsk->thread.regs) {
    596		preempt_disable();
    597		BUG_ON(tsk != current);
    598#ifdef CONFIG_SPE
    599		if (tsk->thread.regs->msr & MSR_SPE)
    600			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
    601#endif
    602		save_all(tsk);
    603
    604		preempt_enable();
    605	}
    606}
    607EXPORT_SYMBOL(flush_all_to_thread);
    608
    609#ifdef CONFIG_PPC_ADV_DEBUG_REGS
    610void do_send_trap(struct pt_regs *regs, unsigned long address,
    611		  unsigned long error_code, int breakpt)
    612{
    613	current->thread.trap_nr = TRAP_HWBKPT;
    614	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
    615			11, SIGSEGV) == NOTIFY_STOP)
    616		return;
    617
    618	/* Deliver the signal to userspace */
    619	force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
    620				    (void __user *)address);
    621}
    622#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
    623
    624static void do_break_handler(struct pt_regs *regs)
    625{
    626	struct arch_hw_breakpoint null_brk = {0};
    627	struct arch_hw_breakpoint *info;
    628	ppc_inst_t instr = ppc_inst(0);
    629	int type = 0;
    630	int size = 0;
    631	unsigned long ea;
    632	int i;
    633
    634	/*
    635	 * If underneath hw supports only one watchpoint, we know it
    636	 * caused exception. 8xx also falls into this category.
    637	 */
    638	if (nr_wp_slots() == 1) {
    639		__set_breakpoint(0, &null_brk);
    640		current->thread.hw_brk[0] = null_brk;
    641		current->thread.hw_brk[0].flags |= HW_BRK_FLAG_DISABLED;
    642		return;
    643	}
    644
    645	/* Otherwise find out which DAWR caused exception and disable it. */
    646	wp_get_instr_detail(regs, &instr, &type, &size, &ea);
    647
    648	for (i = 0; i < nr_wp_slots(); i++) {
    649		info = &current->thread.hw_brk[i];
    650		if (!info->address)
    651			continue;
    652
    653		if (wp_check_constraints(regs, instr, ea, type, size, info)) {
    654			__set_breakpoint(i, &null_brk);
    655			current->thread.hw_brk[i] = null_brk;
    656			current->thread.hw_brk[i].flags |= HW_BRK_FLAG_DISABLED;
    657		}
    658	}
    659}
    660
    661DEFINE_INTERRUPT_HANDLER(do_break)
    662{
    663	current->thread.trap_nr = TRAP_HWBKPT;
    664	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, regs->dsisr,
    665			11, SIGSEGV) == NOTIFY_STOP)
    666		return;
    667
    668	if (debugger_break_match(regs))
    669		return;
    670
    671	/*
    672	 * We reach here only when watchpoint exception is generated by ptrace
    673	 * event (or hw is buggy!). Now if CONFIG_HAVE_HW_BREAKPOINT is set,
    674	 * watchpoint is already handled by hw_breakpoint_handler() so we don't
    675	 * have to do anything. But when CONFIG_HAVE_HW_BREAKPOINT is not set,
    676	 * we need to manually handle the watchpoint here.
    677	 */
    678	if (!IS_ENABLED(CONFIG_HAVE_HW_BREAKPOINT))
    679		do_break_handler(regs);
    680
    681	/* Deliver the signal to userspace */
    682	force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)regs->dar);
    683}
    684#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
    685
    686static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk[HBP_NUM_MAX]);
    687
    688#ifdef CONFIG_PPC_ADV_DEBUG_REGS
    689/*
    690 * Set the debug registers back to their default "safe" values.
    691 */
    692static void set_debug_reg_defaults(struct thread_struct *thread)
    693{
    694	thread->debug.iac1 = thread->debug.iac2 = 0;
    695#if CONFIG_PPC_ADV_DEBUG_IACS > 2
    696	thread->debug.iac3 = thread->debug.iac4 = 0;
    697#endif
    698	thread->debug.dac1 = thread->debug.dac2 = 0;
    699#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
    700	thread->debug.dvc1 = thread->debug.dvc2 = 0;
    701#endif
    702	thread->debug.dbcr0 = 0;
    703#ifdef CONFIG_BOOKE
    704	/*
    705	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
    706	 */
    707	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
    708			DBCR1_IAC3US | DBCR1_IAC4US;
    709	/*
    710	 * Force Data Address Compare User/Supervisor bits to be User-only
    711	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
    712	 */
    713	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
    714#else
    715	thread->debug.dbcr1 = 0;
    716#endif
    717}
    718
    719static void prime_debug_regs(struct debug_reg *debug)
    720{
    721	/*
    722	 * We could have inherited MSR_DE from userspace, since
    723	 * it doesn't get cleared on exception entry.  Make sure
    724	 * MSR_DE is clear before we enable any debug events.
    725	 */
    726	mtmsr(mfmsr() & ~MSR_DE);
    727
    728	mtspr(SPRN_IAC1, debug->iac1);
    729	mtspr(SPRN_IAC2, debug->iac2);
    730#if CONFIG_PPC_ADV_DEBUG_IACS > 2
    731	mtspr(SPRN_IAC3, debug->iac3);
    732	mtspr(SPRN_IAC4, debug->iac4);
    733#endif
    734	mtspr(SPRN_DAC1, debug->dac1);
    735	mtspr(SPRN_DAC2, debug->dac2);
    736#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
    737	mtspr(SPRN_DVC1, debug->dvc1);
    738	mtspr(SPRN_DVC2, debug->dvc2);
    739#endif
    740	mtspr(SPRN_DBCR0, debug->dbcr0);
    741	mtspr(SPRN_DBCR1, debug->dbcr1);
    742#ifdef CONFIG_BOOKE
    743	mtspr(SPRN_DBCR2, debug->dbcr2);
    744#endif
    745}
    746/*
    747 * Unless neither the old or new thread are making use of the
    748 * debug registers, set the debug registers from the values
    749 * stored in the new thread.
    750 */
    751void switch_booke_debug_regs(struct debug_reg *new_debug)
    752{
    753	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
    754		|| (new_debug->dbcr0 & DBCR0_IDM))
    755			prime_debug_regs(new_debug);
    756}
    757EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
    758#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
    759#ifndef CONFIG_HAVE_HW_BREAKPOINT
    760static void set_breakpoint(int i, struct arch_hw_breakpoint *brk)
    761{
    762	preempt_disable();
    763	__set_breakpoint(i, brk);
    764	preempt_enable();
    765}
    766
    767static void set_debug_reg_defaults(struct thread_struct *thread)
    768{
    769	int i;
    770	struct arch_hw_breakpoint null_brk = {0};
    771
    772	for (i = 0; i < nr_wp_slots(); i++) {
    773		thread->hw_brk[i] = null_brk;
    774		if (ppc_breakpoint_available())
    775			set_breakpoint(i, &thread->hw_brk[i]);
    776	}
    777}
    778
    779static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
    780				struct arch_hw_breakpoint *b)
    781{
    782	if (a->address != b->address)
    783		return false;
    784	if (a->type != b->type)
    785		return false;
    786	if (a->len != b->len)
    787		return false;
    788	/* no need to check hw_len. it's calculated from address and len */
    789	return true;
    790}
    791
    792static void switch_hw_breakpoint(struct task_struct *new)
    793{
    794	int i;
    795
    796	for (i = 0; i < nr_wp_slots(); i++) {
    797		if (likely(hw_brk_match(this_cpu_ptr(&current_brk[i]),
    798					&new->thread.hw_brk[i])))
    799			continue;
    800
    801		__set_breakpoint(i, &new->thread.hw_brk[i]);
    802	}
    803}
    804#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
    805#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
    806
    807static inline int set_dabr(struct arch_hw_breakpoint *brk)
    808{
    809	unsigned long dabr, dabrx;
    810
    811	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
    812	dabrx = ((brk->type >> 3) & 0x7);
    813
    814	if (ppc_md.set_dabr)
    815		return ppc_md.set_dabr(dabr, dabrx);
    816
    817	if (IS_ENABLED(CONFIG_PPC_ADV_DEBUG_REGS)) {
    818		mtspr(SPRN_DAC1, dabr);
    819		if (IS_ENABLED(CONFIG_PPC_47x))
    820			isync();
    821		return 0;
    822	} else if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
    823		mtspr(SPRN_DABR, dabr);
    824		if (cpu_has_feature(CPU_FTR_DABRX))
    825			mtspr(SPRN_DABRX, dabrx);
    826		return 0;
    827	} else {
    828		return -EINVAL;
    829	}
    830}
    831
    832static inline int set_breakpoint_8xx(struct arch_hw_breakpoint *brk)
    833{
    834	unsigned long lctrl1 = LCTRL1_CTE_GT | LCTRL1_CTF_LT | LCTRL1_CRWE_RW |
    835			       LCTRL1_CRWF_RW;
    836	unsigned long lctrl2 = LCTRL2_LW0EN | LCTRL2_LW0LADC | LCTRL2_SLW0EN;
    837	unsigned long start_addr = ALIGN_DOWN(brk->address, HW_BREAKPOINT_SIZE);
    838	unsigned long end_addr = ALIGN(brk->address + brk->len, HW_BREAKPOINT_SIZE);
    839
    840	if (start_addr == 0)
    841		lctrl2 |= LCTRL2_LW0LA_F;
    842	else if (end_addr == 0)
    843		lctrl2 |= LCTRL2_LW0LA_E;
    844	else
    845		lctrl2 |= LCTRL2_LW0LA_EandF;
    846
    847	mtspr(SPRN_LCTRL2, 0);
    848
    849	if ((brk->type & HW_BRK_TYPE_RDWR) == 0)
    850		return 0;
    851
    852	if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
    853		lctrl1 |= LCTRL1_CRWE_RO | LCTRL1_CRWF_RO;
    854	if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
    855		lctrl1 |= LCTRL1_CRWE_WO | LCTRL1_CRWF_WO;
    856
    857	mtspr(SPRN_CMPE, start_addr - 1);
    858	mtspr(SPRN_CMPF, end_addr);
    859	mtspr(SPRN_LCTRL1, lctrl1);
    860	mtspr(SPRN_LCTRL2, lctrl2);
    861
    862	return 0;
    863}
    864
    865void __set_breakpoint(int nr, struct arch_hw_breakpoint *brk)
    866{
    867	memcpy(this_cpu_ptr(&current_brk[nr]), brk, sizeof(*brk));
    868
    869	if (dawr_enabled())
    870		// Power8 or later
    871		set_dawr(nr, brk);
    872	else if (IS_ENABLED(CONFIG_PPC_8xx))
    873		set_breakpoint_8xx(brk);
    874	else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
    875		// Power7 or earlier
    876		set_dabr(brk);
    877	else
    878		// Shouldn't happen due to higher level checks
    879		WARN_ON_ONCE(1);
    880}
    881
    882/* Check if we have DAWR or DABR hardware */
    883bool ppc_breakpoint_available(void)
    884{
    885	if (dawr_enabled())
    886		return true; /* POWER8 DAWR or POWER9 forced DAWR */
    887	if (cpu_has_feature(CPU_FTR_ARCH_207S))
    888		return false; /* POWER9 with DAWR disabled */
    889	/* DABR: Everything but POWER8 and POWER9 */
    890	return true;
    891}
    892EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
    893
    894#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
    895
    896static inline bool tm_enabled(struct task_struct *tsk)
    897{
    898	return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
    899}
    900
    901static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
    902{
    903	/*
    904	 * Use the current MSR TM suspended bit to track if we have
    905	 * checkpointed state outstanding.
    906	 * On signal delivery, we'd normally reclaim the checkpointed
    907	 * state to obtain stack pointer (see:get_tm_stackpointer()).
    908	 * This will then directly return to userspace without going
    909	 * through __switch_to(). However, if the stack frame is bad,
    910	 * we need to exit this thread which calls __switch_to() which
    911	 * will again attempt to reclaim the already saved tm state.
    912	 * Hence we need to check that we've not already reclaimed
    913	 * this state.
    914	 * We do this using the current MSR, rather tracking it in
    915	 * some specific thread_struct bit, as it has the additional
    916	 * benefit of checking for a potential TM bad thing exception.
    917	 */
    918	if (!MSR_TM_SUSPENDED(mfmsr()))
    919		return;
    920
    921	giveup_all(container_of(thr, struct task_struct, thread));
    922
    923	tm_reclaim(thr, cause);
    924
    925	/*
    926	 * If we are in a transaction and FP is off then we can't have
    927	 * used FP inside that transaction. Hence the checkpointed
    928	 * state is the same as the live state. We need to copy the
    929	 * live state to the checkpointed state so that when the
    930	 * transaction is restored, the checkpointed state is correct
    931	 * and the aborted transaction sees the correct state. We use
    932	 * ckpt_regs.msr here as that's what tm_reclaim will use to
    933	 * determine if it's going to write the checkpointed state or
    934	 * not. So either this will write the checkpointed registers,
    935	 * or reclaim will. Similarly for VMX.
    936	 */
    937	if ((thr->ckpt_regs.msr & MSR_FP) == 0)
    938		memcpy(&thr->ckfp_state, &thr->fp_state,
    939		       sizeof(struct thread_fp_state));
    940	if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
    941		memcpy(&thr->ckvr_state, &thr->vr_state,
    942		       sizeof(struct thread_vr_state));
    943}
    944
    945void tm_reclaim_current(uint8_t cause)
    946{
    947	tm_enable();
    948	tm_reclaim_thread(&current->thread, cause);
    949}
    950
    951static inline void tm_reclaim_task(struct task_struct *tsk)
    952{
    953	/* We have to work out if we're switching from/to a task that's in the
    954	 * middle of a transaction.
    955	 *
    956	 * In switching we need to maintain a 2nd register state as
    957	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
    958	 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
    959	 * ckvr_state
    960	 *
    961	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
    962	 */
    963	struct thread_struct *thr = &tsk->thread;
    964
    965	if (!thr->regs)
    966		return;
    967
    968	if (!MSR_TM_ACTIVE(thr->regs->msr))
    969		goto out_and_saveregs;
    970
    971	WARN_ON(tm_suspend_disabled);
    972
    973	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
    974		 "ccr=%lx, msr=%lx, trap=%lx)\n",
    975		 tsk->pid, thr->regs->nip,
    976		 thr->regs->ccr, thr->regs->msr,
    977		 thr->regs->trap);
    978
    979	tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
    980
    981	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
    982		 tsk->pid);
    983
    984out_and_saveregs:
    985	/* Always save the regs here, even if a transaction's not active.
    986	 * This context-switches a thread's TM info SPRs.  We do it here to
    987	 * be consistent with the restore path (in recheckpoint) which
    988	 * cannot happen later in _switch().
    989	 */
    990	tm_save_sprs(thr);
    991}
    992
    993extern void __tm_recheckpoint(struct thread_struct *thread);
    994
    995void tm_recheckpoint(struct thread_struct *thread)
    996{
    997	unsigned long flags;
    998
    999	if (!(thread->regs->msr & MSR_TM))
   1000		return;
   1001
   1002	/* We really can't be interrupted here as the TEXASR registers can't
   1003	 * change and later in the trecheckpoint code, we have a userspace R1.
   1004	 * So let's hard disable over this region.
   1005	 */
   1006	local_irq_save(flags);
   1007	hard_irq_disable();
   1008
   1009	/* The TM SPRs are restored here, so that TEXASR.FS can be set
   1010	 * before the trecheckpoint and no explosion occurs.
   1011	 */
   1012	tm_restore_sprs(thread);
   1013
   1014	__tm_recheckpoint(thread);
   1015
   1016	local_irq_restore(flags);
   1017}
   1018
   1019static inline void tm_recheckpoint_new_task(struct task_struct *new)
   1020{
   1021	if (!cpu_has_feature(CPU_FTR_TM))
   1022		return;
   1023
   1024	/* Recheckpoint the registers of the thread we're about to switch to.
   1025	 *
   1026	 * If the task was using FP, we non-lazily reload both the original and
   1027	 * the speculative FP register states.  This is because the kernel
   1028	 * doesn't see if/when a TM rollback occurs, so if we take an FP
   1029	 * unavailable later, we are unable to determine which set of FP regs
   1030	 * need to be restored.
   1031	 */
   1032	if (!tm_enabled(new))
   1033		return;
   1034
   1035	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
   1036		tm_restore_sprs(&new->thread);
   1037		return;
   1038	}
   1039	/* Recheckpoint to restore original checkpointed register state. */
   1040	TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
   1041		 new->pid, new->thread.regs->msr);
   1042
   1043	tm_recheckpoint(&new->thread);
   1044
   1045	/*
   1046	 * The checkpointed state has been restored but the live state has
   1047	 * not, ensure all the math functionality is turned off to trigger
   1048	 * restore_math() to reload.
   1049	 */
   1050	new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
   1051
   1052	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
   1053		 "(kernel msr 0x%lx)\n",
   1054		 new->pid, mfmsr());
   1055}
   1056
   1057static inline void __switch_to_tm(struct task_struct *prev,
   1058		struct task_struct *new)
   1059{
   1060	if (cpu_has_feature(CPU_FTR_TM)) {
   1061		if (tm_enabled(prev) || tm_enabled(new))
   1062			tm_enable();
   1063
   1064		if (tm_enabled(prev)) {
   1065			prev->thread.load_tm++;
   1066			tm_reclaim_task(prev);
   1067			if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
   1068				prev->thread.regs->msr &= ~MSR_TM;
   1069		}
   1070
   1071		tm_recheckpoint_new_task(new);
   1072	}
   1073}
   1074
   1075/*
   1076 * This is called if we are on the way out to userspace and the
   1077 * TIF_RESTORE_TM flag is set.  It checks if we need to reload
   1078 * FP and/or vector state and does so if necessary.
   1079 * If userspace is inside a transaction (whether active or
   1080 * suspended) and FP/VMX/VSX instructions have ever been enabled
   1081 * inside that transaction, then we have to keep them enabled
   1082 * and keep the FP/VMX/VSX state loaded while ever the transaction
   1083 * continues.  The reason is that if we didn't, and subsequently
   1084 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
   1085 * we don't know whether it's the same transaction, and thus we
   1086 * don't know which of the checkpointed state and the transactional
   1087 * state to use.
   1088 */
   1089void restore_tm_state(struct pt_regs *regs)
   1090{
   1091	unsigned long msr_diff;
   1092
   1093	/*
   1094	 * This is the only moment we should clear TIF_RESTORE_TM as
   1095	 * it is here that ckpt_regs.msr and pt_regs.msr become the same
   1096	 * again, anything else could lead to an incorrect ckpt_msr being
   1097	 * saved and therefore incorrect signal contexts.
   1098	 */
   1099	clear_thread_flag(TIF_RESTORE_TM);
   1100	if (!MSR_TM_ACTIVE(regs->msr))
   1101		return;
   1102
   1103	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
   1104	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
   1105
   1106	/* Ensure that restore_math() will restore */
   1107	if (msr_diff & MSR_FP)
   1108		current->thread.load_fp = 1;
   1109#ifdef CONFIG_ALTIVEC
   1110	if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
   1111		current->thread.load_vec = 1;
   1112#endif
   1113	restore_math(regs);
   1114
   1115	regs_set_return_msr(regs, regs->msr | msr_diff);
   1116}
   1117
   1118#else /* !CONFIG_PPC_TRANSACTIONAL_MEM */
   1119#define tm_recheckpoint_new_task(new)
   1120#define __switch_to_tm(prev, new)
   1121void tm_reclaim_current(uint8_t cause) {}
   1122#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
   1123
   1124static inline void save_sprs(struct thread_struct *t)
   1125{
   1126#ifdef CONFIG_ALTIVEC
   1127	if (cpu_has_feature(CPU_FTR_ALTIVEC))
   1128		t->vrsave = mfspr(SPRN_VRSAVE);
   1129#endif
   1130#ifdef CONFIG_SPE
   1131	if (cpu_has_feature(CPU_FTR_SPE))
   1132		t->spefscr = mfspr(SPRN_SPEFSCR);
   1133#endif
   1134#ifdef CONFIG_PPC_BOOK3S_64
   1135	if (cpu_has_feature(CPU_FTR_DSCR))
   1136		t->dscr = mfspr(SPRN_DSCR);
   1137
   1138	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
   1139		t->bescr = mfspr(SPRN_BESCR);
   1140		t->ebbhr = mfspr(SPRN_EBBHR);
   1141		t->ebbrr = mfspr(SPRN_EBBRR);
   1142
   1143		t->fscr = mfspr(SPRN_FSCR);
   1144
   1145		/*
   1146		 * Note that the TAR is not available for use in the kernel.
   1147		 * (To provide this, the TAR should be backed up/restored on
   1148		 * exception entry/exit instead, and be in pt_regs.  FIXME,
   1149		 * this should be in pt_regs anyway (for debug).)
   1150		 */
   1151		t->tar = mfspr(SPRN_TAR);
   1152	}
   1153#endif
   1154}
   1155
   1156#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
   1157void kvmppc_save_user_regs(void)
   1158{
   1159	unsigned long usermsr;
   1160
   1161	if (!current->thread.regs)
   1162		return;
   1163
   1164	usermsr = current->thread.regs->msr;
   1165
   1166	if (usermsr & MSR_FP)
   1167		save_fpu(current);
   1168
   1169	if (usermsr & MSR_VEC)
   1170		save_altivec(current);
   1171
   1172#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
   1173	if (usermsr & MSR_TM) {
   1174		current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
   1175		current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
   1176		current->thread.tm_texasr = mfspr(SPRN_TEXASR);
   1177		current->thread.regs->msr &= ~MSR_TM;
   1178	}
   1179#endif
   1180}
   1181EXPORT_SYMBOL_GPL(kvmppc_save_user_regs);
   1182
   1183void kvmppc_save_current_sprs(void)
   1184{
   1185	save_sprs(&current->thread);
   1186}
   1187EXPORT_SYMBOL_GPL(kvmppc_save_current_sprs);
   1188#endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
   1189
   1190static inline void restore_sprs(struct thread_struct *old_thread,
   1191				struct thread_struct *new_thread)
   1192{
   1193#ifdef CONFIG_ALTIVEC
   1194	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
   1195	    old_thread->vrsave != new_thread->vrsave)
   1196		mtspr(SPRN_VRSAVE, new_thread->vrsave);
   1197#endif
   1198#ifdef CONFIG_SPE
   1199	if (cpu_has_feature(CPU_FTR_SPE) &&
   1200	    old_thread->spefscr != new_thread->spefscr)
   1201		mtspr(SPRN_SPEFSCR, new_thread->spefscr);
   1202#endif
   1203#ifdef CONFIG_PPC_BOOK3S_64
   1204	if (cpu_has_feature(CPU_FTR_DSCR)) {
   1205		u64 dscr = get_paca()->dscr_default;
   1206		if (new_thread->dscr_inherit)
   1207			dscr = new_thread->dscr;
   1208
   1209		if (old_thread->dscr != dscr)
   1210			mtspr(SPRN_DSCR, dscr);
   1211	}
   1212
   1213	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
   1214		if (old_thread->bescr != new_thread->bescr)
   1215			mtspr(SPRN_BESCR, new_thread->bescr);
   1216		if (old_thread->ebbhr != new_thread->ebbhr)
   1217			mtspr(SPRN_EBBHR, new_thread->ebbhr);
   1218		if (old_thread->ebbrr != new_thread->ebbrr)
   1219			mtspr(SPRN_EBBRR, new_thread->ebbrr);
   1220
   1221		if (old_thread->fscr != new_thread->fscr)
   1222			mtspr(SPRN_FSCR, new_thread->fscr);
   1223
   1224		if (old_thread->tar != new_thread->tar)
   1225			mtspr(SPRN_TAR, new_thread->tar);
   1226	}
   1227
   1228	if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
   1229	    old_thread->tidr != new_thread->tidr)
   1230		mtspr(SPRN_TIDR, new_thread->tidr);
   1231#endif
   1232
   1233}
   1234
   1235struct task_struct *__switch_to(struct task_struct *prev,
   1236	struct task_struct *new)
   1237{
   1238	struct thread_struct *new_thread, *old_thread;
   1239	struct task_struct *last;
   1240#ifdef CONFIG_PPC_64S_HASH_MMU
   1241	struct ppc64_tlb_batch *batch;
   1242#endif
   1243
   1244	new_thread = &new->thread;
   1245	old_thread = &current->thread;
   1246
   1247	WARN_ON(!irqs_disabled());
   1248
   1249#ifdef CONFIG_PPC_64S_HASH_MMU
   1250	batch = this_cpu_ptr(&ppc64_tlb_batch);
   1251	if (batch->active) {
   1252		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
   1253		if (batch->index)
   1254			__flush_tlb_pending(batch);
   1255		batch->active = 0;
   1256	}
   1257
   1258	/*
   1259	 * On POWER9 the copy-paste buffer can only paste into
   1260	 * foreign real addresses, so unprivileged processes can not
   1261	 * see the data or use it in any way unless they have
   1262	 * foreign real mappings. If the new process has the foreign
   1263	 * real address mappings, we must issue a cp_abort to clear
   1264	 * any state and prevent snooping, corruption or a covert
   1265	 * channel. ISA v3.1 supports paste into local memory.
   1266	 */
   1267	if (new->mm && (cpu_has_feature(CPU_FTR_ARCH_31) ||
   1268			atomic_read(&new->mm->context.vas_windows)))
   1269		asm volatile(PPC_CP_ABORT);
   1270#endif /* CONFIG_PPC_BOOK3S_64 */
   1271
   1272#ifdef CONFIG_PPC_ADV_DEBUG_REGS
   1273	switch_booke_debug_regs(&new->thread.debug);
   1274#else
   1275/*
   1276 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
   1277 * schedule DABR
   1278 */
   1279#ifndef CONFIG_HAVE_HW_BREAKPOINT
   1280	switch_hw_breakpoint(new);
   1281#endif /* CONFIG_HAVE_HW_BREAKPOINT */
   1282#endif
   1283
   1284	/*
   1285	 * We need to save SPRs before treclaim/trecheckpoint as these will
   1286	 * change a number of them.
   1287	 */
   1288	save_sprs(&prev->thread);
   1289
   1290	/* Save FPU, Altivec, VSX and SPE state */
   1291	giveup_all(prev);
   1292
   1293	__switch_to_tm(prev, new);
   1294
   1295	if (!radix_enabled()) {
   1296		/*
   1297		 * We can't take a PMU exception inside _switch() since there
   1298		 * is a window where the kernel stack SLB and the kernel stack
   1299		 * are out of sync. Hard disable here.
   1300		 */
   1301		hard_irq_disable();
   1302	}
   1303
   1304	/*
   1305	 * Call restore_sprs() and set_return_regs_changed() before calling
   1306	 * _switch(). If we move it after _switch() then we miss out on calling
   1307	 * it for new tasks. The reason for this is we manually create a stack
   1308	 * frame for new tasks that directly returns through ret_from_fork() or
   1309	 * ret_from_kernel_thread(). See copy_thread() for details.
   1310	 */
   1311	restore_sprs(old_thread, new_thread);
   1312
   1313	set_return_regs_changed(); /* _switch changes stack (and regs) */
   1314
   1315	if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64))
   1316		kuap_assert_locked();
   1317
   1318	last = _switch(old_thread, new_thread);
   1319
   1320	/*
   1321	 * Nothing after _switch will be run for newly created tasks,
   1322	 * because they switch directly to ret_from_fork/ret_from_kernel_thread
   1323	 * etc. Code added here should have a comment explaining why that is
   1324	 * okay.
   1325	 */
   1326
   1327#ifdef CONFIG_PPC_BOOK3S_64
   1328#ifdef CONFIG_PPC_64S_HASH_MMU
   1329	/*
   1330	 * This applies to a process that was context switched while inside
   1331	 * arch_enter_lazy_mmu_mode(), to re-activate the batch that was
   1332	 * deactivated above, before _switch(). This will never be the case
   1333	 * for new tasks.
   1334	 */
   1335	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
   1336		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
   1337		batch = this_cpu_ptr(&ppc64_tlb_batch);
   1338		batch->active = 1;
   1339	}
   1340#endif
   1341
   1342	/*
   1343	 * Math facilities are masked out of the child MSR in copy_thread.
   1344	 * A new task does not need to restore_math because it will
   1345	 * demand fault them.
   1346	 */
   1347	if (current->thread.regs)
   1348		restore_math(current->thread.regs);
   1349#endif /* CONFIG_PPC_BOOK3S_64 */
   1350
   1351	return last;
   1352}
   1353
   1354#define NR_INSN_TO_PRINT	16
   1355
   1356static void show_instructions(struct pt_regs *regs)
   1357{
   1358	int i;
   1359	unsigned long nip = regs->nip;
   1360	unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
   1361
   1362	printk("Instruction dump:");
   1363
   1364	/*
   1365	 * If we were executing with the MMU off for instructions, adjust pc
   1366	 * rather than printing XXXXXXXX.
   1367	 */
   1368	if (!IS_ENABLED(CONFIG_BOOKE) && !(regs->msr & MSR_IR)) {
   1369		pc = (unsigned long)phys_to_virt(pc);
   1370		nip = (unsigned long)phys_to_virt(regs->nip);
   1371	}
   1372
   1373	for (i = 0; i < NR_INSN_TO_PRINT; i++) {
   1374		int instr;
   1375
   1376		if (!(i % 8))
   1377			pr_cont("\n");
   1378
   1379		if (!__kernel_text_address(pc) ||
   1380		    get_kernel_nofault(instr, (const void *)pc)) {
   1381			pr_cont("XXXXXXXX ");
   1382		} else {
   1383			if (nip == pc)
   1384				pr_cont("<%08x> ", instr);
   1385			else
   1386				pr_cont("%08x ", instr);
   1387		}
   1388
   1389		pc += sizeof(int);
   1390	}
   1391
   1392	pr_cont("\n");
   1393}
   1394
   1395void show_user_instructions(struct pt_regs *regs)
   1396{
   1397	unsigned long pc;
   1398	int n = NR_INSN_TO_PRINT;
   1399	struct seq_buf s;
   1400	char buf[96]; /* enough for 8 times 9 + 2 chars */
   1401
   1402	pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
   1403
   1404	seq_buf_init(&s, buf, sizeof(buf));
   1405
   1406	while (n) {
   1407		int i;
   1408
   1409		seq_buf_clear(&s);
   1410
   1411		for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
   1412			int instr;
   1413
   1414			if (copy_from_user_nofault(&instr, (void __user *)pc,
   1415					sizeof(instr))) {
   1416				seq_buf_printf(&s, "XXXXXXXX ");
   1417				continue;
   1418			}
   1419			seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
   1420		}
   1421
   1422		if (!seq_buf_has_overflowed(&s))
   1423			pr_info("%s[%d]: code: %s\n", current->comm,
   1424				current->pid, s.buffer);
   1425	}
   1426}
   1427
   1428struct regbit {
   1429	unsigned long bit;
   1430	const char *name;
   1431};
   1432
   1433static struct regbit msr_bits[] = {
   1434#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
   1435	{MSR_SF,	"SF"},
   1436	{MSR_HV,	"HV"},
   1437#endif
   1438	{MSR_VEC,	"VEC"},
   1439	{MSR_VSX,	"VSX"},
   1440#ifdef CONFIG_BOOKE
   1441	{MSR_CE,	"CE"},
   1442#endif
   1443	{MSR_EE,	"EE"},
   1444	{MSR_PR,	"PR"},
   1445	{MSR_FP,	"FP"},
   1446	{MSR_ME,	"ME"},
   1447#ifdef CONFIG_BOOKE
   1448	{MSR_DE,	"DE"},
   1449#else
   1450	{MSR_SE,	"SE"},
   1451	{MSR_BE,	"BE"},
   1452#endif
   1453	{MSR_IR,	"IR"},
   1454	{MSR_DR,	"DR"},
   1455	{MSR_PMM,	"PMM"},
   1456#ifndef CONFIG_BOOKE
   1457	{MSR_RI,	"RI"},
   1458	{MSR_LE,	"LE"},
   1459#endif
   1460	{0,		NULL}
   1461};
   1462
   1463static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
   1464{
   1465	const char *s = "";
   1466
   1467	for (; bits->bit; ++bits)
   1468		if (val & bits->bit) {
   1469			pr_cont("%s%s", s, bits->name);
   1470			s = sep;
   1471		}
   1472}
   1473
   1474#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
   1475static struct regbit msr_tm_bits[] = {
   1476	{MSR_TS_T,	"T"},
   1477	{MSR_TS_S,	"S"},
   1478	{MSR_TM,	"E"},
   1479	{0,		NULL}
   1480};
   1481
   1482static void print_tm_bits(unsigned long val)
   1483{
   1484/*
   1485 * This only prints something if at least one of the TM bit is set.
   1486 * Inside the TM[], the output means:
   1487 *   E: Enabled		(bit 32)
   1488 *   S: Suspended	(bit 33)
   1489 *   T: Transactional	(bit 34)
   1490 */
   1491	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
   1492		pr_cont(",TM[");
   1493		print_bits(val, msr_tm_bits, "");
   1494		pr_cont("]");
   1495	}
   1496}
   1497#else
   1498static void print_tm_bits(unsigned long val) {}
   1499#endif
   1500
   1501static void print_msr_bits(unsigned long val)
   1502{
   1503	pr_cont("<");
   1504	print_bits(val, msr_bits, ",");
   1505	print_tm_bits(val);
   1506	pr_cont(">");
   1507}
   1508
   1509#ifdef CONFIG_PPC64
   1510#define REG		"%016lx"
   1511#define REGS_PER_LINE	4
   1512#else
   1513#define REG		"%08lx"
   1514#define REGS_PER_LINE	8
   1515#endif
   1516
   1517static void __show_regs(struct pt_regs *regs)
   1518{
   1519	int i, trap;
   1520
   1521	printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
   1522	       regs->nip, regs->link, regs->ctr);
   1523	printk("REGS: %px TRAP: %04lx   %s  (%s)\n",
   1524	       regs, regs->trap, print_tainted(), init_utsname()->release);
   1525	printk("MSR:  "REG" ", regs->msr);
   1526	print_msr_bits(regs->msr);
   1527	pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
   1528	trap = TRAP(regs);
   1529	if (!trap_is_syscall(regs) && cpu_has_feature(CPU_FTR_CFAR))
   1530		pr_cont("CFAR: "REG" ", regs->orig_gpr3);
   1531	if (trap == INTERRUPT_MACHINE_CHECK ||
   1532	    trap == INTERRUPT_DATA_STORAGE ||
   1533	    trap == INTERRUPT_ALIGNMENT) {
   1534		if (IS_ENABLED(CONFIG_4xx) || IS_ENABLED(CONFIG_BOOKE))
   1535			pr_cont("DEAR: "REG" ESR: "REG" ", regs->dear, regs->esr);
   1536		else
   1537			pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
   1538	}
   1539
   1540#ifdef CONFIG_PPC64
   1541	pr_cont("IRQMASK: %lx ", regs->softe);
   1542#endif
   1543#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
   1544	if (MSR_TM_ACTIVE(regs->msr))
   1545		pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
   1546#endif
   1547
   1548	for (i = 0;  i < 32;  i++) {
   1549		if ((i % REGS_PER_LINE) == 0)
   1550			pr_cont("\nGPR%02d: ", i);
   1551		pr_cont(REG " ", regs->gpr[i]);
   1552	}
   1553	pr_cont("\n");
   1554	/*
   1555	 * Lookup NIP late so we have the best change of getting the
   1556	 * above info out without failing
   1557	 */
   1558	if (IS_ENABLED(CONFIG_KALLSYMS)) {
   1559		printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
   1560		printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
   1561	}
   1562}
   1563
   1564void show_regs(struct pt_regs *regs)
   1565{
   1566	show_regs_print_info(KERN_DEFAULT);
   1567	__show_regs(regs);
   1568	show_stack(current, (unsigned long *) regs->gpr[1], KERN_DEFAULT);
   1569	if (!user_mode(regs))
   1570		show_instructions(regs);
   1571}
   1572
   1573void flush_thread(void)
   1574{
   1575#ifdef CONFIG_HAVE_HW_BREAKPOINT
   1576	flush_ptrace_hw_breakpoint(current);
   1577#else /* CONFIG_HAVE_HW_BREAKPOINT */
   1578	set_debug_reg_defaults(&current->thread);
   1579#endif /* CONFIG_HAVE_HW_BREAKPOINT */
   1580}
   1581
   1582void arch_setup_new_exec(void)
   1583{
   1584
   1585#ifdef CONFIG_PPC_BOOK3S_64
   1586	if (!radix_enabled())
   1587		hash__setup_new_exec();
   1588#endif
   1589	/*
   1590	 * If we exec out of a kernel thread then thread.regs will not be
   1591	 * set.  Do it now.
   1592	 */
   1593	if (!current->thread.regs) {
   1594		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
   1595		current->thread.regs = regs - 1;
   1596	}
   1597
   1598#ifdef CONFIG_PPC_MEM_KEYS
   1599	current->thread.regs->amr  = default_amr;
   1600	current->thread.regs->iamr  = default_iamr;
   1601#endif
   1602}
   1603
   1604#ifdef CONFIG_PPC64
   1605/**
   1606 * Assign a TIDR (thread ID) for task @t and set it in the thread
   1607 * structure. For now, we only support setting TIDR for 'current' task.
   1608 *
   1609 * Since the TID value is a truncated form of it PID, it is possible
   1610 * (but unlikely) for 2 threads to have the same TID. In the unlikely event
   1611 * that 2 threads share the same TID and are waiting, one of the following
   1612 * cases will happen:
   1613 *
   1614 * 1. The correct thread is running, the wrong thread is not
   1615 * In this situation, the correct thread is woken and proceeds to pass it's
   1616 * condition check.
   1617 *
   1618 * 2. Neither threads are running
   1619 * In this situation, neither thread will be woken. When scheduled, the waiting
   1620 * threads will execute either a wait, which will return immediately, followed
   1621 * by a condition check, which will pass for the correct thread and fail
   1622 * for the wrong thread, or they will execute the condition check immediately.
   1623 *
   1624 * 3. The wrong thread is running, the correct thread is not
   1625 * The wrong thread will be woken, but will fail it's condition check and
   1626 * re-execute wait. The correct thread, when scheduled, will execute either
   1627 * it's condition check (which will pass), or wait, which returns immediately
   1628 * when called the first time after the thread is scheduled, followed by it's
   1629 * condition check (which will pass).
   1630 *
   1631 * 4. Both threads are running
   1632 * Both threads will be woken. The wrong thread will fail it's condition check
   1633 * and execute another wait, while the correct thread will pass it's condition
   1634 * check.
   1635 *
   1636 * @t: the task to set the thread ID for
   1637 */
   1638int set_thread_tidr(struct task_struct *t)
   1639{
   1640	if (!cpu_has_feature(CPU_FTR_P9_TIDR))
   1641		return -EINVAL;
   1642
   1643	if (t != current)
   1644		return -EINVAL;
   1645
   1646	if (t->thread.tidr)
   1647		return 0;
   1648
   1649	t->thread.tidr = (u16)task_pid_nr(t);
   1650	mtspr(SPRN_TIDR, t->thread.tidr);
   1651
   1652	return 0;
   1653}
   1654EXPORT_SYMBOL_GPL(set_thread_tidr);
   1655
   1656#endif /* CONFIG_PPC64 */
   1657
   1658void
   1659release_thread(struct task_struct *t)
   1660{
   1661}
   1662
   1663/*
   1664 * this gets called so that we can store coprocessor state into memory and
   1665 * copy the current task into the new thread.
   1666 */
   1667int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
   1668{
   1669	flush_all_to_thread(src);
   1670	/*
   1671	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
   1672	 * flush but it removes the checkpointed state from the current CPU and
   1673	 * transitions the CPU out of TM mode.  Hence we need to call
   1674	 * tm_recheckpoint_new_task() (on the same task) to restore the
   1675	 * checkpointed state back and the TM mode.
   1676	 *
   1677	 * Can't pass dst because it isn't ready. Doesn't matter, passing
   1678	 * dst is only important for __switch_to()
   1679	 */
   1680	__switch_to_tm(src, src);
   1681
   1682	*dst = *src;
   1683
   1684	clear_task_ebb(dst);
   1685
   1686	return 0;
   1687}
   1688
   1689static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
   1690{
   1691#ifdef CONFIG_PPC_64S_HASH_MMU
   1692	unsigned long sp_vsid;
   1693	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
   1694
   1695	if (radix_enabled())
   1696		return;
   1697
   1698	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
   1699		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
   1700			<< SLB_VSID_SHIFT_1T;
   1701	else
   1702		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
   1703			<< SLB_VSID_SHIFT;
   1704	sp_vsid |= SLB_VSID_KERNEL | llp;
   1705	p->thread.ksp_vsid = sp_vsid;
   1706#endif
   1707}
   1708
   1709/*
   1710 * Copy a thread..
   1711 */
   1712
   1713/*
   1714 * Copy architecture-specific thread state
   1715 */
   1716int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
   1717{
   1718	unsigned long clone_flags = args->flags;
   1719	unsigned long usp = args->stack;
   1720	unsigned long tls = args->tls;
   1721	struct pt_regs *childregs, *kregs;
   1722	extern void ret_from_fork(void);
   1723	extern void ret_from_fork_scv(void);
   1724	extern void ret_from_kernel_thread(void);
   1725	void (*f)(void);
   1726	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
   1727	struct thread_info *ti = task_thread_info(p);
   1728#ifdef CONFIG_HAVE_HW_BREAKPOINT
   1729	int i;
   1730#endif
   1731
   1732	klp_init_thread_info(p);
   1733
   1734	/* Copy registers */
   1735	sp -= sizeof(struct pt_regs);
   1736	childregs = (struct pt_regs *) sp;
   1737	if (unlikely(args->fn)) {
   1738		/* kernel thread */
   1739		memset(childregs, 0, sizeof(struct pt_regs));
   1740		childregs->gpr[1] = sp + sizeof(struct pt_regs);
   1741		/* function */
   1742		if (args->fn)
   1743			childregs->gpr[14] = ppc_function_entry((void *)args->fn);
   1744#ifdef CONFIG_PPC64
   1745		clear_tsk_thread_flag(p, TIF_32BIT);
   1746		childregs->softe = IRQS_ENABLED;
   1747#endif
   1748		childregs->gpr[15] = (unsigned long)args->fn_arg;
   1749		p->thread.regs = NULL;	/* no user register state */
   1750		ti->flags |= _TIF_RESTOREALL;
   1751		f = ret_from_kernel_thread;
   1752	} else {
   1753		/* user thread */
   1754		struct pt_regs *regs = current_pt_regs();
   1755		*childregs = *regs;
   1756		if (usp)
   1757			childregs->gpr[1] = usp;
   1758		p->thread.regs = childregs;
   1759		/* 64s sets this in ret_from_fork */
   1760		if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64))
   1761			childregs->gpr[3] = 0;  /* Result from fork() */
   1762		if (clone_flags & CLONE_SETTLS) {
   1763			if (!is_32bit_task())
   1764				childregs->gpr[13] = tls;
   1765			else
   1766				childregs->gpr[2] = tls;
   1767		}
   1768
   1769		if (trap_is_scv(regs))
   1770			f = ret_from_fork_scv;
   1771		else
   1772			f = ret_from_fork;
   1773	}
   1774	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
   1775	sp -= STACK_FRAME_OVERHEAD;
   1776
   1777	/*
   1778	 * The way this works is that at some point in the future
   1779	 * some task will call _switch to switch to the new task.
   1780	 * That will pop off the stack frame created below and start
   1781	 * the new task running at ret_from_fork.  The new task will
   1782	 * do some house keeping and then return from the fork or clone
   1783	 * system call, using the stack frame created above.
   1784	 */
   1785	((unsigned long *)sp)[0] = 0;
   1786	sp -= sizeof(struct pt_regs);
   1787	kregs = (struct pt_regs *) sp;
   1788	sp -= STACK_FRAME_OVERHEAD;
   1789	p->thread.ksp = sp;
   1790#ifdef CONFIG_HAVE_HW_BREAKPOINT
   1791	for (i = 0; i < nr_wp_slots(); i++)
   1792		p->thread.ptrace_bps[i] = NULL;
   1793#endif
   1794
   1795#ifdef CONFIG_PPC_FPU_REGS
   1796	p->thread.fp_save_area = NULL;
   1797#endif
   1798#ifdef CONFIG_ALTIVEC
   1799	p->thread.vr_save_area = NULL;
   1800#endif
   1801#if defined(CONFIG_PPC_BOOK3S_32) && defined(CONFIG_PPC_KUAP)
   1802	p->thread.kuap = KUAP_NONE;
   1803#endif
   1804#if defined(CONFIG_BOOKE_OR_40x) && defined(CONFIG_PPC_KUAP)
   1805	p->thread.pid = MMU_NO_CONTEXT;
   1806#endif
   1807
   1808	setup_ksp_vsid(p, sp);
   1809
   1810#ifdef CONFIG_PPC64 
   1811	if (cpu_has_feature(CPU_FTR_DSCR)) {
   1812		p->thread.dscr_inherit = current->thread.dscr_inherit;
   1813		p->thread.dscr = mfspr(SPRN_DSCR);
   1814	}
   1815	if (cpu_has_feature(CPU_FTR_HAS_PPR))
   1816		childregs->ppr = DEFAULT_PPR;
   1817
   1818	p->thread.tidr = 0;
   1819#endif
   1820	/*
   1821	 * Run with the current AMR value of the kernel
   1822	 */
   1823#ifdef CONFIG_PPC_PKEY
   1824	if (mmu_has_feature(MMU_FTR_BOOK3S_KUAP))
   1825		kregs->amr = AMR_KUAP_BLOCKED;
   1826
   1827	if (mmu_has_feature(MMU_FTR_BOOK3S_KUEP))
   1828		kregs->iamr = AMR_KUEP_BLOCKED;
   1829#endif
   1830	kregs->nip = ppc_function_entry(f);
   1831	return 0;
   1832}
   1833
   1834void preload_new_slb_context(unsigned long start, unsigned long sp);
   1835
   1836/*
   1837 * Set up a thread for executing a new program
   1838 */
   1839void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
   1840{
   1841#ifdef CONFIG_PPC64
   1842	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
   1843
   1844	if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled())
   1845		preload_new_slb_context(start, sp);
   1846#endif
   1847
   1848#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
   1849	/*
   1850	 * Clear any transactional state, we're exec()ing. The cause is
   1851	 * not important as there will never be a recheckpoint so it's not
   1852	 * user visible.
   1853	 */
   1854	if (MSR_TM_SUSPENDED(mfmsr()))
   1855		tm_reclaim_current(0);
   1856#endif
   1857
   1858	memset(&regs->gpr[1], 0, sizeof(regs->gpr) - sizeof(regs->gpr[0]));
   1859	regs->ctr = 0;
   1860	regs->link = 0;
   1861	regs->xer = 0;
   1862	regs->ccr = 0;
   1863	regs->gpr[1] = sp;
   1864
   1865#ifdef CONFIG_PPC32
   1866	regs->mq = 0;
   1867	regs->nip = start;
   1868	regs->msr = MSR_USER;
   1869#else
   1870	if (!is_32bit_task()) {
   1871		unsigned long entry;
   1872
   1873		if (is_elf2_task()) {
   1874			/* Look ma, no function descriptors! */
   1875			entry = start;
   1876
   1877			/*
   1878			 * Ulrich says:
   1879			 *   The latest iteration of the ABI requires that when
   1880			 *   calling a function (at its global entry point),
   1881			 *   the caller must ensure r12 holds the entry point
   1882			 *   address (so that the function can quickly
   1883			 *   establish addressability).
   1884			 */
   1885			regs->gpr[12] = start;
   1886			/* Make sure that's restored on entry to userspace. */
   1887			set_thread_flag(TIF_RESTOREALL);
   1888		} else {
   1889			unsigned long toc;
   1890
   1891			/* start is a relocated pointer to the function
   1892			 * descriptor for the elf _start routine.  The first
   1893			 * entry in the function descriptor is the entry
   1894			 * address of _start and the second entry is the TOC
   1895			 * value we need to use.
   1896			 */
   1897			__get_user(entry, (unsigned long __user *)start);
   1898			__get_user(toc, (unsigned long __user *)start+1);
   1899
   1900			/* Check whether the e_entry function descriptor entries
   1901			 * need to be relocated before we can use them.
   1902			 */
   1903			if (load_addr != 0) {
   1904				entry += load_addr;
   1905				toc   += load_addr;
   1906			}
   1907			regs->gpr[2] = toc;
   1908		}
   1909		regs_set_return_ip(regs, entry);
   1910		regs_set_return_msr(regs, MSR_USER64);
   1911	} else {
   1912		regs->gpr[2] = 0;
   1913		regs_set_return_ip(regs, start);
   1914		regs_set_return_msr(regs, MSR_USER32);
   1915	}
   1916
   1917#endif
   1918#ifdef CONFIG_VSX
   1919	current->thread.used_vsr = 0;
   1920#endif
   1921	current->thread.load_slb = 0;
   1922	current->thread.load_fp = 0;
   1923#ifdef CONFIG_PPC_FPU_REGS
   1924	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
   1925	current->thread.fp_save_area = NULL;
   1926#endif
   1927#ifdef CONFIG_ALTIVEC
   1928	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
   1929	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
   1930	current->thread.vr_save_area = NULL;
   1931	current->thread.vrsave = 0;
   1932	current->thread.used_vr = 0;
   1933	current->thread.load_vec = 0;
   1934#endif /* CONFIG_ALTIVEC */
   1935#ifdef CONFIG_SPE
   1936	memset(current->thread.evr, 0, sizeof(current->thread.evr));
   1937	current->thread.acc = 0;
   1938	current->thread.spefscr = 0;
   1939	current->thread.used_spe = 0;
   1940#endif /* CONFIG_SPE */
   1941#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
   1942	current->thread.tm_tfhar = 0;
   1943	current->thread.tm_texasr = 0;
   1944	current->thread.tm_tfiar = 0;
   1945	current->thread.load_tm = 0;
   1946#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
   1947}
   1948EXPORT_SYMBOL(start_thread);
   1949
   1950#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
   1951		| PR_FP_EXC_RES | PR_FP_EXC_INV)
   1952
   1953int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
   1954{
   1955	struct pt_regs *regs = tsk->thread.regs;
   1956
   1957	/* This is a bit hairy.  If we are an SPE enabled  processor
   1958	 * (have embedded fp) we store the IEEE exception enable flags in
   1959	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
   1960	 * mode (asyn, precise, disabled) for 'Classic' FP. */
   1961	if (val & PR_FP_EXC_SW_ENABLE) {
   1962		if (cpu_has_feature(CPU_FTR_SPE)) {
   1963			/*
   1964			 * When the sticky exception bits are set
   1965			 * directly by userspace, it must call prctl
   1966			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
   1967			 * in the existing prctl settings) or
   1968			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
   1969			 * the bits being set).  <fenv.h> functions
   1970			 * saving and restoring the whole
   1971			 * floating-point environment need to do so
   1972			 * anyway to restore the prctl settings from
   1973			 * the saved environment.
   1974			 */
   1975#ifdef CONFIG_SPE
   1976			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
   1977			tsk->thread.fpexc_mode = val &
   1978				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
   1979#endif
   1980			return 0;
   1981		} else {
   1982			return -EINVAL;
   1983		}
   1984	}
   1985
   1986	/* on a CONFIG_SPE this does not hurt us.  The bits that
   1987	 * __pack_fe01 use do not overlap with bits used for
   1988	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
   1989	 * on CONFIG_SPE implementations are reserved so writing to
   1990	 * them does not change anything */
   1991	if (val > PR_FP_EXC_PRECISE)
   1992		return -EINVAL;
   1993	tsk->thread.fpexc_mode = __pack_fe01(val);
   1994	if (regs != NULL && (regs->msr & MSR_FP) != 0) {
   1995		regs_set_return_msr(regs, (regs->msr & ~(MSR_FE0|MSR_FE1))
   1996						| tsk->thread.fpexc_mode);
   1997	}
   1998	return 0;
   1999}
   2000
   2001int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
   2002{
   2003	unsigned int val = 0;
   2004
   2005	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) {
   2006		if (cpu_has_feature(CPU_FTR_SPE)) {
   2007			/*
   2008			 * When the sticky exception bits are set
   2009			 * directly by userspace, it must call prctl
   2010			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
   2011			 * in the existing prctl settings) or
   2012			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
   2013			 * the bits being set).  <fenv.h> functions
   2014			 * saving and restoring the whole
   2015			 * floating-point environment need to do so
   2016			 * anyway to restore the prctl settings from
   2017			 * the saved environment.
   2018			 */
   2019#ifdef CONFIG_SPE
   2020			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
   2021			val = tsk->thread.fpexc_mode;
   2022#endif
   2023		} else
   2024			return -EINVAL;
   2025	} else {
   2026		val = __unpack_fe01(tsk->thread.fpexc_mode);
   2027	}
   2028	return put_user(val, (unsigned int __user *) adr);
   2029}
   2030
   2031int set_endian(struct task_struct *tsk, unsigned int val)
   2032{
   2033	struct pt_regs *regs = tsk->thread.regs;
   2034
   2035	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
   2036	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
   2037		return -EINVAL;
   2038
   2039	if (regs == NULL)
   2040		return -EINVAL;
   2041
   2042	if (val == PR_ENDIAN_BIG)
   2043		regs_set_return_msr(regs, regs->msr & ~MSR_LE);
   2044	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
   2045		regs_set_return_msr(regs, regs->msr | MSR_LE);
   2046	else
   2047		return -EINVAL;
   2048
   2049	return 0;
   2050}
   2051
   2052int get_endian(struct task_struct *tsk, unsigned long adr)
   2053{
   2054	struct pt_regs *regs = tsk->thread.regs;
   2055	unsigned int val;
   2056
   2057	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
   2058	    !cpu_has_feature(CPU_FTR_REAL_LE))
   2059		return -EINVAL;
   2060
   2061	if (regs == NULL)
   2062		return -EINVAL;
   2063
   2064	if (regs->msr & MSR_LE) {
   2065		if (cpu_has_feature(CPU_FTR_REAL_LE))
   2066			val = PR_ENDIAN_LITTLE;
   2067		else
   2068			val = PR_ENDIAN_PPC_LITTLE;
   2069	} else
   2070		val = PR_ENDIAN_BIG;
   2071
   2072	return put_user(val, (unsigned int __user *)adr);
   2073}
   2074
   2075int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
   2076{
   2077	tsk->thread.align_ctl = val;
   2078	return 0;
   2079}
   2080
   2081int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
   2082{
   2083	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
   2084}
   2085
   2086static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
   2087				  unsigned long nbytes)
   2088{
   2089	unsigned long stack_page;
   2090	unsigned long cpu = task_cpu(p);
   2091
   2092	stack_page = (unsigned long)hardirq_ctx[cpu];
   2093	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
   2094		return 1;
   2095
   2096	stack_page = (unsigned long)softirq_ctx[cpu];
   2097	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
   2098		return 1;
   2099
   2100	return 0;
   2101}
   2102
   2103static inline int valid_emergency_stack(unsigned long sp, struct task_struct *p,
   2104					unsigned long nbytes)
   2105{
   2106#ifdef CONFIG_PPC64
   2107	unsigned long stack_page;
   2108	unsigned long cpu = task_cpu(p);
   2109
   2110	if (!paca_ptrs)
   2111		return 0;
   2112
   2113	stack_page = (unsigned long)paca_ptrs[cpu]->emergency_sp - THREAD_SIZE;
   2114	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
   2115		return 1;
   2116
   2117# ifdef CONFIG_PPC_BOOK3S_64
   2118	stack_page = (unsigned long)paca_ptrs[cpu]->nmi_emergency_sp - THREAD_SIZE;
   2119	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
   2120		return 1;
   2121
   2122	stack_page = (unsigned long)paca_ptrs[cpu]->mc_emergency_sp - THREAD_SIZE;
   2123	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
   2124		return 1;
   2125# endif
   2126#endif
   2127
   2128	return 0;
   2129}
   2130
   2131
   2132int validate_sp(unsigned long sp, struct task_struct *p,
   2133		       unsigned long nbytes)
   2134{
   2135	unsigned long stack_page = (unsigned long)task_stack_page(p);
   2136
   2137	if (sp < THREAD_SIZE)
   2138		return 0;
   2139
   2140	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
   2141		return 1;
   2142
   2143	if (valid_irq_stack(sp, p, nbytes))
   2144		return 1;
   2145
   2146	return valid_emergency_stack(sp, p, nbytes);
   2147}
   2148
   2149EXPORT_SYMBOL(validate_sp);
   2150
   2151static unsigned long ___get_wchan(struct task_struct *p)
   2152{
   2153	unsigned long ip, sp;
   2154	int count = 0;
   2155
   2156	sp = p->thread.ksp;
   2157	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
   2158		return 0;
   2159
   2160	do {
   2161		sp = READ_ONCE_NOCHECK(*(unsigned long *)sp);
   2162		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
   2163		    task_is_running(p))
   2164			return 0;
   2165		if (count > 0) {
   2166			ip = READ_ONCE_NOCHECK(((unsigned long *)sp)[STACK_FRAME_LR_SAVE]);
   2167			if (!in_sched_functions(ip))
   2168				return ip;
   2169		}
   2170	} while (count++ < 16);
   2171	return 0;
   2172}
   2173
   2174unsigned long __get_wchan(struct task_struct *p)
   2175{
   2176	unsigned long ret;
   2177
   2178	if (!try_get_task_stack(p))
   2179		return 0;
   2180
   2181	ret = ___get_wchan(p);
   2182
   2183	put_task_stack(p);
   2184
   2185	return ret;
   2186}
   2187
   2188static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
   2189
   2190void __no_sanitize_address show_stack(struct task_struct *tsk,
   2191				      unsigned long *stack,
   2192				      const char *loglvl)
   2193{
   2194	unsigned long sp, ip, lr, newsp;
   2195	int count = 0;
   2196	int firstframe = 1;
   2197	unsigned long ret_addr;
   2198	int ftrace_idx = 0;
   2199
   2200	if (tsk == NULL)
   2201		tsk = current;
   2202
   2203	if (!try_get_task_stack(tsk))
   2204		return;
   2205
   2206	sp = (unsigned long) stack;
   2207	if (sp == 0) {
   2208		if (tsk == current)
   2209			sp = current_stack_frame();
   2210		else
   2211			sp = tsk->thread.ksp;
   2212	}
   2213
   2214	lr = 0;
   2215	printk("%sCall Trace:\n", loglvl);
   2216	do {
   2217		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
   2218			break;
   2219
   2220		stack = (unsigned long *) sp;
   2221		newsp = stack[0];
   2222		ip = stack[STACK_FRAME_LR_SAVE];
   2223		if (!firstframe || ip != lr) {
   2224			printk("%s["REG"] ["REG"] %pS",
   2225				loglvl, sp, ip, (void *)ip);
   2226			ret_addr = ftrace_graph_ret_addr(current,
   2227						&ftrace_idx, ip, stack);
   2228			if (ret_addr != ip)
   2229				pr_cont(" (%pS)", (void *)ret_addr);
   2230			if (firstframe)
   2231				pr_cont(" (unreliable)");
   2232			pr_cont("\n");
   2233		}
   2234		firstframe = 0;
   2235
   2236		/*
   2237		 * See if this is an exception frame.
   2238		 * We look for the "regshere" marker in the current frame.
   2239		 */
   2240		if (validate_sp(sp, tsk, STACK_FRAME_WITH_PT_REGS)
   2241		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
   2242			struct pt_regs *regs = (struct pt_regs *)
   2243				(sp + STACK_FRAME_OVERHEAD);
   2244
   2245			lr = regs->link;
   2246			printk("%s--- interrupt: %lx at %pS\n",
   2247			       loglvl, regs->trap, (void *)regs->nip);
   2248			__show_regs(regs);
   2249			printk("%s--- interrupt: %lx\n",
   2250			       loglvl, regs->trap);
   2251
   2252			firstframe = 1;
   2253		}
   2254
   2255		sp = newsp;
   2256	} while (count++ < kstack_depth_to_print);
   2257
   2258	put_task_stack(tsk);
   2259}
   2260
   2261#ifdef CONFIG_PPC64
   2262/* Called with hard IRQs off */
   2263void notrace __ppc64_runlatch_on(void)
   2264{
   2265	struct thread_info *ti = current_thread_info();
   2266
   2267	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
   2268		/*
   2269		 * Least significant bit (RUN) is the only writable bit of
   2270		 * the CTRL register, so we can avoid mfspr. 2.06 is not the
   2271		 * earliest ISA where this is the case, but it's convenient.
   2272		 */
   2273		mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
   2274	} else {
   2275		unsigned long ctrl;
   2276
   2277		/*
   2278		 * Some architectures (e.g., Cell) have writable fields other
   2279		 * than RUN, so do the read-modify-write.
   2280		 */
   2281		ctrl = mfspr(SPRN_CTRLF);
   2282		ctrl |= CTRL_RUNLATCH;
   2283		mtspr(SPRN_CTRLT, ctrl);
   2284	}
   2285
   2286	ti->local_flags |= _TLF_RUNLATCH;
   2287}
   2288
   2289/* Called with hard IRQs off */
   2290void notrace __ppc64_runlatch_off(void)
   2291{
   2292	struct thread_info *ti = current_thread_info();
   2293
   2294	ti->local_flags &= ~_TLF_RUNLATCH;
   2295
   2296	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
   2297		mtspr(SPRN_CTRLT, 0);
   2298	} else {
   2299		unsigned long ctrl;
   2300
   2301		ctrl = mfspr(SPRN_CTRLF);
   2302		ctrl &= ~CTRL_RUNLATCH;
   2303		mtspr(SPRN_CTRLT, ctrl);
   2304	}
   2305}
   2306#endif /* CONFIG_PPC64 */
   2307
   2308unsigned long arch_align_stack(unsigned long sp)
   2309{
   2310	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
   2311		sp -= get_random_int() & ~PAGE_MASK;
   2312	return sp & ~0xf;
   2313}