cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

smp.c (43872B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * SMP support for ppc.
      4 *
      5 * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
      6 * deal of code from the sparc and intel versions.
      7 *
      8 * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
      9 *
     10 * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
     11 * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
     12 */
     13
     14#undef DEBUG
     15
     16#include <linux/kernel.h>
     17#include <linux/export.h>
     18#include <linux/sched/mm.h>
     19#include <linux/sched/task_stack.h>
     20#include <linux/sched/topology.h>
     21#include <linux/smp.h>
     22#include <linux/interrupt.h>
     23#include <linux/delay.h>
     24#include <linux/init.h>
     25#include <linux/spinlock.h>
     26#include <linux/cache.h>
     27#include <linux/err.h>
     28#include <linux/device.h>
     29#include <linux/cpu.h>
     30#include <linux/notifier.h>
     31#include <linux/topology.h>
     32#include <linux/profile.h>
     33#include <linux/processor.h>
     34#include <linux/random.h>
     35#include <linux/stackprotector.h>
     36#include <linux/pgtable.h>
     37#include <linux/clockchips.h>
     38
     39#include <asm/ptrace.h>
     40#include <linux/atomic.h>
     41#include <asm/irq.h>
     42#include <asm/hw_irq.h>
     43#include <asm/kvm_ppc.h>
     44#include <asm/dbell.h>
     45#include <asm/page.h>
     46#include <asm/smp.h>
     47#include <asm/time.h>
     48#include <asm/machdep.h>
     49#include <asm/cputhreads.h>
     50#include <asm/cputable.h>
     51#include <asm/mpic.h>
     52#include <asm/vdso_datapage.h>
     53#ifdef CONFIG_PPC64
     54#include <asm/paca.h>
     55#endif
     56#include <asm/vdso.h>
     57#include <asm/debug.h>
     58#include <asm/kexec.h>
     59#include <asm/cpu_has_feature.h>
     60#include <asm/ftrace.h>
     61#include <asm/kup.h>
     62#include <asm/fadump.h>
     63
     64#ifdef DEBUG
     65#include <asm/udbg.h>
     66#define DBG(fmt...) udbg_printf(fmt)
     67#else
     68#define DBG(fmt...)
     69#endif
     70
     71#ifdef CONFIG_HOTPLUG_CPU
     72/* State of each CPU during hotplug phases */
     73static DEFINE_PER_CPU(int, cpu_state) = { 0 };
     74#endif
     75
     76struct task_struct *secondary_current;
     77bool has_big_cores;
     78bool coregroup_enabled;
     79bool thread_group_shares_l2;
     80bool thread_group_shares_l3;
     81
     82DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
     83DEFINE_PER_CPU(cpumask_var_t, cpu_smallcore_map);
     84DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map);
     85DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
     86static DEFINE_PER_CPU(cpumask_var_t, cpu_coregroup_map);
     87
     88EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
     89EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map);
     90EXPORT_PER_CPU_SYMBOL(cpu_core_map);
     91EXPORT_SYMBOL_GPL(has_big_cores);
     92
     93enum {
     94#ifdef CONFIG_SCHED_SMT
     95	smt_idx,
     96#endif
     97	cache_idx,
     98	mc_idx,
     99	die_idx,
    100};
    101
    102#define MAX_THREAD_LIST_SIZE	8
    103#define THREAD_GROUP_SHARE_L1   1
    104#define THREAD_GROUP_SHARE_L2_L3 2
    105struct thread_groups {
    106	unsigned int property;
    107	unsigned int nr_groups;
    108	unsigned int threads_per_group;
    109	unsigned int thread_list[MAX_THREAD_LIST_SIZE];
    110};
    111
    112/* Maximum number of properties that groups of threads within a core can share */
    113#define MAX_THREAD_GROUP_PROPERTIES 2
    114
    115struct thread_groups_list {
    116	unsigned int nr_properties;
    117	struct thread_groups property_tgs[MAX_THREAD_GROUP_PROPERTIES];
    118};
    119
    120static struct thread_groups_list tgl[NR_CPUS] __initdata;
    121/*
    122 * On big-cores system, thread_group_l1_cache_map for each CPU corresponds to
    123 * the set its siblings that share the L1-cache.
    124 */
    125DEFINE_PER_CPU(cpumask_var_t, thread_group_l1_cache_map);
    126
    127/*
    128 * On some big-cores system, thread_group_l2_cache_map for each CPU
    129 * corresponds to the set its siblings within the core that share the
    130 * L2-cache.
    131 */
    132DEFINE_PER_CPU(cpumask_var_t, thread_group_l2_cache_map);
    133
    134/*
    135 * On P10, thread_group_l3_cache_map for each CPU is equal to the
    136 * thread_group_l2_cache_map
    137 */
    138DEFINE_PER_CPU(cpumask_var_t, thread_group_l3_cache_map);
    139
    140/* SMP operations for this machine */
    141struct smp_ops_t *smp_ops;
    142
    143/* Can't be static due to PowerMac hackery */
    144volatile unsigned int cpu_callin_map[NR_CPUS];
    145
    146int smt_enabled_at_boot = 1;
    147
    148/*
    149 * Returns 1 if the specified cpu should be brought up during boot.
    150 * Used to inhibit booting threads if they've been disabled or
    151 * limited on the command line
    152 */
    153int smp_generic_cpu_bootable(unsigned int nr)
    154{
    155	/* Special case - we inhibit secondary thread startup
    156	 * during boot if the user requests it.
    157	 */
    158	if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) {
    159		if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
    160			return 0;
    161		if (smt_enabled_at_boot
    162		    && cpu_thread_in_core(nr) >= smt_enabled_at_boot)
    163			return 0;
    164	}
    165
    166	return 1;
    167}
    168
    169
    170#ifdef CONFIG_PPC64
    171int smp_generic_kick_cpu(int nr)
    172{
    173	if (nr < 0 || nr >= nr_cpu_ids)
    174		return -EINVAL;
    175
    176	/*
    177	 * The processor is currently spinning, waiting for the
    178	 * cpu_start field to become non-zero After we set cpu_start,
    179	 * the processor will continue on to secondary_start
    180	 */
    181	if (!paca_ptrs[nr]->cpu_start) {
    182		paca_ptrs[nr]->cpu_start = 1;
    183		smp_mb();
    184		return 0;
    185	}
    186
    187#ifdef CONFIG_HOTPLUG_CPU
    188	/*
    189	 * Ok it's not there, so it might be soft-unplugged, let's
    190	 * try to bring it back
    191	 */
    192	generic_set_cpu_up(nr);
    193	smp_wmb();
    194	smp_send_reschedule(nr);
    195#endif /* CONFIG_HOTPLUG_CPU */
    196
    197	return 0;
    198}
    199#endif /* CONFIG_PPC64 */
    200
    201static irqreturn_t call_function_action(int irq, void *data)
    202{
    203	generic_smp_call_function_interrupt();
    204	return IRQ_HANDLED;
    205}
    206
    207static irqreturn_t reschedule_action(int irq, void *data)
    208{
    209	scheduler_ipi();
    210	return IRQ_HANDLED;
    211}
    212
    213#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
    214static irqreturn_t tick_broadcast_ipi_action(int irq, void *data)
    215{
    216	timer_broadcast_interrupt();
    217	return IRQ_HANDLED;
    218}
    219#endif
    220
    221#ifdef CONFIG_NMI_IPI
    222static irqreturn_t nmi_ipi_action(int irq, void *data)
    223{
    224	smp_handle_nmi_ipi(get_irq_regs());
    225	return IRQ_HANDLED;
    226}
    227#endif
    228
    229static irq_handler_t smp_ipi_action[] = {
    230	[PPC_MSG_CALL_FUNCTION] =  call_function_action,
    231	[PPC_MSG_RESCHEDULE] = reschedule_action,
    232#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
    233	[PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action,
    234#endif
    235#ifdef CONFIG_NMI_IPI
    236	[PPC_MSG_NMI_IPI] = nmi_ipi_action,
    237#endif
    238};
    239
    240/*
    241 * The NMI IPI is a fallback and not truly non-maskable. It is simpler
    242 * than going through the call function infrastructure, and strongly
    243 * serialized, so it is more appropriate for debugging.
    244 */
    245const char *smp_ipi_name[] = {
    246	[PPC_MSG_CALL_FUNCTION] =  "ipi call function",
    247	[PPC_MSG_RESCHEDULE] = "ipi reschedule",
    248#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
    249	[PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast",
    250#endif
    251#ifdef CONFIG_NMI_IPI
    252	[PPC_MSG_NMI_IPI] = "nmi ipi",
    253#endif
    254};
    255
    256/* optional function to request ipi, for controllers with >= 4 ipis */
    257int smp_request_message_ipi(int virq, int msg)
    258{
    259	int err;
    260
    261	if (msg < 0 || msg > PPC_MSG_NMI_IPI)
    262		return -EINVAL;
    263#ifndef CONFIG_NMI_IPI
    264	if (msg == PPC_MSG_NMI_IPI)
    265		return 1;
    266#endif
    267
    268	err = request_irq(virq, smp_ipi_action[msg],
    269			  IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
    270			  smp_ipi_name[msg], NULL);
    271	WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
    272		virq, smp_ipi_name[msg], err);
    273
    274	return err;
    275}
    276
    277#ifdef CONFIG_PPC_SMP_MUXED_IPI
    278struct cpu_messages {
    279	long messages;			/* current messages */
    280};
    281static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
    282
    283void smp_muxed_ipi_set_message(int cpu, int msg)
    284{
    285	struct cpu_messages *info = &per_cpu(ipi_message, cpu);
    286	char *message = (char *)&info->messages;
    287
    288	/*
    289	 * Order previous accesses before accesses in the IPI handler.
    290	 */
    291	smp_mb();
    292	message[msg] = 1;
    293}
    294
    295void smp_muxed_ipi_message_pass(int cpu, int msg)
    296{
    297	smp_muxed_ipi_set_message(cpu, msg);
    298
    299	/*
    300	 * cause_ipi functions are required to include a full barrier
    301	 * before doing whatever causes the IPI.
    302	 */
    303	smp_ops->cause_ipi(cpu);
    304}
    305
    306#ifdef __BIG_ENDIAN__
    307#define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A)))
    308#else
    309#define IPI_MESSAGE(A) (1uL << (8 * (A)))
    310#endif
    311
    312irqreturn_t smp_ipi_demux(void)
    313{
    314	mb();	/* order any irq clear */
    315
    316	return smp_ipi_demux_relaxed();
    317}
    318
    319/* sync-free variant. Callers should ensure synchronization */
    320irqreturn_t smp_ipi_demux_relaxed(void)
    321{
    322	struct cpu_messages *info;
    323	unsigned long all;
    324
    325	info = this_cpu_ptr(&ipi_message);
    326	do {
    327		all = xchg(&info->messages, 0);
    328#if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
    329		/*
    330		 * Must check for PPC_MSG_RM_HOST_ACTION messages
    331		 * before PPC_MSG_CALL_FUNCTION messages because when
    332		 * a VM is destroyed, we call kick_all_cpus_sync()
    333		 * to ensure that any pending PPC_MSG_RM_HOST_ACTION
    334		 * messages have completed before we free any VCPUs.
    335		 */
    336		if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION))
    337			kvmppc_xics_ipi_action();
    338#endif
    339		if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
    340			generic_smp_call_function_interrupt();
    341		if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
    342			scheduler_ipi();
    343#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
    344		if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST))
    345			timer_broadcast_interrupt();
    346#endif
    347#ifdef CONFIG_NMI_IPI
    348		if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI))
    349			nmi_ipi_action(0, NULL);
    350#endif
    351	} while (info->messages);
    352
    353	return IRQ_HANDLED;
    354}
    355#endif /* CONFIG_PPC_SMP_MUXED_IPI */
    356
    357static inline void do_message_pass(int cpu, int msg)
    358{
    359	if (smp_ops->message_pass)
    360		smp_ops->message_pass(cpu, msg);
    361#ifdef CONFIG_PPC_SMP_MUXED_IPI
    362	else
    363		smp_muxed_ipi_message_pass(cpu, msg);
    364#endif
    365}
    366
    367void smp_send_reschedule(int cpu)
    368{
    369	if (likely(smp_ops))
    370		do_message_pass(cpu, PPC_MSG_RESCHEDULE);
    371}
    372EXPORT_SYMBOL_GPL(smp_send_reschedule);
    373
    374void arch_send_call_function_single_ipi(int cpu)
    375{
    376	do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
    377}
    378
    379void arch_send_call_function_ipi_mask(const struct cpumask *mask)
    380{
    381	unsigned int cpu;
    382
    383	for_each_cpu(cpu, mask)
    384		do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
    385}
    386
    387#ifdef CONFIG_NMI_IPI
    388
    389/*
    390 * "NMI IPI" system.
    391 *
    392 * NMI IPIs may not be recoverable, so should not be used as ongoing part of
    393 * a running system. They can be used for crash, debug, halt/reboot, etc.
    394 *
    395 * The IPI call waits with interrupts disabled until all targets enter the
    396 * NMI handler, then returns. Subsequent IPIs can be issued before targets
    397 * have returned from their handlers, so there is no guarantee about
    398 * concurrency or re-entrancy.
    399 *
    400 * A new NMI can be issued before all targets exit the handler.
    401 *
    402 * The IPI call may time out without all targets entering the NMI handler.
    403 * In that case, there is some logic to recover (and ignore subsequent
    404 * NMI interrupts that may eventually be raised), but the platform interrupt
    405 * handler may not be able to distinguish this from other exception causes,
    406 * which may cause a crash.
    407 */
    408
    409static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0);
    410static struct cpumask nmi_ipi_pending_mask;
    411static bool nmi_ipi_busy = false;
    412static void (*nmi_ipi_function)(struct pt_regs *) = NULL;
    413
    414noinstr static void nmi_ipi_lock_start(unsigned long *flags)
    415{
    416	raw_local_irq_save(*flags);
    417	hard_irq_disable();
    418	while (arch_atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) {
    419		raw_local_irq_restore(*flags);
    420		spin_until_cond(arch_atomic_read(&__nmi_ipi_lock) == 0);
    421		raw_local_irq_save(*flags);
    422		hard_irq_disable();
    423	}
    424}
    425
    426noinstr static void nmi_ipi_lock(void)
    427{
    428	while (arch_atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1)
    429		spin_until_cond(arch_atomic_read(&__nmi_ipi_lock) == 0);
    430}
    431
    432noinstr static void nmi_ipi_unlock(void)
    433{
    434	smp_mb();
    435	WARN_ON(arch_atomic_read(&__nmi_ipi_lock) != 1);
    436	arch_atomic_set(&__nmi_ipi_lock, 0);
    437}
    438
    439noinstr static void nmi_ipi_unlock_end(unsigned long *flags)
    440{
    441	nmi_ipi_unlock();
    442	raw_local_irq_restore(*flags);
    443}
    444
    445/*
    446 * Platform NMI handler calls this to ack
    447 */
    448noinstr int smp_handle_nmi_ipi(struct pt_regs *regs)
    449{
    450	void (*fn)(struct pt_regs *) = NULL;
    451	unsigned long flags;
    452	int me = raw_smp_processor_id();
    453	int ret = 0;
    454
    455	/*
    456	 * Unexpected NMIs are possible here because the interrupt may not
    457	 * be able to distinguish NMI IPIs from other types of NMIs, or
    458	 * because the caller may have timed out.
    459	 */
    460	nmi_ipi_lock_start(&flags);
    461	if (cpumask_test_cpu(me, &nmi_ipi_pending_mask)) {
    462		cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
    463		fn = READ_ONCE(nmi_ipi_function);
    464		WARN_ON_ONCE(!fn);
    465		ret = 1;
    466	}
    467	nmi_ipi_unlock_end(&flags);
    468
    469	if (fn)
    470		fn(regs);
    471
    472	return ret;
    473}
    474
    475static void do_smp_send_nmi_ipi(int cpu, bool safe)
    476{
    477	if (!safe && smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu))
    478		return;
    479
    480	if (cpu >= 0) {
    481		do_message_pass(cpu, PPC_MSG_NMI_IPI);
    482	} else {
    483		int c;
    484
    485		for_each_online_cpu(c) {
    486			if (c == raw_smp_processor_id())
    487				continue;
    488			do_message_pass(c, PPC_MSG_NMI_IPI);
    489		}
    490	}
    491}
    492
    493/*
    494 * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS.
    495 * - fn is the target callback function.
    496 * - delay_us > 0 is the delay before giving up waiting for targets to
    497 *   begin executing the handler, == 0 specifies indefinite delay.
    498 */
    499static int __smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *),
    500				u64 delay_us, bool safe)
    501{
    502	unsigned long flags;
    503	int me = raw_smp_processor_id();
    504	int ret = 1;
    505
    506	BUG_ON(cpu == me);
    507	BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS);
    508
    509	if (unlikely(!smp_ops))
    510		return 0;
    511
    512	nmi_ipi_lock_start(&flags);
    513	while (nmi_ipi_busy) {
    514		nmi_ipi_unlock_end(&flags);
    515		spin_until_cond(!nmi_ipi_busy);
    516		nmi_ipi_lock_start(&flags);
    517	}
    518	nmi_ipi_busy = true;
    519	nmi_ipi_function = fn;
    520
    521	WARN_ON_ONCE(!cpumask_empty(&nmi_ipi_pending_mask));
    522
    523	if (cpu < 0) {
    524		/* ALL_OTHERS */
    525		cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask);
    526		cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
    527	} else {
    528		cpumask_set_cpu(cpu, &nmi_ipi_pending_mask);
    529	}
    530
    531	nmi_ipi_unlock();
    532
    533	/* Interrupts remain hard disabled */
    534
    535	do_smp_send_nmi_ipi(cpu, safe);
    536
    537	nmi_ipi_lock();
    538	/* nmi_ipi_busy is set here, so unlock/lock is okay */
    539	while (!cpumask_empty(&nmi_ipi_pending_mask)) {
    540		nmi_ipi_unlock();
    541		udelay(1);
    542		nmi_ipi_lock();
    543		if (delay_us) {
    544			delay_us--;
    545			if (!delay_us)
    546				break;
    547		}
    548	}
    549
    550	if (!cpumask_empty(&nmi_ipi_pending_mask)) {
    551		/* Timeout waiting for CPUs to call smp_handle_nmi_ipi */
    552		ret = 0;
    553		cpumask_clear(&nmi_ipi_pending_mask);
    554	}
    555
    556	nmi_ipi_function = NULL;
    557	nmi_ipi_busy = false;
    558
    559	nmi_ipi_unlock_end(&flags);
    560
    561	return ret;
    562}
    563
    564int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
    565{
    566	return __smp_send_nmi_ipi(cpu, fn, delay_us, false);
    567}
    568
    569int smp_send_safe_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
    570{
    571	return __smp_send_nmi_ipi(cpu, fn, delay_us, true);
    572}
    573#endif /* CONFIG_NMI_IPI */
    574
    575#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
    576void tick_broadcast(const struct cpumask *mask)
    577{
    578	unsigned int cpu;
    579
    580	for_each_cpu(cpu, mask)
    581		do_message_pass(cpu, PPC_MSG_TICK_BROADCAST);
    582}
    583#endif
    584
    585#ifdef CONFIG_DEBUGGER
    586static void debugger_ipi_callback(struct pt_regs *regs)
    587{
    588	debugger_ipi(regs);
    589}
    590
    591void smp_send_debugger_break(void)
    592{
    593	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000);
    594}
    595#endif
    596
    597#ifdef CONFIG_KEXEC_CORE
    598void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
    599{
    600	int cpu;
    601
    602	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000);
    603	if (kdump_in_progress() && crash_wake_offline) {
    604		for_each_present_cpu(cpu) {
    605			if (cpu_online(cpu))
    606				continue;
    607			/*
    608			 * crash_ipi_callback will wait for
    609			 * all cpus, including offline CPUs.
    610			 * We don't care about nmi_ipi_function.
    611			 * Offline cpus will jump straight into
    612			 * crash_ipi_callback, we can skip the
    613			 * entire NMI dance and waiting for
    614			 * cpus to clear pending mask, etc.
    615			 */
    616			do_smp_send_nmi_ipi(cpu, false);
    617		}
    618	}
    619}
    620#endif
    621
    622#ifdef CONFIG_NMI_IPI
    623static void crash_stop_this_cpu(struct pt_regs *regs)
    624#else
    625static void crash_stop_this_cpu(void *dummy)
    626#endif
    627{
    628	/*
    629	 * Just busy wait here and avoid marking CPU as offline to ensure
    630	 * register data is captured appropriately.
    631	 */
    632	while (1)
    633		cpu_relax();
    634}
    635
    636void crash_smp_send_stop(void)
    637{
    638	static bool stopped = false;
    639
    640	/*
    641	 * In case of fadump, register data for all CPUs is captured by f/w
    642	 * on ibm,os-term rtas call. Skip IPI callbacks to other CPUs before
    643	 * this rtas call to avoid tricky post processing of those CPUs'
    644	 * backtraces.
    645	 */
    646	if (should_fadump_crash())
    647		return;
    648
    649	if (stopped)
    650		return;
    651
    652	stopped = true;
    653
    654#ifdef CONFIG_NMI_IPI
    655	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_stop_this_cpu, 1000000);
    656#else
    657	smp_call_function(crash_stop_this_cpu, NULL, 0);
    658#endif /* CONFIG_NMI_IPI */
    659}
    660
    661#ifdef CONFIG_NMI_IPI
    662static void nmi_stop_this_cpu(struct pt_regs *regs)
    663{
    664	/*
    665	 * IRQs are already hard disabled by the smp_handle_nmi_ipi.
    666	 */
    667	set_cpu_online(smp_processor_id(), false);
    668
    669	spin_begin();
    670	while (1)
    671		spin_cpu_relax();
    672}
    673
    674void smp_send_stop(void)
    675{
    676	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000);
    677}
    678
    679#else /* CONFIG_NMI_IPI */
    680
    681static void stop_this_cpu(void *dummy)
    682{
    683	hard_irq_disable();
    684
    685	/*
    686	 * Offlining CPUs in stop_this_cpu can result in scheduler warnings,
    687	 * (see commit de6e5d38417e), but printk_safe_flush_on_panic() wants
    688	 * to know other CPUs are offline before it breaks locks to flush
    689	 * printk buffers, in case we panic()ed while holding the lock.
    690	 */
    691	set_cpu_online(smp_processor_id(), false);
    692
    693	spin_begin();
    694	while (1)
    695		spin_cpu_relax();
    696}
    697
    698void smp_send_stop(void)
    699{
    700	static bool stopped = false;
    701
    702	/*
    703	 * Prevent waiting on csd lock from a previous smp_send_stop.
    704	 * This is racy, but in general callers try to do the right
    705	 * thing and only fire off one smp_send_stop (e.g., see
    706	 * kernel/panic.c)
    707	 */
    708	if (stopped)
    709		return;
    710
    711	stopped = true;
    712
    713	smp_call_function(stop_this_cpu, NULL, 0);
    714}
    715#endif /* CONFIG_NMI_IPI */
    716
    717static struct task_struct *current_set[NR_CPUS];
    718
    719static void smp_store_cpu_info(int id)
    720{
    721	per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
    722#ifdef CONFIG_PPC_FSL_BOOK3E
    723	per_cpu(next_tlbcam_idx, id)
    724		= (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
    725#endif
    726}
    727
    728/*
    729 * Relationships between CPUs are maintained in a set of per-cpu cpumasks so
    730 * rather than just passing around the cpumask we pass around a function that
    731 * returns the that cpumask for the given CPU.
    732 */
    733static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int))
    734{
    735	cpumask_set_cpu(i, get_cpumask(j));
    736	cpumask_set_cpu(j, get_cpumask(i));
    737}
    738
    739#ifdef CONFIG_HOTPLUG_CPU
    740static void set_cpus_unrelated(int i, int j,
    741		struct cpumask *(*get_cpumask)(int))
    742{
    743	cpumask_clear_cpu(i, get_cpumask(j));
    744	cpumask_clear_cpu(j, get_cpumask(i));
    745}
    746#endif
    747
    748/*
    749 * Extends set_cpus_related. Instead of setting one CPU at a time in
    750 * dstmask, set srcmask at oneshot. dstmask should be super set of srcmask.
    751 */
    752static void or_cpumasks_related(int i, int j, struct cpumask *(*srcmask)(int),
    753				struct cpumask *(*dstmask)(int))
    754{
    755	struct cpumask *mask;
    756	int k;
    757
    758	mask = srcmask(j);
    759	for_each_cpu(k, srcmask(i))
    760		cpumask_or(dstmask(k), dstmask(k), mask);
    761
    762	if (i == j)
    763		return;
    764
    765	mask = srcmask(i);
    766	for_each_cpu(k, srcmask(j))
    767		cpumask_or(dstmask(k), dstmask(k), mask);
    768}
    769
    770/*
    771 * parse_thread_groups: Parses the "ibm,thread-groups" device tree
    772 *                      property for the CPU device node @dn and stores
    773 *                      the parsed output in the thread_groups_list
    774 *                      structure @tglp.
    775 *
    776 * @dn: The device node of the CPU device.
    777 * @tglp: Pointer to a thread group list structure into which the parsed
    778 *      output of "ibm,thread-groups" is stored.
    779 *
    780 * ibm,thread-groups[0..N-1] array defines which group of threads in
    781 * the CPU-device node can be grouped together based on the property.
    782 *
    783 * This array can represent thread groupings for multiple properties.
    784 *
    785 * ibm,thread-groups[i + 0] tells us the property based on which the
    786 * threads are being grouped together. If this value is 1, it implies
    787 * that the threads in the same group share L1, translation cache. If
    788 * the value is 2, it implies that the threads in the same group share
    789 * the same L2 cache.
    790 *
    791 * ibm,thread-groups[i+1] tells us how many such thread groups exist for the
    792 * property ibm,thread-groups[i]
    793 *
    794 * ibm,thread-groups[i+2] tells us the number of threads in each such
    795 * group.
    796 * Suppose k = (ibm,thread-groups[i+1] * ibm,thread-groups[i+2]), then,
    797 *
    798 * ibm,thread-groups[i+3..i+k+2] (is the list of threads identified by
    799 * "ibm,ppc-interrupt-server#s" arranged as per their membership in
    800 * the grouping.
    801 *
    802 * Example:
    803 * If "ibm,thread-groups" = [1,2,4,8,10,12,14,9,11,13,15,2,2,4,8,10,12,14,9,11,13,15]
    804 * This can be decomposed up into two consecutive arrays:
    805 * a) [1,2,4,8,10,12,14,9,11,13,15]
    806 * b) [2,2,4,8,10,12,14,9,11,13,15]
    807 *
    808 * where in,
    809 *
    810 * a) provides information of Property "1" being shared by "2" groups,
    811 *  each with "4" threads each. The "ibm,ppc-interrupt-server#s" of
    812 *  the first group is {8,10,12,14} and the
    813 *  "ibm,ppc-interrupt-server#s" of the second group is
    814 *  {9,11,13,15}. Property "1" is indicative of the thread in the
    815 *  group sharing L1 cache, translation cache and Instruction Data
    816 *  flow.
    817 *
    818 * b) provides information of Property "2" being shared by "2" groups,
    819 *  each group with "4" threads. The "ibm,ppc-interrupt-server#s" of
    820 *  the first group is {8,10,12,14} and the
    821 *  "ibm,ppc-interrupt-server#s" of the second group is
    822 *  {9,11,13,15}. Property "2" indicates that the threads in each
    823 *  group share the L2-cache.
    824 *
    825 * Returns 0 on success, -EINVAL if the property does not exist,
    826 * -ENODATA if property does not have a value, and -EOVERFLOW if the
    827 * property data isn't large enough.
    828 */
    829static int parse_thread_groups(struct device_node *dn,
    830			       struct thread_groups_list *tglp)
    831{
    832	unsigned int property_idx = 0;
    833	u32 *thread_group_array;
    834	size_t total_threads;
    835	int ret = 0, count;
    836	u32 *thread_list;
    837	int i = 0;
    838
    839	count = of_property_count_u32_elems(dn, "ibm,thread-groups");
    840	thread_group_array = kcalloc(count, sizeof(u32), GFP_KERNEL);
    841	ret = of_property_read_u32_array(dn, "ibm,thread-groups",
    842					 thread_group_array, count);
    843	if (ret)
    844		goto out_free;
    845
    846	while (i < count && property_idx < MAX_THREAD_GROUP_PROPERTIES) {
    847		int j;
    848		struct thread_groups *tg = &tglp->property_tgs[property_idx++];
    849
    850		tg->property = thread_group_array[i];
    851		tg->nr_groups = thread_group_array[i + 1];
    852		tg->threads_per_group = thread_group_array[i + 2];
    853		total_threads = tg->nr_groups * tg->threads_per_group;
    854
    855		thread_list = &thread_group_array[i + 3];
    856
    857		for (j = 0; j < total_threads; j++)
    858			tg->thread_list[j] = thread_list[j];
    859		i = i + 3 + total_threads;
    860	}
    861
    862	tglp->nr_properties = property_idx;
    863
    864out_free:
    865	kfree(thread_group_array);
    866	return ret;
    867}
    868
    869/*
    870 * get_cpu_thread_group_start : Searches the thread group in tg->thread_list
    871 *                              that @cpu belongs to.
    872 *
    873 * @cpu : The logical CPU whose thread group is being searched.
    874 * @tg : The thread-group structure of the CPU node which @cpu belongs
    875 *       to.
    876 *
    877 * Returns the index to tg->thread_list that points to the start
    878 * of the thread_group that @cpu belongs to.
    879 *
    880 * Returns -1 if cpu doesn't belong to any of the groups pointed to by
    881 * tg->thread_list.
    882 */
    883static int get_cpu_thread_group_start(int cpu, struct thread_groups *tg)
    884{
    885	int hw_cpu_id = get_hard_smp_processor_id(cpu);
    886	int i, j;
    887
    888	for (i = 0; i < tg->nr_groups; i++) {
    889		int group_start = i * tg->threads_per_group;
    890
    891		for (j = 0; j < tg->threads_per_group; j++) {
    892			int idx = group_start + j;
    893
    894			if (tg->thread_list[idx] == hw_cpu_id)
    895				return group_start;
    896		}
    897	}
    898
    899	return -1;
    900}
    901
    902static struct thread_groups *__init get_thread_groups(int cpu,
    903						      int group_property,
    904						      int *err)
    905{
    906	struct device_node *dn = of_get_cpu_node(cpu, NULL);
    907	struct thread_groups_list *cpu_tgl = &tgl[cpu];
    908	struct thread_groups *tg = NULL;
    909	int i;
    910	*err = 0;
    911
    912	if (!dn) {
    913		*err = -ENODATA;
    914		return NULL;
    915	}
    916
    917	if (!cpu_tgl->nr_properties) {
    918		*err = parse_thread_groups(dn, cpu_tgl);
    919		if (*err)
    920			goto out;
    921	}
    922
    923	for (i = 0; i < cpu_tgl->nr_properties; i++) {
    924		if (cpu_tgl->property_tgs[i].property == group_property) {
    925			tg = &cpu_tgl->property_tgs[i];
    926			break;
    927		}
    928	}
    929
    930	if (!tg)
    931		*err = -EINVAL;
    932out:
    933	of_node_put(dn);
    934	return tg;
    935}
    936
    937static int __init update_mask_from_threadgroup(cpumask_var_t *mask, struct thread_groups *tg,
    938					       int cpu, int cpu_group_start)
    939{
    940	int first_thread = cpu_first_thread_sibling(cpu);
    941	int i;
    942
    943	zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cpu));
    944
    945	for (i = first_thread; i < first_thread + threads_per_core; i++) {
    946		int i_group_start = get_cpu_thread_group_start(i, tg);
    947
    948		if (unlikely(i_group_start == -1)) {
    949			WARN_ON_ONCE(1);
    950			return -ENODATA;
    951		}
    952
    953		if (i_group_start == cpu_group_start)
    954			cpumask_set_cpu(i, *mask);
    955	}
    956
    957	return 0;
    958}
    959
    960static int __init init_thread_group_cache_map(int cpu, int cache_property)
    961
    962{
    963	int cpu_group_start = -1, err = 0;
    964	struct thread_groups *tg = NULL;
    965	cpumask_var_t *mask = NULL;
    966
    967	if (cache_property != THREAD_GROUP_SHARE_L1 &&
    968	    cache_property != THREAD_GROUP_SHARE_L2_L3)
    969		return -EINVAL;
    970
    971	tg = get_thread_groups(cpu, cache_property, &err);
    972
    973	if (!tg)
    974		return err;
    975
    976	cpu_group_start = get_cpu_thread_group_start(cpu, tg);
    977
    978	if (unlikely(cpu_group_start == -1)) {
    979		WARN_ON_ONCE(1);
    980		return -ENODATA;
    981	}
    982
    983	if (cache_property == THREAD_GROUP_SHARE_L1) {
    984		mask = &per_cpu(thread_group_l1_cache_map, cpu);
    985		update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
    986	}
    987	else if (cache_property == THREAD_GROUP_SHARE_L2_L3) {
    988		mask = &per_cpu(thread_group_l2_cache_map, cpu);
    989		update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
    990		mask = &per_cpu(thread_group_l3_cache_map, cpu);
    991		update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
    992	}
    993
    994
    995	return 0;
    996}
    997
    998static bool shared_caches;
    999
   1000#ifdef CONFIG_SCHED_SMT
   1001/* cpumask of CPUs with asymmetric SMT dependency */
   1002static int powerpc_smt_flags(void)
   1003{
   1004	int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
   1005
   1006	if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
   1007		printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
   1008		flags |= SD_ASYM_PACKING;
   1009	}
   1010	return flags;
   1011}
   1012#endif
   1013
   1014/*
   1015 * P9 has a slightly odd architecture where pairs of cores share an L2 cache.
   1016 * This topology makes it *much* cheaper to migrate tasks between adjacent cores
   1017 * since the migrated task remains cache hot. We want to take advantage of this
   1018 * at the scheduler level so an extra topology level is required.
   1019 */
   1020static int powerpc_shared_cache_flags(void)
   1021{
   1022	return SD_SHARE_PKG_RESOURCES;
   1023}
   1024
   1025/*
   1026 * We can't just pass cpu_l2_cache_mask() directly because
   1027 * returns a non-const pointer and the compiler barfs on that.
   1028 */
   1029static const struct cpumask *shared_cache_mask(int cpu)
   1030{
   1031	return per_cpu(cpu_l2_cache_map, cpu);
   1032}
   1033
   1034#ifdef CONFIG_SCHED_SMT
   1035static const struct cpumask *smallcore_smt_mask(int cpu)
   1036{
   1037	return cpu_smallcore_mask(cpu);
   1038}
   1039#endif
   1040
   1041static struct cpumask *cpu_coregroup_mask(int cpu)
   1042{
   1043	return per_cpu(cpu_coregroup_map, cpu);
   1044}
   1045
   1046static bool has_coregroup_support(void)
   1047{
   1048	return coregroup_enabled;
   1049}
   1050
   1051static const struct cpumask *cpu_mc_mask(int cpu)
   1052{
   1053	return cpu_coregroup_mask(cpu);
   1054}
   1055
   1056static struct sched_domain_topology_level powerpc_topology[] = {
   1057#ifdef CONFIG_SCHED_SMT
   1058	{ cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
   1059#endif
   1060	{ shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) },
   1061	{ cpu_mc_mask, SD_INIT_NAME(MC) },
   1062	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
   1063	{ NULL, },
   1064};
   1065
   1066static int __init init_big_cores(void)
   1067{
   1068	int cpu;
   1069
   1070	for_each_possible_cpu(cpu) {
   1071		int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L1);
   1072
   1073		if (err)
   1074			return err;
   1075
   1076		zalloc_cpumask_var_node(&per_cpu(cpu_smallcore_map, cpu),
   1077					GFP_KERNEL,
   1078					cpu_to_node(cpu));
   1079	}
   1080
   1081	has_big_cores = true;
   1082
   1083	for_each_possible_cpu(cpu) {
   1084		int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L2_L3);
   1085
   1086		if (err)
   1087			return err;
   1088	}
   1089
   1090	thread_group_shares_l2 = true;
   1091	thread_group_shares_l3 = true;
   1092	pr_debug("L2/L3 cache only shared by the threads in the small core\n");
   1093
   1094	return 0;
   1095}
   1096
   1097void __init smp_prepare_cpus(unsigned int max_cpus)
   1098{
   1099	unsigned int cpu;
   1100
   1101	DBG("smp_prepare_cpus\n");
   1102
   1103	/* 
   1104	 * setup_cpu may need to be called on the boot cpu. We haven't
   1105	 * spun any cpus up but lets be paranoid.
   1106	 */
   1107	BUG_ON(boot_cpuid != smp_processor_id());
   1108
   1109	/* Fixup boot cpu */
   1110	smp_store_cpu_info(boot_cpuid);
   1111	cpu_callin_map[boot_cpuid] = 1;
   1112
   1113	for_each_possible_cpu(cpu) {
   1114		zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
   1115					GFP_KERNEL, cpu_to_node(cpu));
   1116		zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu),
   1117					GFP_KERNEL, cpu_to_node(cpu));
   1118		zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
   1119					GFP_KERNEL, cpu_to_node(cpu));
   1120		if (has_coregroup_support())
   1121			zalloc_cpumask_var_node(&per_cpu(cpu_coregroup_map, cpu),
   1122						GFP_KERNEL, cpu_to_node(cpu));
   1123
   1124#ifdef CONFIG_NUMA
   1125		/*
   1126		 * numa_node_id() works after this.
   1127		 */
   1128		if (cpu_present(cpu)) {
   1129			set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]);
   1130			set_cpu_numa_mem(cpu,
   1131				local_memory_node(numa_cpu_lookup_table[cpu]));
   1132		}
   1133#endif
   1134	}
   1135
   1136	/* Init the cpumasks so the boot CPU is related to itself */
   1137	cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
   1138	cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid));
   1139	cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
   1140
   1141	if (has_coregroup_support())
   1142		cpumask_set_cpu(boot_cpuid, cpu_coregroup_mask(boot_cpuid));
   1143
   1144	init_big_cores();
   1145	if (has_big_cores) {
   1146		cpumask_set_cpu(boot_cpuid,
   1147				cpu_smallcore_mask(boot_cpuid));
   1148	}
   1149
   1150	if (cpu_to_chip_id(boot_cpuid) != -1) {
   1151		int idx = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
   1152
   1153		/*
   1154		 * All threads of a core will all belong to the same core,
   1155		 * chip_id_lookup_table will have one entry per core.
   1156		 * Assumption: if boot_cpuid doesn't have a chip-id, then no
   1157		 * other CPUs, will also not have chip-id.
   1158		 */
   1159		chip_id_lookup_table = kcalloc(idx, sizeof(int), GFP_KERNEL);
   1160		if (chip_id_lookup_table)
   1161			memset(chip_id_lookup_table, -1, sizeof(int) * idx);
   1162	}
   1163
   1164	if (smp_ops && smp_ops->probe)
   1165		smp_ops->probe();
   1166}
   1167
   1168void smp_prepare_boot_cpu(void)
   1169{
   1170	BUG_ON(smp_processor_id() != boot_cpuid);
   1171#ifdef CONFIG_PPC64
   1172	paca_ptrs[boot_cpuid]->__current = current;
   1173#endif
   1174	set_numa_node(numa_cpu_lookup_table[boot_cpuid]);
   1175	current_set[boot_cpuid] = current;
   1176}
   1177
   1178#ifdef CONFIG_HOTPLUG_CPU
   1179
   1180int generic_cpu_disable(void)
   1181{
   1182	unsigned int cpu = smp_processor_id();
   1183
   1184	if (cpu == boot_cpuid)
   1185		return -EBUSY;
   1186
   1187	set_cpu_online(cpu, false);
   1188#ifdef CONFIG_PPC64
   1189	vdso_data->processorCount--;
   1190#endif
   1191	/* Update affinity of all IRQs previously aimed at this CPU */
   1192	irq_migrate_all_off_this_cpu();
   1193
   1194	/*
   1195	 * Depending on the details of the interrupt controller, it's possible
   1196	 * that one of the interrupts we just migrated away from this CPU is
   1197	 * actually already pending on this CPU. If we leave it in that state
   1198	 * the interrupt will never be EOI'ed, and will never fire again. So
   1199	 * temporarily enable interrupts here, to allow any pending interrupt to
   1200	 * be received (and EOI'ed), before we take this CPU offline.
   1201	 */
   1202	local_irq_enable();
   1203	mdelay(1);
   1204	local_irq_disable();
   1205
   1206	return 0;
   1207}
   1208
   1209void generic_cpu_die(unsigned int cpu)
   1210{
   1211	int i;
   1212
   1213	for (i = 0; i < 100; i++) {
   1214		smp_rmb();
   1215		if (is_cpu_dead(cpu))
   1216			return;
   1217		msleep(100);
   1218	}
   1219	printk(KERN_ERR "CPU%d didn't die...\n", cpu);
   1220}
   1221
   1222void generic_set_cpu_dead(unsigned int cpu)
   1223{
   1224	per_cpu(cpu_state, cpu) = CPU_DEAD;
   1225}
   1226
   1227/*
   1228 * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
   1229 * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
   1230 * which makes the delay in generic_cpu_die() not happen.
   1231 */
   1232void generic_set_cpu_up(unsigned int cpu)
   1233{
   1234	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
   1235}
   1236
   1237int generic_check_cpu_restart(unsigned int cpu)
   1238{
   1239	return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
   1240}
   1241
   1242int is_cpu_dead(unsigned int cpu)
   1243{
   1244	return per_cpu(cpu_state, cpu) == CPU_DEAD;
   1245}
   1246
   1247static bool secondaries_inhibited(void)
   1248{
   1249	return kvm_hv_mode_active();
   1250}
   1251
   1252#else /* HOTPLUG_CPU */
   1253
   1254#define secondaries_inhibited()		0
   1255
   1256#endif
   1257
   1258static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
   1259{
   1260#ifdef CONFIG_PPC64
   1261	paca_ptrs[cpu]->__current = idle;
   1262	paca_ptrs[cpu]->kstack = (unsigned long)task_stack_page(idle) +
   1263				 THREAD_SIZE - STACK_FRAME_OVERHEAD;
   1264#endif
   1265	task_thread_info(idle)->cpu = cpu;
   1266	secondary_current = current_set[cpu] = idle;
   1267}
   1268
   1269int __cpu_up(unsigned int cpu, struct task_struct *tidle)
   1270{
   1271	int rc, c;
   1272
   1273	/*
   1274	 * Don't allow secondary threads to come online if inhibited
   1275	 */
   1276	if (threads_per_core > 1 && secondaries_inhibited() &&
   1277	    cpu_thread_in_subcore(cpu))
   1278		return -EBUSY;
   1279
   1280	if (smp_ops == NULL ||
   1281	    (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
   1282		return -EINVAL;
   1283
   1284	cpu_idle_thread_init(cpu, tidle);
   1285
   1286	/*
   1287	 * The platform might need to allocate resources prior to bringing
   1288	 * up the CPU
   1289	 */
   1290	if (smp_ops->prepare_cpu) {
   1291		rc = smp_ops->prepare_cpu(cpu);
   1292		if (rc)
   1293			return rc;
   1294	}
   1295
   1296	/* Make sure callin-map entry is 0 (can be leftover a CPU
   1297	 * hotplug
   1298	 */
   1299	cpu_callin_map[cpu] = 0;
   1300
   1301	/* The information for processor bringup must
   1302	 * be written out to main store before we release
   1303	 * the processor.
   1304	 */
   1305	smp_mb();
   1306
   1307	/* wake up cpus */
   1308	DBG("smp: kicking cpu %d\n", cpu);
   1309	rc = smp_ops->kick_cpu(cpu);
   1310	if (rc) {
   1311		pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
   1312		return rc;
   1313	}
   1314
   1315	/*
   1316	 * wait to see if the cpu made a callin (is actually up).
   1317	 * use this value that I found through experimentation.
   1318	 * -- Cort
   1319	 */
   1320	if (system_state < SYSTEM_RUNNING)
   1321		for (c = 50000; c && !cpu_callin_map[cpu]; c--)
   1322			udelay(100);
   1323#ifdef CONFIG_HOTPLUG_CPU
   1324	else
   1325		/*
   1326		 * CPUs can take much longer to come up in the
   1327		 * hotplug case.  Wait five seconds.
   1328		 */
   1329		for (c = 5000; c && !cpu_callin_map[cpu]; c--)
   1330			msleep(1);
   1331#endif
   1332
   1333	if (!cpu_callin_map[cpu]) {
   1334		printk(KERN_ERR "Processor %u is stuck.\n", cpu);
   1335		return -ENOENT;
   1336	}
   1337
   1338	DBG("Processor %u found.\n", cpu);
   1339
   1340	if (smp_ops->give_timebase)
   1341		smp_ops->give_timebase();
   1342
   1343	/* Wait until cpu puts itself in the online & active maps */
   1344	spin_until_cond(cpu_online(cpu));
   1345
   1346	return 0;
   1347}
   1348
   1349/* Return the value of the reg property corresponding to the given
   1350 * logical cpu.
   1351 */
   1352int cpu_to_core_id(int cpu)
   1353{
   1354	struct device_node *np;
   1355	int id = -1;
   1356
   1357	np = of_get_cpu_node(cpu, NULL);
   1358	if (!np)
   1359		goto out;
   1360
   1361	id = of_get_cpu_hwid(np, 0);
   1362out:
   1363	of_node_put(np);
   1364	return id;
   1365}
   1366EXPORT_SYMBOL_GPL(cpu_to_core_id);
   1367
   1368/* Helper routines for cpu to core mapping */
   1369int cpu_core_index_of_thread(int cpu)
   1370{
   1371	return cpu >> threads_shift;
   1372}
   1373EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
   1374
   1375int cpu_first_thread_of_core(int core)
   1376{
   1377	return core << threads_shift;
   1378}
   1379EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
   1380
   1381/* Must be called when no change can occur to cpu_present_mask,
   1382 * i.e. during cpu online or offline.
   1383 */
   1384static struct device_node *cpu_to_l2cache(int cpu)
   1385{
   1386	struct device_node *np;
   1387	struct device_node *cache;
   1388
   1389	if (!cpu_present(cpu))
   1390		return NULL;
   1391
   1392	np = of_get_cpu_node(cpu, NULL);
   1393	if (np == NULL)
   1394		return NULL;
   1395
   1396	cache = of_find_next_cache_node(np);
   1397
   1398	of_node_put(np);
   1399
   1400	return cache;
   1401}
   1402
   1403static bool update_mask_by_l2(int cpu, cpumask_var_t *mask)
   1404{
   1405	struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
   1406	struct device_node *l2_cache, *np;
   1407	int i;
   1408
   1409	if (has_big_cores)
   1410		submask_fn = cpu_smallcore_mask;
   1411
   1412	/*
   1413	 * If the threads in a thread-group share L2 cache, then the
   1414	 * L2-mask can be obtained from thread_group_l2_cache_map.
   1415	 */
   1416	if (thread_group_shares_l2) {
   1417		cpumask_set_cpu(cpu, cpu_l2_cache_mask(cpu));
   1418
   1419		for_each_cpu(i, per_cpu(thread_group_l2_cache_map, cpu)) {
   1420			if (cpu_online(i))
   1421				set_cpus_related(i, cpu, cpu_l2_cache_mask);
   1422		}
   1423
   1424		/* Verify that L1-cache siblings are a subset of L2 cache-siblings */
   1425		if (!cpumask_equal(submask_fn(cpu), cpu_l2_cache_mask(cpu)) &&
   1426		    !cpumask_subset(submask_fn(cpu), cpu_l2_cache_mask(cpu))) {
   1427			pr_warn_once("CPU %d : Inconsistent L1 and L2 cache siblings\n",
   1428				     cpu);
   1429		}
   1430
   1431		return true;
   1432	}
   1433
   1434	l2_cache = cpu_to_l2cache(cpu);
   1435	if (!l2_cache || !*mask) {
   1436		/* Assume only core siblings share cache with this CPU */
   1437		for_each_cpu(i, cpu_sibling_mask(cpu))
   1438			set_cpus_related(cpu, i, cpu_l2_cache_mask);
   1439
   1440		return false;
   1441	}
   1442
   1443	cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu));
   1444
   1445	/* Update l2-cache mask with all the CPUs that are part of submask */
   1446	or_cpumasks_related(cpu, cpu, submask_fn, cpu_l2_cache_mask);
   1447
   1448	/* Skip all CPUs already part of current CPU l2-cache mask */
   1449	cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(cpu));
   1450
   1451	for_each_cpu(i, *mask) {
   1452		/*
   1453		 * when updating the marks the current CPU has not been marked
   1454		 * online, but we need to update the cache masks
   1455		 */
   1456		np = cpu_to_l2cache(i);
   1457
   1458		/* Skip all CPUs already part of current CPU l2-cache */
   1459		if (np == l2_cache) {
   1460			or_cpumasks_related(cpu, i, submask_fn, cpu_l2_cache_mask);
   1461			cpumask_andnot(*mask, *mask, submask_fn(i));
   1462		} else {
   1463			cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(i));
   1464		}
   1465
   1466		of_node_put(np);
   1467	}
   1468	of_node_put(l2_cache);
   1469
   1470	return true;
   1471}
   1472
   1473#ifdef CONFIG_HOTPLUG_CPU
   1474static void remove_cpu_from_masks(int cpu)
   1475{
   1476	struct cpumask *(*mask_fn)(int) = cpu_sibling_mask;
   1477	int i;
   1478
   1479	unmap_cpu_from_node(cpu);
   1480
   1481	if (shared_caches)
   1482		mask_fn = cpu_l2_cache_mask;
   1483
   1484	for_each_cpu(i, mask_fn(cpu)) {
   1485		set_cpus_unrelated(cpu, i, cpu_l2_cache_mask);
   1486		set_cpus_unrelated(cpu, i, cpu_sibling_mask);
   1487		if (has_big_cores)
   1488			set_cpus_unrelated(cpu, i, cpu_smallcore_mask);
   1489	}
   1490
   1491	for_each_cpu(i, cpu_core_mask(cpu))
   1492		set_cpus_unrelated(cpu, i, cpu_core_mask);
   1493
   1494	if (has_coregroup_support()) {
   1495		for_each_cpu(i, cpu_coregroup_mask(cpu))
   1496			set_cpus_unrelated(cpu, i, cpu_coregroup_mask);
   1497	}
   1498}
   1499#endif
   1500
   1501static inline void add_cpu_to_smallcore_masks(int cpu)
   1502{
   1503	int i;
   1504
   1505	if (!has_big_cores)
   1506		return;
   1507
   1508	cpumask_set_cpu(cpu, cpu_smallcore_mask(cpu));
   1509
   1510	for_each_cpu(i, per_cpu(thread_group_l1_cache_map, cpu)) {
   1511		if (cpu_online(i))
   1512			set_cpus_related(i, cpu, cpu_smallcore_mask);
   1513	}
   1514}
   1515
   1516static void update_coregroup_mask(int cpu, cpumask_var_t *mask)
   1517{
   1518	struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
   1519	int coregroup_id = cpu_to_coregroup_id(cpu);
   1520	int i;
   1521
   1522	if (shared_caches)
   1523		submask_fn = cpu_l2_cache_mask;
   1524
   1525	if (!*mask) {
   1526		/* Assume only siblings are part of this CPU's coregroup */
   1527		for_each_cpu(i, submask_fn(cpu))
   1528			set_cpus_related(cpu, i, cpu_coregroup_mask);
   1529
   1530		return;
   1531	}
   1532
   1533	cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu));
   1534
   1535	/* Update coregroup mask with all the CPUs that are part of submask */
   1536	or_cpumasks_related(cpu, cpu, submask_fn, cpu_coregroup_mask);
   1537
   1538	/* Skip all CPUs already part of coregroup mask */
   1539	cpumask_andnot(*mask, *mask, cpu_coregroup_mask(cpu));
   1540
   1541	for_each_cpu(i, *mask) {
   1542		/* Skip all CPUs not part of this coregroup */
   1543		if (coregroup_id == cpu_to_coregroup_id(i)) {
   1544			or_cpumasks_related(cpu, i, submask_fn, cpu_coregroup_mask);
   1545			cpumask_andnot(*mask, *mask, submask_fn(i));
   1546		} else {
   1547			cpumask_andnot(*mask, *mask, cpu_coregroup_mask(i));
   1548		}
   1549	}
   1550}
   1551
   1552static void add_cpu_to_masks(int cpu)
   1553{
   1554	struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
   1555	int first_thread = cpu_first_thread_sibling(cpu);
   1556	cpumask_var_t mask;
   1557	int chip_id = -1;
   1558	bool ret;
   1559	int i;
   1560
   1561	/*
   1562	 * This CPU will not be in the online mask yet so we need to manually
   1563	 * add it to it's own thread sibling mask.
   1564	 */
   1565	map_cpu_to_node(cpu, cpu_to_node(cpu));
   1566	cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
   1567	cpumask_set_cpu(cpu, cpu_core_mask(cpu));
   1568
   1569	for (i = first_thread; i < first_thread + threads_per_core; i++)
   1570		if (cpu_online(i))
   1571			set_cpus_related(i, cpu, cpu_sibling_mask);
   1572
   1573	add_cpu_to_smallcore_masks(cpu);
   1574
   1575	/* In CPU-hotplug path, hence use GFP_ATOMIC */
   1576	ret = alloc_cpumask_var_node(&mask, GFP_ATOMIC, cpu_to_node(cpu));
   1577	update_mask_by_l2(cpu, &mask);
   1578
   1579	if (has_coregroup_support())
   1580		update_coregroup_mask(cpu, &mask);
   1581
   1582	if (chip_id_lookup_table && ret)
   1583		chip_id = cpu_to_chip_id(cpu);
   1584
   1585	if (shared_caches)
   1586		submask_fn = cpu_l2_cache_mask;
   1587
   1588	/* Update core_mask with all the CPUs that are part of submask */
   1589	or_cpumasks_related(cpu, cpu, submask_fn, cpu_core_mask);
   1590
   1591	/* Skip all CPUs already part of current CPU core mask */
   1592	cpumask_andnot(mask, cpu_online_mask, cpu_core_mask(cpu));
   1593
   1594	/* If chip_id is -1; limit the cpu_core_mask to within DIE*/
   1595	if (chip_id == -1)
   1596		cpumask_and(mask, mask, cpu_cpu_mask(cpu));
   1597
   1598	for_each_cpu(i, mask) {
   1599		if (chip_id == cpu_to_chip_id(i)) {
   1600			or_cpumasks_related(cpu, i, submask_fn, cpu_core_mask);
   1601			cpumask_andnot(mask, mask, submask_fn(i));
   1602		} else {
   1603			cpumask_andnot(mask, mask, cpu_core_mask(i));
   1604		}
   1605	}
   1606
   1607	free_cpumask_var(mask);
   1608}
   1609
   1610/* Activate a secondary processor. */
   1611void start_secondary(void *unused)
   1612{
   1613	unsigned int cpu = raw_smp_processor_id();
   1614
   1615	/* PPC64 calls setup_kup() in early_setup_secondary() */
   1616	if (IS_ENABLED(CONFIG_PPC32))
   1617		setup_kup();
   1618
   1619	mmgrab(&init_mm);
   1620	current->active_mm = &init_mm;
   1621
   1622	smp_store_cpu_info(cpu);
   1623	set_dec(tb_ticks_per_jiffy);
   1624	rcu_cpu_starting(cpu);
   1625	cpu_callin_map[cpu] = 1;
   1626
   1627	if (smp_ops->setup_cpu)
   1628		smp_ops->setup_cpu(cpu);
   1629	if (smp_ops->take_timebase)
   1630		smp_ops->take_timebase();
   1631
   1632	secondary_cpu_time_init();
   1633
   1634#ifdef CONFIG_PPC64
   1635	if (system_state == SYSTEM_RUNNING)
   1636		vdso_data->processorCount++;
   1637
   1638	vdso_getcpu_init();
   1639#endif
   1640	set_numa_node(numa_cpu_lookup_table[cpu]);
   1641	set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu]));
   1642
   1643	/* Update topology CPU masks */
   1644	add_cpu_to_masks(cpu);
   1645
   1646	/*
   1647	 * Check for any shared caches. Note that this must be done on a
   1648	 * per-core basis because one core in the pair might be disabled.
   1649	 */
   1650	if (!shared_caches) {
   1651		struct cpumask *(*sibling_mask)(int) = cpu_sibling_mask;
   1652		struct cpumask *mask = cpu_l2_cache_mask(cpu);
   1653
   1654		if (has_big_cores)
   1655			sibling_mask = cpu_smallcore_mask;
   1656
   1657		if (cpumask_weight(mask) > cpumask_weight(sibling_mask(cpu)))
   1658			shared_caches = true;
   1659	}
   1660
   1661	smp_wmb();
   1662	notify_cpu_starting(cpu);
   1663	set_cpu_online(cpu, true);
   1664
   1665	boot_init_stack_canary();
   1666
   1667	local_irq_enable();
   1668
   1669	/* We can enable ftrace for secondary cpus now */
   1670	this_cpu_enable_ftrace();
   1671
   1672	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
   1673
   1674	BUG();
   1675}
   1676
   1677#ifdef CONFIG_PROFILING
   1678int setup_profiling_timer(unsigned int multiplier)
   1679{
   1680	return 0;
   1681}
   1682#endif
   1683
   1684static void __init fixup_topology(void)
   1685{
   1686	int i;
   1687
   1688#ifdef CONFIG_SCHED_SMT
   1689	if (has_big_cores) {
   1690		pr_info("Big cores detected but using small core scheduling\n");
   1691		powerpc_topology[smt_idx].mask = smallcore_smt_mask;
   1692	}
   1693#endif
   1694
   1695	if (!has_coregroup_support())
   1696		powerpc_topology[mc_idx].mask = powerpc_topology[cache_idx].mask;
   1697
   1698	/*
   1699	 * Try to consolidate topology levels here instead of
   1700	 * allowing scheduler to degenerate.
   1701	 * - Dont consolidate if masks are different.
   1702	 * - Dont consolidate if sd_flags exists and are different.
   1703	 */
   1704	for (i = 1; i <= die_idx; i++) {
   1705		if (powerpc_topology[i].mask != powerpc_topology[i - 1].mask)
   1706			continue;
   1707
   1708		if (powerpc_topology[i].sd_flags && powerpc_topology[i - 1].sd_flags &&
   1709				powerpc_topology[i].sd_flags != powerpc_topology[i - 1].sd_flags)
   1710			continue;
   1711
   1712		if (!powerpc_topology[i - 1].sd_flags)
   1713			powerpc_topology[i - 1].sd_flags = powerpc_topology[i].sd_flags;
   1714
   1715		powerpc_topology[i].mask = powerpc_topology[i + 1].mask;
   1716		powerpc_topology[i].sd_flags = powerpc_topology[i + 1].sd_flags;
   1717#ifdef CONFIG_SCHED_DEBUG
   1718		powerpc_topology[i].name = powerpc_topology[i + 1].name;
   1719#endif
   1720	}
   1721}
   1722
   1723void __init smp_cpus_done(unsigned int max_cpus)
   1724{
   1725	/*
   1726	 * We are running pinned to the boot CPU, see rest_init().
   1727	 */
   1728	if (smp_ops && smp_ops->setup_cpu)
   1729		smp_ops->setup_cpu(boot_cpuid);
   1730
   1731	if (smp_ops && smp_ops->bringup_done)
   1732		smp_ops->bringup_done();
   1733
   1734	dump_numa_cpu_topology();
   1735
   1736	fixup_topology();
   1737	set_sched_topology(powerpc_topology);
   1738}
   1739
   1740#ifdef CONFIG_HOTPLUG_CPU
   1741int __cpu_disable(void)
   1742{
   1743	int cpu = smp_processor_id();
   1744	int err;
   1745
   1746	if (!smp_ops->cpu_disable)
   1747		return -ENOSYS;
   1748
   1749	this_cpu_disable_ftrace();
   1750
   1751	err = smp_ops->cpu_disable();
   1752	if (err)
   1753		return err;
   1754
   1755	/* Update sibling maps */
   1756	remove_cpu_from_masks(cpu);
   1757
   1758	return 0;
   1759}
   1760
   1761void __cpu_die(unsigned int cpu)
   1762{
   1763	if (smp_ops->cpu_die)
   1764		smp_ops->cpu_die(cpu);
   1765}
   1766
   1767void arch_cpu_idle_dead(void)
   1768{
   1769	/*
   1770	 * Disable on the down path. This will be re-enabled by
   1771	 * start_secondary() via start_secondary_resume() below
   1772	 */
   1773	this_cpu_disable_ftrace();
   1774
   1775	if (smp_ops->cpu_offline_self)
   1776		smp_ops->cpu_offline_self();
   1777
   1778	/* If we return, we re-enter start_secondary */
   1779	start_secondary_resume();
   1780}
   1781
   1782#endif