cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

time.c (28704B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * Common time routines among all ppc machines.
      4 *
      5 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
      6 * Paul Mackerras' version and mine for PReP and Pmac.
      7 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
      8 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
      9 *
     10 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
     11 * to make clock more stable (2.4.0-test5). The only thing
     12 * that this code assumes is that the timebases have been synchronized
     13 * by firmware on SMP and are never stopped (never do sleep
     14 * on SMP then, nap and doze are OK).
     15 * 
     16 * Speeded up do_gettimeofday by getting rid of references to
     17 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
     18 *
     19 * TODO (not necessarily in this file):
     20 * - improve precision and reproducibility of timebase frequency
     21 * measurement at boot time.
     22 * - for astronomical applications: add a new function to get
     23 * non ambiguous timestamps even around leap seconds. This needs
     24 * a new timestamp format and a good name.
     25 *
     26 * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
     27 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
     28 */
     29
     30#include <linux/errno.h>
     31#include <linux/export.h>
     32#include <linux/sched.h>
     33#include <linux/sched/clock.h>
     34#include <linux/sched/cputime.h>
     35#include <linux/kernel.h>
     36#include <linux/param.h>
     37#include <linux/string.h>
     38#include <linux/mm.h>
     39#include <linux/interrupt.h>
     40#include <linux/timex.h>
     41#include <linux/kernel_stat.h>
     42#include <linux/time.h>
     43#include <linux/init.h>
     44#include <linux/profile.h>
     45#include <linux/cpu.h>
     46#include <linux/security.h>
     47#include <linux/percpu.h>
     48#include <linux/rtc.h>
     49#include <linux/jiffies.h>
     50#include <linux/posix-timers.h>
     51#include <linux/irq.h>
     52#include <linux/delay.h>
     53#include <linux/irq_work.h>
     54#include <linux/of_clk.h>
     55#include <linux/suspend.h>
     56#include <linux/processor.h>
     57#include <linux/mc146818rtc.h>
     58#include <linux/platform_device.h>
     59
     60#include <asm/trace.h>
     61#include <asm/interrupt.h>
     62#include <asm/io.h>
     63#include <asm/nvram.h>
     64#include <asm/cache.h>
     65#include <asm/machdep.h>
     66#include <linux/uaccess.h>
     67#include <asm/time.h>
     68#include <asm/irq.h>
     69#include <asm/div64.h>
     70#include <asm/smp.h>
     71#include <asm/vdso_datapage.h>
     72#include <asm/firmware.h>
     73#include <asm/mce.h>
     74
     75/* powerpc clocksource/clockevent code */
     76
     77#include <linux/clockchips.h>
     78#include <linux/timekeeper_internal.h>
     79
     80static u64 timebase_read(struct clocksource *);
     81static struct clocksource clocksource_timebase = {
     82	.name         = "timebase",
     83	.rating       = 400,
     84	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
     85	.mask         = CLOCKSOURCE_MASK(64),
     86	.read         = timebase_read,
     87	.vdso_clock_mode	= VDSO_CLOCKMODE_ARCHTIMER,
     88};
     89
     90#define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF
     91u64 decrementer_max = DECREMENTER_DEFAULT_MAX;
     92EXPORT_SYMBOL_GPL(decrementer_max); /* for KVM HDEC */
     93
     94static int decrementer_set_next_event(unsigned long evt,
     95				      struct clock_event_device *dev);
     96static int decrementer_shutdown(struct clock_event_device *evt);
     97
     98struct clock_event_device decrementer_clockevent = {
     99	.name			= "decrementer",
    100	.rating			= 200,
    101	.irq			= 0,
    102	.set_next_event		= decrementer_set_next_event,
    103	.set_state_oneshot_stopped = decrementer_shutdown,
    104	.set_state_shutdown	= decrementer_shutdown,
    105	.tick_resume		= decrementer_shutdown,
    106	.features		= CLOCK_EVT_FEAT_ONESHOT |
    107				  CLOCK_EVT_FEAT_C3STOP,
    108};
    109EXPORT_SYMBOL(decrementer_clockevent);
    110
    111/*
    112 * This always puts next_tb beyond now, so the clock event will never fire
    113 * with the usual comparison, no need for a separate test for stopped.
    114 */
    115#define DEC_CLOCKEVENT_STOPPED ~0ULL
    116DEFINE_PER_CPU(u64, decrementers_next_tb) = DEC_CLOCKEVENT_STOPPED;
    117EXPORT_SYMBOL_GPL(decrementers_next_tb);
    118static DEFINE_PER_CPU(struct clock_event_device, decrementers);
    119
    120#define XSEC_PER_SEC (1024*1024)
    121
    122#ifdef CONFIG_PPC64
    123#define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
    124#else
    125/* compute ((xsec << 12) * max) >> 32 */
    126#define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
    127#endif
    128
    129unsigned long tb_ticks_per_jiffy;
    130unsigned long tb_ticks_per_usec = 100; /* sane default */
    131EXPORT_SYMBOL(tb_ticks_per_usec);
    132unsigned long tb_ticks_per_sec;
    133EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
    134
    135DEFINE_SPINLOCK(rtc_lock);
    136EXPORT_SYMBOL_GPL(rtc_lock);
    137
    138static u64 tb_to_ns_scale __read_mostly;
    139static unsigned tb_to_ns_shift __read_mostly;
    140static u64 boot_tb __read_mostly;
    141
    142extern struct timezone sys_tz;
    143static long timezone_offset;
    144
    145unsigned long ppc_proc_freq;
    146EXPORT_SYMBOL_GPL(ppc_proc_freq);
    147unsigned long ppc_tb_freq;
    148EXPORT_SYMBOL_GPL(ppc_tb_freq);
    149
    150bool tb_invalid;
    151
    152#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
    153/*
    154 * Factor for converting from cputime_t (timebase ticks) to
    155 * microseconds. This is stored as 0.64 fixed-point binary fraction.
    156 */
    157u64 __cputime_usec_factor;
    158EXPORT_SYMBOL(__cputime_usec_factor);
    159
    160static void calc_cputime_factors(void)
    161{
    162	struct div_result res;
    163
    164	div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
    165	__cputime_usec_factor = res.result_low;
    166}
    167
    168/*
    169 * Read the SPURR on systems that have it, otherwise the PURR,
    170 * or if that doesn't exist return the timebase value passed in.
    171 */
    172static inline unsigned long read_spurr(unsigned long tb)
    173{
    174	if (cpu_has_feature(CPU_FTR_SPURR))
    175		return mfspr(SPRN_SPURR);
    176	if (cpu_has_feature(CPU_FTR_PURR))
    177		return mfspr(SPRN_PURR);
    178	return tb;
    179}
    180
    181#ifdef CONFIG_PPC_SPLPAR
    182
    183#include <asm/dtl.h>
    184
    185void (*dtl_consumer)(struct dtl_entry *, u64);
    186
    187/*
    188 * Scan the dispatch trace log and count up the stolen time.
    189 * Should be called with interrupts disabled.
    190 */
    191static u64 scan_dispatch_log(u64 stop_tb)
    192{
    193	u64 i = local_paca->dtl_ridx;
    194	struct dtl_entry *dtl = local_paca->dtl_curr;
    195	struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
    196	struct lppaca *vpa = local_paca->lppaca_ptr;
    197	u64 tb_delta;
    198	u64 stolen = 0;
    199	u64 dtb;
    200
    201	if (!dtl)
    202		return 0;
    203
    204	if (i == be64_to_cpu(vpa->dtl_idx))
    205		return 0;
    206	while (i < be64_to_cpu(vpa->dtl_idx)) {
    207		dtb = be64_to_cpu(dtl->timebase);
    208		tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
    209			be32_to_cpu(dtl->ready_to_enqueue_time);
    210		barrier();
    211		if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
    212			/* buffer has overflowed */
    213			i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
    214			dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
    215			continue;
    216		}
    217		if (dtb > stop_tb)
    218			break;
    219		if (dtl_consumer)
    220			dtl_consumer(dtl, i);
    221		stolen += tb_delta;
    222		++i;
    223		++dtl;
    224		if (dtl == dtl_end)
    225			dtl = local_paca->dispatch_log;
    226	}
    227	local_paca->dtl_ridx = i;
    228	local_paca->dtl_curr = dtl;
    229	return stolen;
    230}
    231
    232/*
    233 * Accumulate stolen time by scanning the dispatch trace log.
    234 * Called on entry from user mode.
    235 */
    236void notrace accumulate_stolen_time(void)
    237{
    238	u64 sst, ust;
    239	struct cpu_accounting_data *acct = &local_paca->accounting;
    240
    241	sst = scan_dispatch_log(acct->starttime_user);
    242	ust = scan_dispatch_log(acct->starttime);
    243	acct->stime -= sst;
    244	acct->utime -= ust;
    245	acct->steal_time += ust + sst;
    246}
    247
    248static inline u64 calculate_stolen_time(u64 stop_tb)
    249{
    250	if (!firmware_has_feature(FW_FEATURE_SPLPAR))
    251		return 0;
    252
    253	if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx))
    254		return scan_dispatch_log(stop_tb);
    255
    256	return 0;
    257}
    258
    259#else /* CONFIG_PPC_SPLPAR */
    260static inline u64 calculate_stolen_time(u64 stop_tb)
    261{
    262	return 0;
    263}
    264
    265#endif /* CONFIG_PPC_SPLPAR */
    266
    267/*
    268 * Account time for a transition between system, hard irq
    269 * or soft irq state.
    270 */
    271static unsigned long vtime_delta_scaled(struct cpu_accounting_data *acct,
    272					unsigned long now, unsigned long stime)
    273{
    274	unsigned long stime_scaled = 0;
    275#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
    276	unsigned long nowscaled, deltascaled;
    277	unsigned long utime, utime_scaled;
    278
    279	nowscaled = read_spurr(now);
    280	deltascaled = nowscaled - acct->startspurr;
    281	acct->startspurr = nowscaled;
    282	utime = acct->utime - acct->utime_sspurr;
    283	acct->utime_sspurr = acct->utime;
    284
    285	/*
    286	 * Because we don't read the SPURR on every kernel entry/exit,
    287	 * deltascaled includes both user and system SPURR ticks.
    288	 * Apportion these ticks to system SPURR ticks and user
    289	 * SPURR ticks in the same ratio as the system time (delta)
    290	 * and user time (udelta) values obtained from the timebase
    291	 * over the same interval.  The system ticks get accounted here;
    292	 * the user ticks get saved up in paca->user_time_scaled to be
    293	 * used by account_process_tick.
    294	 */
    295	stime_scaled = stime;
    296	utime_scaled = utime;
    297	if (deltascaled != stime + utime) {
    298		if (utime) {
    299			stime_scaled = deltascaled * stime / (stime + utime);
    300			utime_scaled = deltascaled - stime_scaled;
    301		} else {
    302			stime_scaled = deltascaled;
    303		}
    304	}
    305	acct->utime_scaled += utime_scaled;
    306#endif
    307
    308	return stime_scaled;
    309}
    310
    311static unsigned long vtime_delta(struct cpu_accounting_data *acct,
    312				 unsigned long *stime_scaled,
    313				 unsigned long *steal_time)
    314{
    315	unsigned long now, stime;
    316
    317	WARN_ON_ONCE(!irqs_disabled());
    318
    319	now = mftb();
    320	stime = now - acct->starttime;
    321	acct->starttime = now;
    322
    323	*stime_scaled = vtime_delta_scaled(acct, now, stime);
    324
    325	*steal_time = calculate_stolen_time(now);
    326
    327	return stime;
    328}
    329
    330static void vtime_delta_kernel(struct cpu_accounting_data *acct,
    331			       unsigned long *stime, unsigned long *stime_scaled)
    332{
    333	unsigned long steal_time;
    334
    335	*stime = vtime_delta(acct, stime_scaled, &steal_time);
    336	*stime -= min(*stime, steal_time);
    337	acct->steal_time += steal_time;
    338}
    339
    340void vtime_account_kernel(struct task_struct *tsk)
    341{
    342	struct cpu_accounting_data *acct = get_accounting(tsk);
    343	unsigned long stime, stime_scaled;
    344
    345	vtime_delta_kernel(acct, &stime, &stime_scaled);
    346
    347	if (tsk->flags & PF_VCPU) {
    348		acct->gtime += stime;
    349#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
    350		acct->utime_scaled += stime_scaled;
    351#endif
    352	} else {
    353		acct->stime += stime;
    354#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
    355		acct->stime_scaled += stime_scaled;
    356#endif
    357	}
    358}
    359EXPORT_SYMBOL_GPL(vtime_account_kernel);
    360
    361void vtime_account_idle(struct task_struct *tsk)
    362{
    363	unsigned long stime, stime_scaled, steal_time;
    364	struct cpu_accounting_data *acct = get_accounting(tsk);
    365
    366	stime = vtime_delta(acct, &stime_scaled, &steal_time);
    367	acct->idle_time += stime + steal_time;
    368}
    369
    370static void vtime_account_irq_field(struct cpu_accounting_data *acct,
    371				    unsigned long *field)
    372{
    373	unsigned long stime, stime_scaled;
    374
    375	vtime_delta_kernel(acct, &stime, &stime_scaled);
    376	*field += stime;
    377#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
    378	acct->stime_scaled += stime_scaled;
    379#endif
    380}
    381
    382void vtime_account_softirq(struct task_struct *tsk)
    383{
    384	struct cpu_accounting_data *acct = get_accounting(tsk);
    385	vtime_account_irq_field(acct, &acct->softirq_time);
    386}
    387
    388void vtime_account_hardirq(struct task_struct *tsk)
    389{
    390	struct cpu_accounting_data *acct = get_accounting(tsk);
    391	vtime_account_irq_field(acct, &acct->hardirq_time);
    392}
    393
    394static void vtime_flush_scaled(struct task_struct *tsk,
    395			       struct cpu_accounting_data *acct)
    396{
    397#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
    398	if (acct->utime_scaled)
    399		tsk->utimescaled += cputime_to_nsecs(acct->utime_scaled);
    400	if (acct->stime_scaled)
    401		tsk->stimescaled += cputime_to_nsecs(acct->stime_scaled);
    402
    403	acct->utime_scaled = 0;
    404	acct->utime_sspurr = 0;
    405	acct->stime_scaled = 0;
    406#endif
    407}
    408
    409/*
    410 * Account the whole cputime accumulated in the paca
    411 * Must be called with interrupts disabled.
    412 * Assumes that vtime_account_kernel/idle() has been called
    413 * recently (i.e. since the last entry from usermode) so that
    414 * get_paca()->user_time_scaled is up to date.
    415 */
    416void vtime_flush(struct task_struct *tsk)
    417{
    418	struct cpu_accounting_data *acct = get_accounting(tsk);
    419
    420	if (acct->utime)
    421		account_user_time(tsk, cputime_to_nsecs(acct->utime));
    422
    423	if (acct->gtime)
    424		account_guest_time(tsk, cputime_to_nsecs(acct->gtime));
    425
    426	if (IS_ENABLED(CONFIG_PPC_SPLPAR) && acct->steal_time) {
    427		account_steal_time(cputime_to_nsecs(acct->steal_time));
    428		acct->steal_time = 0;
    429	}
    430
    431	if (acct->idle_time)
    432		account_idle_time(cputime_to_nsecs(acct->idle_time));
    433
    434	if (acct->stime)
    435		account_system_index_time(tsk, cputime_to_nsecs(acct->stime),
    436					  CPUTIME_SYSTEM);
    437
    438	if (acct->hardirq_time)
    439		account_system_index_time(tsk, cputime_to_nsecs(acct->hardirq_time),
    440					  CPUTIME_IRQ);
    441	if (acct->softirq_time)
    442		account_system_index_time(tsk, cputime_to_nsecs(acct->softirq_time),
    443					  CPUTIME_SOFTIRQ);
    444
    445	vtime_flush_scaled(tsk, acct);
    446
    447	acct->utime = 0;
    448	acct->gtime = 0;
    449	acct->idle_time = 0;
    450	acct->stime = 0;
    451	acct->hardirq_time = 0;
    452	acct->softirq_time = 0;
    453}
    454
    455#else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
    456#define calc_cputime_factors()
    457#endif
    458
    459void __delay(unsigned long loops)
    460{
    461	unsigned long start;
    462
    463	spin_begin();
    464	if (tb_invalid) {
    465		/*
    466		 * TB is in error state and isn't ticking anymore.
    467		 * HMI handler was unable to recover from TB error.
    468		 * Return immediately, so that kernel won't get stuck here.
    469		 */
    470		spin_cpu_relax();
    471	} else {
    472		start = mftb();
    473		while (mftb() - start < loops)
    474			spin_cpu_relax();
    475	}
    476	spin_end();
    477}
    478EXPORT_SYMBOL(__delay);
    479
    480void udelay(unsigned long usecs)
    481{
    482	__delay(tb_ticks_per_usec * usecs);
    483}
    484EXPORT_SYMBOL(udelay);
    485
    486#ifdef CONFIG_SMP
    487unsigned long profile_pc(struct pt_regs *regs)
    488{
    489	unsigned long pc = instruction_pointer(regs);
    490
    491	if (in_lock_functions(pc))
    492		return regs->link;
    493
    494	return pc;
    495}
    496EXPORT_SYMBOL(profile_pc);
    497#endif
    498
    499#ifdef CONFIG_IRQ_WORK
    500
    501/*
    502 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
    503 */
    504#ifdef CONFIG_PPC64
    505static inline unsigned long test_irq_work_pending(void)
    506{
    507	unsigned long x;
    508
    509	asm volatile("lbz %0,%1(13)"
    510		: "=r" (x)
    511		: "i" (offsetof(struct paca_struct, irq_work_pending)));
    512	return x;
    513}
    514
    515static inline void set_irq_work_pending_flag(void)
    516{
    517	asm volatile("stb %0,%1(13)" : :
    518		"r" (1),
    519		"i" (offsetof(struct paca_struct, irq_work_pending)));
    520}
    521
    522static inline void clear_irq_work_pending(void)
    523{
    524	asm volatile("stb %0,%1(13)" : :
    525		"r" (0),
    526		"i" (offsetof(struct paca_struct, irq_work_pending)));
    527}
    528
    529#else /* 32-bit */
    530
    531DEFINE_PER_CPU(u8, irq_work_pending);
    532
    533#define set_irq_work_pending_flag()	__this_cpu_write(irq_work_pending, 1)
    534#define test_irq_work_pending()		__this_cpu_read(irq_work_pending)
    535#define clear_irq_work_pending()	__this_cpu_write(irq_work_pending, 0)
    536
    537#endif /* 32 vs 64 bit */
    538
    539void arch_irq_work_raise(void)
    540{
    541	/*
    542	 * 64-bit code that uses irq soft-mask can just cause an immediate
    543	 * interrupt here that gets soft masked, if this is called under
    544	 * local_irq_disable(). It might be possible to prevent that happening
    545	 * by noticing interrupts are disabled and setting decrementer pending
    546	 * to be replayed when irqs are enabled. The problem there is that
    547	 * tracing can call irq_work_raise, including in code that does low
    548	 * level manipulations of irq soft-mask state (e.g., trace_hardirqs_on)
    549	 * which could get tangled up if we're messing with the same state
    550	 * here.
    551	 */
    552	preempt_disable();
    553	set_irq_work_pending_flag();
    554	set_dec(1);
    555	preempt_enable();
    556}
    557
    558static void set_dec_or_work(u64 val)
    559{
    560	set_dec(val);
    561	/* We may have raced with new irq work */
    562	if (unlikely(test_irq_work_pending()))
    563		set_dec(1);
    564}
    565
    566#else  /* CONFIG_IRQ_WORK */
    567
    568#define test_irq_work_pending()	0
    569#define clear_irq_work_pending()
    570
    571static void set_dec_or_work(u64 val)
    572{
    573	set_dec(val);
    574}
    575#endif /* CONFIG_IRQ_WORK */
    576
    577#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
    578void timer_rearm_host_dec(u64 now)
    579{
    580	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
    581
    582	WARN_ON_ONCE(!arch_irqs_disabled());
    583	WARN_ON_ONCE(mfmsr() & MSR_EE);
    584
    585	if (now >= *next_tb) {
    586		local_paca->irq_happened |= PACA_IRQ_DEC;
    587	} else {
    588		now = *next_tb - now;
    589		if (now > decrementer_max)
    590			now = decrementer_max;
    591		set_dec_or_work(now);
    592	}
    593}
    594EXPORT_SYMBOL_GPL(timer_rearm_host_dec);
    595#endif
    596
    597/*
    598 * timer_interrupt - gets called when the decrementer overflows,
    599 * with interrupts disabled.
    600 */
    601DEFINE_INTERRUPT_HANDLER_ASYNC(timer_interrupt)
    602{
    603	struct clock_event_device *evt = this_cpu_ptr(&decrementers);
    604	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
    605	struct pt_regs *old_regs;
    606	u64 now;
    607
    608	/*
    609	 * Some implementations of hotplug will get timer interrupts while
    610	 * offline, just ignore these.
    611	 */
    612	if (unlikely(!cpu_online(smp_processor_id()))) {
    613		set_dec(decrementer_max);
    614		return;
    615	}
    616
    617	/*
    618	 * Ensure a positive value is written to the decrementer, or
    619	 * else some CPUs will continue to take decrementer exceptions.
    620	 * When the PPC_WATCHDOG (decrementer based) is configured,
    621	 * keep this at most 31 bits, which is about 4 seconds on most
    622	 * systems, which gives the watchdog a chance of catching timer
    623	 * interrupt hard lockups.
    624	 */
    625	if (IS_ENABLED(CONFIG_PPC_WATCHDOG))
    626		set_dec(0x7fffffff);
    627	else
    628		set_dec(decrementer_max);
    629
    630	/* Conditionally hard-enable interrupts. */
    631	if (should_hard_irq_enable())
    632		do_hard_irq_enable();
    633
    634#if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
    635	if (atomic_read(&ppc_n_lost_interrupts) != 0)
    636		__do_IRQ(regs);
    637#endif
    638
    639	old_regs = set_irq_regs(regs);
    640
    641	trace_timer_interrupt_entry(regs);
    642
    643	if (test_irq_work_pending()) {
    644		clear_irq_work_pending();
    645		mce_run_irq_context_handlers();
    646		irq_work_run();
    647	}
    648
    649	now = get_tb();
    650	if (now >= *next_tb) {
    651		evt->event_handler(evt);
    652		__this_cpu_inc(irq_stat.timer_irqs_event);
    653	} else {
    654		now = *next_tb - now;
    655		if (now > decrementer_max)
    656			now = decrementer_max;
    657		set_dec_or_work(now);
    658		__this_cpu_inc(irq_stat.timer_irqs_others);
    659	}
    660
    661	trace_timer_interrupt_exit(regs);
    662
    663	set_irq_regs(old_regs);
    664}
    665EXPORT_SYMBOL(timer_interrupt);
    666
    667#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
    668void timer_broadcast_interrupt(void)
    669{
    670	tick_receive_broadcast();
    671	__this_cpu_inc(irq_stat.broadcast_irqs_event);
    672}
    673#endif
    674
    675#ifdef CONFIG_SUSPEND
    676/* Overrides the weak version in kernel/power/main.c */
    677void arch_suspend_disable_irqs(void)
    678{
    679	if (ppc_md.suspend_disable_irqs)
    680		ppc_md.suspend_disable_irqs();
    681
    682	/* Disable the decrementer, so that it doesn't interfere
    683	 * with suspending.
    684	 */
    685
    686	set_dec(decrementer_max);
    687	local_irq_disable();
    688	set_dec(decrementer_max);
    689}
    690
    691/* Overrides the weak version in kernel/power/main.c */
    692void arch_suspend_enable_irqs(void)
    693{
    694	local_irq_enable();
    695
    696	if (ppc_md.suspend_enable_irqs)
    697		ppc_md.suspend_enable_irqs();
    698}
    699#endif
    700
    701unsigned long long tb_to_ns(unsigned long long ticks)
    702{
    703	return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
    704}
    705EXPORT_SYMBOL_GPL(tb_to_ns);
    706
    707/*
    708 * Scheduler clock - returns current time in nanosec units.
    709 *
    710 * Note: mulhdu(a, b) (multiply high double unsigned) returns
    711 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
    712 * are 64-bit unsigned numbers.
    713 */
    714notrace unsigned long long sched_clock(void)
    715{
    716	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
    717}
    718
    719
    720#ifdef CONFIG_PPC_PSERIES
    721
    722/*
    723 * Running clock - attempts to give a view of time passing for a virtualised
    724 * kernels.
    725 * Uses the VTB register if available otherwise a next best guess.
    726 */
    727unsigned long long running_clock(void)
    728{
    729	/*
    730	 * Don't read the VTB as a host since KVM does not switch in host
    731	 * timebase into the VTB when it takes a guest off the CPU, reading the
    732	 * VTB would result in reading 'last switched out' guest VTB.
    733	 *
    734	 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
    735	 * would be unsafe to rely only on the #ifdef above.
    736	 */
    737	if (firmware_has_feature(FW_FEATURE_LPAR) &&
    738	    cpu_has_feature(CPU_FTR_ARCH_207S))
    739		return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
    740
    741	/*
    742	 * This is a next best approximation without a VTB.
    743	 * On a host which is running bare metal there should never be any stolen
    744	 * time and on a host which doesn't do any virtualisation TB *should* equal
    745	 * VTB so it makes no difference anyway.
    746	 */
    747	return local_clock() - kcpustat_this_cpu->cpustat[CPUTIME_STEAL];
    748}
    749#endif
    750
    751static int __init get_freq(char *name, int cells, unsigned long *val)
    752{
    753	struct device_node *cpu;
    754	const __be32 *fp;
    755	int found = 0;
    756
    757	/* The cpu node should have timebase and clock frequency properties */
    758	cpu = of_find_node_by_type(NULL, "cpu");
    759
    760	if (cpu) {
    761		fp = of_get_property(cpu, name, NULL);
    762		if (fp) {
    763			found = 1;
    764			*val = of_read_ulong(fp, cells);
    765		}
    766
    767		of_node_put(cpu);
    768	}
    769
    770	return found;
    771}
    772
    773static void start_cpu_decrementer(void)
    774{
    775#ifdef CONFIG_BOOKE_OR_40x
    776	unsigned int tcr;
    777
    778	/* Clear any pending timer interrupts */
    779	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
    780
    781	tcr = mfspr(SPRN_TCR);
    782	/*
    783	 * The watchdog may have already been enabled by u-boot. So leave
    784	 * TRC[WP] (Watchdog Period) alone.
    785	 */
    786	tcr &= TCR_WP_MASK;	/* Clear all bits except for TCR[WP] */
    787	tcr |= TCR_DIE;		/* Enable decrementer */
    788	mtspr(SPRN_TCR, tcr);
    789#endif
    790}
    791
    792void __init generic_calibrate_decr(void)
    793{
    794	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
    795
    796	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
    797	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
    798
    799		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
    800				"(not found)\n");
    801	}
    802
    803	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */
    804
    805	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
    806	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
    807
    808		printk(KERN_ERR "WARNING: Estimating processor frequency "
    809				"(not found)\n");
    810	}
    811}
    812
    813int update_persistent_clock64(struct timespec64 now)
    814{
    815	struct rtc_time tm;
    816
    817	if (!ppc_md.set_rtc_time)
    818		return -ENODEV;
    819
    820	rtc_time64_to_tm(now.tv_sec + 1 + timezone_offset, &tm);
    821
    822	return ppc_md.set_rtc_time(&tm);
    823}
    824
    825static void __read_persistent_clock(struct timespec64 *ts)
    826{
    827	struct rtc_time tm;
    828	static int first = 1;
    829
    830	ts->tv_nsec = 0;
    831	/* XXX this is a little fragile but will work okay in the short term */
    832	if (first) {
    833		first = 0;
    834		if (ppc_md.time_init)
    835			timezone_offset = ppc_md.time_init();
    836
    837		/* get_boot_time() isn't guaranteed to be safe to call late */
    838		if (ppc_md.get_boot_time) {
    839			ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
    840			return;
    841		}
    842	}
    843	if (!ppc_md.get_rtc_time) {
    844		ts->tv_sec = 0;
    845		return;
    846	}
    847	ppc_md.get_rtc_time(&tm);
    848
    849	ts->tv_sec = rtc_tm_to_time64(&tm);
    850}
    851
    852void read_persistent_clock64(struct timespec64 *ts)
    853{
    854	__read_persistent_clock(ts);
    855
    856	/* Sanitize it in case real time clock is set below EPOCH */
    857	if (ts->tv_sec < 0) {
    858		ts->tv_sec = 0;
    859		ts->tv_nsec = 0;
    860	}
    861		
    862}
    863
    864/* clocksource code */
    865static notrace u64 timebase_read(struct clocksource *cs)
    866{
    867	return (u64)get_tb();
    868}
    869
    870static void __init clocksource_init(void)
    871{
    872	struct clocksource *clock = &clocksource_timebase;
    873
    874	if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
    875		printk(KERN_ERR "clocksource: %s is already registered\n",
    876		       clock->name);
    877		return;
    878	}
    879
    880	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
    881	       clock->name, clock->mult, clock->shift);
    882}
    883
    884static int decrementer_set_next_event(unsigned long evt,
    885				      struct clock_event_device *dev)
    886{
    887	__this_cpu_write(decrementers_next_tb, get_tb() + evt);
    888	set_dec_or_work(evt);
    889
    890	return 0;
    891}
    892
    893static int decrementer_shutdown(struct clock_event_device *dev)
    894{
    895	__this_cpu_write(decrementers_next_tb, DEC_CLOCKEVENT_STOPPED);
    896	set_dec_or_work(decrementer_max);
    897
    898	return 0;
    899}
    900
    901static void register_decrementer_clockevent(int cpu)
    902{
    903	struct clock_event_device *dec = &per_cpu(decrementers, cpu);
    904
    905	*dec = decrementer_clockevent;
    906	dec->cpumask = cpumask_of(cpu);
    907
    908	clockevents_config_and_register(dec, ppc_tb_freq, 2, decrementer_max);
    909
    910	printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
    911		    dec->name, dec->mult, dec->shift, cpu);
    912
    913	/* Set values for KVM, see kvm_emulate_dec() */
    914	decrementer_clockevent.mult = dec->mult;
    915	decrementer_clockevent.shift = dec->shift;
    916}
    917
    918static void enable_large_decrementer(void)
    919{
    920	if (!cpu_has_feature(CPU_FTR_ARCH_300))
    921		return;
    922
    923	if (decrementer_max <= DECREMENTER_DEFAULT_MAX)
    924		return;
    925
    926	/*
    927	 * If we're running as the hypervisor we need to enable the LD manually
    928	 * otherwise firmware should have done it for us.
    929	 */
    930	if (cpu_has_feature(CPU_FTR_HVMODE))
    931		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD);
    932}
    933
    934static void __init set_decrementer_max(void)
    935{
    936	struct device_node *cpu;
    937	u32 bits = 32;
    938
    939	/* Prior to ISAv3 the decrementer is always 32 bit */
    940	if (!cpu_has_feature(CPU_FTR_ARCH_300))
    941		return;
    942
    943	cpu = of_find_node_by_type(NULL, "cpu");
    944
    945	if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) {
    946		if (bits > 64 || bits < 32) {
    947			pr_warn("time_init: firmware supplied invalid ibm,dec-bits");
    948			bits = 32;
    949		}
    950
    951		/* calculate the signed maximum given this many bits */
    952		decrementer_max = (1ul << (bits - 1)) - 1;
    953	}
    954
    955	of_node_put(cpu);
    956
    957	pr_info("time_init: %u bit decrementer (max: %llx)\n",
    958		bits, decrementer_max);
    959}
    960
    961static void __init init_decrementer_clockevent(void)
    962{
    963	register_decrementer_clockevent(smp_processor_id());
    964}
    965
    966void secondary_cpu_time_init(void)
    967{
    968	/* Enable and test the large decrementer for this cpu */
    969	enable_large_decrementer();
    970
    971	/* Start the decrementer on CPUs that have manual control
    972	 * such as BookE
    973	 */
    974	start_cpu_decrementer();
    975
    976	/* FIME: Should make unrelated change to move snapshot_timebase
    977	 * call here ! */
    978	register_decrementer_clockevent(smp_processor_id());
    979}
    980
    981/* This function is only called on the boot processor */
    982void __init time_init(void)
    983{
    984	struct div_result res;
    985	u64 scale;
    986	unsigned shift;
    987
    988	/* Normal PowerPC with timebase register */
    989	ppc_md.calibrate_decr();
    990	printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
    991	       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
    992	printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
    993	       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
    994
    995	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
    996	tb_ticks_per_sec = ppc_tb_freq;
    997	tb_ticks_per_usec = ppc_tb_freq / 1000000;
    998	calc_cputime_factors();
    999
   1000	/*
   1001	 * Compute scale factor for sched_clock.
   1002	 * The calibrate_decr() function has set tb_ticks_per_sec,
   1003	 * which is the timebase frequency.
   1004	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
   1005	 * the 128-bit result as a 64.64 fixed-point number.
   1006	 * We then shift that number right until it is less than 1.0,
   1007	 * giving us the scale factor and shift count to use in
   1008	 * sched_clock().
   1009	 */
   1010	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
   1011	scale = res.result_low;
   1012	for (shift = 0; res.result_high != 0; ++shift) {
   1013		scale = (scale >> 1) | (res.result_high << 63);
   1014		res.result_high >>= 1;
   1015	}
   1016	tb_to_ns_scale = scale;
   1017	tb_to_ns_shift = shift;
   1018	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
   1019	boot_tb = get_tb();
   1020
   1021	/* If platform provided a timezone (pmac), we correct the time */
   1022	if (timezone_offset) {
   1023		sys_tz.tz_minuteswest = -timezone_offset / 60;
   1024		sys_tz.tz_dsttime = 0;
   1025	}
   1026
   1027	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
   1028
   1029	/* initialise and enable the large decrementer (if we have one) */
   1030	set_decrementer_max();
   1031	enable_large_decrementer();
   1032
   1033	/* Start the decrementer on CPUs that have manual control
   1034	 * such as BookE
   1035	 */
   1036	start_cpu_decrementer();
   1037
   1038	/* Register the clocksource */
   1039	clocksource_init();
   1040
   1041	init_decrementer_clockevent();
   1042	tick_setup_hrtimer_broadcast();
   1043
   1044	of_clk_init(NULL);
   1045	enable_sched_clock_irqtime();
   1046}
   1047
   1048/*
   1049 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
   1050 * result.
   1051 */
   1052void div128_by_32(u64 dividend_high, u64 dividend_low,
   1053		  unsigned divisor, struct div_result *dr)
   1054{
   1055	unsigned long a, b, c, d;
   1056	unsigned long w, x, y, z;
   1057	u64 ra, rb, rc;
   1058
   1059	a = dividend_high >> 32;
   1060	b = dividend_high & 0xffffffff;
   1061	c = dividend_low >> 32;
   1062	d = dividend_low & 0xffffffff;
   1063
   1064	w = a / divisor;
   1065	ra = ((u64)(a - (w * divisor)) << 32) + b;
   1066
   1067	rb = ((u64) do_div(ra, divisor) << 32) + c;
   1068	x = ra;
   1069
   1070	rc = ((u64) do_div(rb, divisor) << 32) + d;
   1071	y = rb;
   1072
   1073	do_div(rc, divisor);
   1074	z = rc;
   1075
   1076	dr->result_high = ((u64)w << 32) + x;
   1077	dr->result_low  = ((u64)y << 32) + z;
   1078
   1079}
   1080
   1081/* We don't need to calibrate delay, we use the CPU timebase for that */
   1082void calibrate_delay(void)
   1083{
   1084	/* Some generic code (such as spinlock debug) use loops_per_jiffy
   1085	 * as the number of __delay(1) in a jiffy, so make it so
   1086	 */
   1087	loops_per_jiffy = tb_ticks_per_jiffy;
   1088}
   1089
   1090#if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
   1091static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
   1092{
   1093	ppc_md.get_rtc_time(tm);
   1094	return 0;
   1095}
   1096
   1097static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
   1098{
   1099	if (!ppc_md.set_rtc_time)
   1100		return -EOPNOTSUPP;
   1101
   1102	if (ppc_md.set_rtc_time(tm) < 0)
   1103		return -EOPNOTSUPP;
   1104
   1105	return 0;
   1106}
   1107
   1108static const struct rtc_class_ops rtc_generic_ops = {
   1109	.read_time = rtc_generic_get_time,
   1110	.set_time = rtc_generic_set_time,
   1111};
   1112
   1113static int __init rtc_init(void)
   1114{
   1115	struct platform_device *pdev;
   1116
   1117	if (!ppc_md.get_rtc_time)
   1118		return -ENODEV;
   1119
   1120	pdev = platform_device_register_data(NULL, "rtc-generic", -1,
   1121					     &rtc_generic_ops,
   1122					     sizeof(rtc_generic_ops));
   1123
   1124	return PTR_ERR_OR_ZERO(pdev);
   1125}
   1126
   1127device_initcall(rtc_init);
   1128#endif