cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

traps.c (61307B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 *  Copyright (C) 1995-1996  Gary Thomas (gdt@linuxppc.org)
      4 *  Copyright 2007-2010 Freescale Semiconductor, Inc.
      5 *
      6 *  Modified by Cort Dougan (cort@cs.nmt.edu)
      7 *  and Paul Mackerras (paulus@samba.org)
      8 */
      9
     10/*
     11 * This file handles the architecture-dependent parts of hardware exceptions
     12 */
     13
     14#include <linux/errno.h>
     15#include <linux/sched.h>
     16#include <linux/sched/debug.h>
     17#include <linux/kernel.h>
     18#include <linux/mm.h>
     19#include <linux/pkeys.h>
     20#include <linux/stddef.h>
     21#include <linux/unistd.h>
     22#include <linux/ptrace.h>
     23#include <linux/user.h>
     24#include <linux/interrupt.h>
     25#include <linux/init.h>
     26#include <linux/extable.h>
     27#include <linux/module.h>	/* print_modules */
     28#include <linux/prctl.h>
     29#include <linux/delay.h>
     30#include <linux/kprobes.h>
     31#include <linux/kexec.h>
     32#include <linux/backlight.h>
     33#include <linux/bug.h>
     34#include <linux/kdebug.h>
     35#include <linux/ratelimit.h>
     36#include <linux/context_tracking.h>
     37#include <linux/smp.h>
     38#include <linux/console.h>
     39#include <linux/kmsg_dump.h>
     40#include <linux/debugfs.h>
     41
     42#include <asm/emulated_ops.h>
     43#include <linux/uaccess.h>
     44#include <asm/interrupt.h>
     45#include <asm/io.h>
     46#include <asm/machdep.h>
     47#include <asm/rtas.h>
     48#include <asm/pmc.h>
     49#include <asm/reg.h>
     50#ifdef CONFIG_PMAC_BACKLIGHT
     51#include <asm/backlight.h>
     52#endif
     53#ifdef CONFIG_PPC64
     54#include <asm/firmware.h>
     55#include <asm/processor.h>
     56#endif
     57#include <asm/kexec.h>
     58#include <asm/ppc-opcode.h>
     59#include <asm/rio.h>
     60#include <asm/fadump.h>
     61#include <asm/switch_to.h>
     62#include <asm/tm.h>
     63#include <asm/debug.h>
     64#include <asm/asm-prototypes.h>
     65#include <asm/hmi.h>
     66#include <sysdev/fsl_pci.h>
     67#include <asm/kprobes.h>
     68#include <asm/stacktrace.h>
     69#include <asm/nmi.h>
     70#include <asm/disassemble.h>
     71
     72#if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC_CORE)
     73int (*__debugger)(struct pt_regs *regs) __read_mostly;
     74int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
     75int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
     76int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
     77int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
     78int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
     79int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
     80
     81EXPORT_SYMBOL(__debugger);
     82EXPORT_SYMBOL(__debugger_ipi);
     83EXPORT_SYMBOL(__debugger_bpt);
     84EXPORT_SYMBOL(__debugger_sstep);
     85EXPORT_SYMBOL(__debugger_iabr_match);
     86EXPORT_SYMBOL(__debugger_break_match);
     87EXPORT_SYMBOL(__debugger_fault_handler);
     88#endif
     89
     90/* Transactional Memory trap debug */
     91#ifdef TM_DEBUG_SW
     92#define TM_DEBUG(x...) printk(KERN_INFO x)
     93#else
     94#define TM_DEBUG(x...) do { } while(0)
     95#endif
     96
     97static const char *signame(int signr)
     98{
     99	switch (signr) {
    100	case SIGBUS:	return "bus error";
    101	case SIGFPE:	return "floating point exception";
    102	case SIGILL:	return "illegal instruction";
    103	case SIGSEGV:	return "segfault";
    104	case SIGTRAP:	return "unhandled trap";
    105	}
    106
    107	return "unknown signal";
    108}
    109
    110/*
    111 * Trap & Exception support
    112 */
    113
    114#ifdef CONFIG_PMAC_BACKLIGHT
    115static void pmac_backlight_unblank(void)
    116{
    117	mutex_lock(&pmac_backlight_mutex);
    118	if (pmac_backlight) {
    119		struct backlight_properties *props;
    120
    121		props = &pmac_backlight->props;
    122		props->brightness = props->max_brightness;
    123		props->power = FB_BLANK_UNBLANK;
    124		backlight_update_status(pmac_backlight);
    125	}
    126	mutex_unlock(&pmac_backlight_mutex);
    127}
    128#else
    129static inline void pmac_backlight_unblank(void) { }
    130#endif
    131
    132/*
    133 * If oops/die is expected to crash the machine, return true here.
    134 *
    135 * This should not be expected to be 100% accurate, there may be
    136 * notifiers registered or other unexpected conditions that may bring
    137 * down the kernel. Or if the current process in the kernel is holding
    138 * locks or has other critical state, the kernel may become effectively
    139 * unusable anyway.
    140 */
    141bool die_will_crash(void)
    142{
    143	if (should_fadump_crash())
    144		return true;
    145	if (kexec_should_crash(current))
    146		return true;
    147	if (in_interrupt() || panic_on_oops ||
    148			!current->pid || is_global_init(current))
    149		return true;
    150
    151	return false;
    152}
    153
    154static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
    155static int die_owner = -1;
    156static unsigned int die_nest_count;
    157static int die_counter;
    158
    159extern void panic_flush_kmsg_start(void)
    160{
    161	/*
    162	 * These are mostly taken from kernel/panic.c, but tries to do
    163	 * relatively minimal work. Don't use delay functions (TB may
    164	 * be broken), don't crash dump (need to set a firmware log),
    165	 * don't run notifiers. We do want to get some information to
    166	 * Linux console.
    167	 */
    168	console_verbose();
    169	bust_spinlocks(1);
    170}
    171
    172extern void panic_flush_kmsg_end(void)
    173{
    174	kmsg_dump(KMSG_DUMP_PANIC);
    175	bust_spinlocks(0);
    176	debug_locks_off();
    177	console_flush_on_panic(CONSOLE_FLUSH_PENDING);
    178}
    179
    180static unsigned long oops_begin(struct pt_regs *regs)
    181{
    182	int cpu;
    183	unsigned long flags;
    184
    185	oops_enter();
    186
    187	/* racy, but better than risking deadlock. */
    188	raw_local_irq_save(flags);
    189	cpu = smp_processor_id();
    190	if (!arch_spin_trylock(&die_lock)) {
    191		if (cpu == die_owner)
    192			/* nested oops. should stop eventually */;
    193		else
    194			arch_spin_lock(&die_lock);
    195	}
    196	die_nest_count++;
    197	die_owner = cpu;
    198	console_verbose();
    199	bust_spinlocks(1);
    200	if (machine_is(powermac))
    201		pmac_backlight_unblank();
    202	return flags;
    203}
    204NOKPROBE_SYMBOL(oops_begin);
    205
    206static void oops_end(unsigned long flags, struct pt_regs *regs,
    207			       int signr)
    208{
    209	bust_spinlocks(0);
    210	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
    211	die_nest_count--;
    212	oops_exit();
    213	printk("\n");
    214	if (!die_nest_count) {
    215		/* Nest count reaches zero, release the lock. */
    216		die_owner = -1;
    217		arch_spin_unlock(&die_lock);
    218	}
    219	raw_local_irq_restore(flags);
    220
    221	/*
    222	 * system_reset_excption handles debugger, crash dump, panic, for 0x100
    223	 */
    224	if (TRAP(regs) == INTERRUPT_SYSTEM_RESET)
    225		return;
    226
    227	crash_fadump(regs, "die oops");
    228
    229	if (kexec_should_crash(current))
    230		crash_kexec(regs);
    231
    232	if (!signr)
    233		return;
    234
    235	/*
    236	 * While our oops output is serialised by a spinlock, output
    237	 * from panic() called below can race and corrupt it. If we
    238	 * know we are going to panic, delay for 1 second so we have a
    239	 * chance to get clean backtraces from all CPUs that are oopsing.
    240	 */
    241	if (in_interrupt() || panic_on_oops || !current->pid ||
    242	    is_global_init(current)) {
    243		mdelay(MSEC_PER_SEC);
    244	}
    245
    246	if (panic_on_oops)
    247		panic("Fatal exception");
    248	make_task_dead(signr);
    249}
    250NOKPROBE_SYMBOL(oops_end);
    251
    252static char *get_mmu_str(void)
    253{
    254	if (early_radix_enabled())
    255		return " MMU=Radix";
    256	if (early_mmu_has_feature(MMU_FTR_HPTE_TABLE))
    257		return " MMU=Hash";
    258	return "";
    259}
    260
    261static int __die(const char *str, struct pt_regs *regs, long err)
    262{
    263	printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
    264
    265	printk("%s PAGE_SIZE=%luK%s%s%s%s%s%s %s\n",
    266	       IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN) ? "LE" : "BE",
    267	       PAGE_SIZE / 1024, get_mmu_str(),
    268	       IS_ENABLED(CONFIG_PREEMPT) ? " PREEMPT" : "",
    269	       IS_ENABLED(CONFIG_SMP) ? " SMP" : "",
    270	       IS_ENABLED(CONFIG_SMP) ? (" NR_CPUS=" __stringify(NR_CPUS)) : "",
    271	       debug_pagealloc_enabled() ? " DEBUG_PAGEALLOC" : "",
    272	       IS_ENABLED(CONFIG_NUMA) ? " NUMA" : "",
    273	       ppc_md.name ? ppc_md.name : "");
    274
    275	if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
    276		return 1;
    277
    278	print_modules();
    279	show_regs(regs);
    280
    281	return 0;
    282}
    283NOKPROBE_SYMBOL(__die);
    284
    285void die(const char *str, struct pt_regs *regs, long err)
    286{
    287	unsigned long flags;
    288
    289	/*
    290	 * system_reset_excption handles debugger, crash dump, panic, for 0x100
    291	 */
    292	if (TRAP(regs) != INTERRUPT_SYSTEM_RESET) {
    293		if (debugger(regs))
    294			return;
    295	}
    296
    297	flags = oops_begin(regs);
    298	if (__die(str, regs, err))
    299		err = 0;
    300	oops_end(flags, regs, err);
    301}
    302NOKPROBE_SYMBOL(die);
    303
    304void user_single_step_report(struct pt_regs *regs)
    305{
    306	force_sig_fault(SIGTRAP, TRAP_TRACE, (void __user *)regs->nip);
    307}
    308
    309static void show_signal_msg(int signr, struct pt_regs *regs, int code,
    310			    unsigned long addr)
    311{
    312	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
    313				      DEFAULT_RATELIMIT_BURST);
    314
    315	if (!show_unhandled_signals)
    316		return;
    317
    318	if (!unhandled_signal(current, signr))
    319		return;
    320
    321	if (!__ratelimit(&rs))
    322		return;
    323
    324	pr_info("%s[%d]: %s (%d) at %lx nip %lx lr %lx code %x",
    325		current->comm, current->pid, signame(signr), signr,
    326		addr, regs->nip, regs->link, code);
    327
    328	print_vma_addr(KERN_CONT " in ", regs->nip);
    329
    330	pr_cont("\n");
    331
    332	show_user_instructions(regs);
    333}
    334
    335static bool exception_common(int signr, struct pt_regs *regs, int code,
    336			      unsigned long addr)
    337{
    338	if (!user_mode(regs)) {
    339		die("Exception in kernel mode", regs, signr);
    340		return false;
    341	}
    342
    343	/*
    344	 * Must not enable interrupts even for user-mode exception, because
    345	 * this can be called from machine check, which may be a NMI or IRQ
    346	 * which don't like interrupts being enabled. Could check for
    347	 * in_hardirq || in_nmi perhaps, but there doesn't seem to be a good
    348	 * reason why _exception() should enable irqs for an exception handler,
    349	 * the handlers themselves do that directly.
    350	 */
    351
    352	show_signal_msg(signr, regs, code, addr);
    353
    354	current->thread.trap_nr = code;
    355
    356	return true;
    357}
    358
    359void _exception_pkey(struct pt_regs *regs, unsigned long addr, int key)
    360{
    361	if (!exception_common(SIGSEGV, regs, SEGV_PKUERR, addr))
    362		return;
    363
    364	force_sig_pkuerr((void __user *) addr, key);
    365}
    366
    367void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
    368{
    369	if (!exception_common(signr, regs, code, addr))
    370		return;
    371
    372	force_sig_fault(signr, code, (void __user *)addr);
    373}
    374
    375/*
    376 * The interrupt architecture has a quirk in that the HV interrupts excluding
    377 * the NMIs (0x100 and 0x200) do not clear MSR[RI] at entry. The first thing
    378 * that an interrupt handler must do is save off a GPR into a scratch register,
    379 * and all interrupts on POWERNV (HV=1) use the HSPRG1 register as scratch.
    380 * Therefore an NMI can clobber an HV interrupt's live HSPRG1 without noticing
    381 * that it is non-reentrant, which leads to random data corruption.
    382 *
    383 * The solution is for NMI interrupts in HV mode to check if they originated
    384 * from these critical HV interrupt regions. If so, then mark them not
    385 * recoverable.
    386 *
    387 * An alternative would be for HV NMIs to use SPRG for scratch to avoid the
    388 * HSPRG1 clobber, however this would cause guest SPRG to be clobbered. Linux
    389 * guests should always have MSR[RI]=0 when its scratch SPRG is in use, so
    390 * that would work. However any other guest OS that may have the SPRG live
    391 * and MSR[RI]=1 could encounter silent corruption.
    392 *
    393 * Builds that do not support KVM could take this second option to increase
    394 * the recoverability of NMIs.
    395 */
    396noinstr void hv_nmi_check_nonrecoverable(struct pt_regs *regs)
    397{
    398#ifdef CONFIG_PPC_POWERNV
    399	unsigned long kbase = (unsigned long)_stext;
    400	unsigned long nip = regs->nip;
    401
    402	if (!(regs->msr & MSR_RI))
    403		return;
    404	if (!(regs->msr & MSR_HV))
    405		return;
    406	if (regs->msr & MSR_PR)
    407		return;
    408
    409	/*
    410	 * Now test if the interrupt has hit a range that may be using
    411	 * HSPRG1 without having RI=0 (i.e., an HSRR interrupt). The
    412	 * problem ranges all run un-relocated. Test real and virt modes
    413	 * at the same time by dropping the high bit of the nip (virt mode
    414	 * entry points still have the +0x4000 offset).
    415	 */
    416	nip &= ~0xc000000000000000ULL;
    417	if ((nip >= 0x500 && nip < 0x600) || (nip >= 0x4500 && nip < 0x4600))
    418		goto nonrecoverable;
    419	if ((nip >= 0x980 && nip < 0xa00) || (nip >= 0x4980 && nip < 0x4a00))
    420		goto nonrecoverable;
    421	if ((nip >= 0xe00 && nip < 0xec0) || (nip >= 0x4e00 && nip < 0x4ec0))
    422		goto nonrecoverable;
    423	if ((nip >= 0xf80 && nip < 0xfa0) || (nip >= 0x4f80 && nip < 0x4fa0))
    424		goto nonrecoverable;
    425
    426	/* Trampoline code runs un-relocated so subtract kbase. */
    427	if (nip >= (unsigned long)(start_real_trampolines - kbase) &&
    428			nip < (unsigned long)(end_real_trampolines - kbase))
    429		goto nonrecoverable;
    430	if (nip >= (unsigned long)(start_virt_trampolines - kbase) &&
    431			nip < (unsigned long)(end_virt_trampolines - kbase))
    432		goto nonrecoverable;
    433	return;
    434
    435nonrecoverable:
    436	regs->msr &= ~MSR_RI;
    437	local_paca->hsrr_valid = 0;
    438	local_paca->srr_valid = 0;
    439#endif
    440}
    441DEFINE_INTERRUPT_HANDLER_NMI(system_reset_exception)
    442{
    443	unsigned long hsrr0, hsrr1;
    444	bool saved_hsrrs = false;
    445
    446	/*
    447	 * System reset can interrupt code where HSRRs are live and MSR[RI]=1.
    448	 * The system reset interrupt itself may clobber HSRRs (e.g., to call
    449	 * OPAL), so save them here and restore them before returning.
    450	 *
    451	 * Machine checks don't need to save HSRRs, as the real mode handler
    452	 * is careful to avoid them, and the regular handler is not delivered
    453	 * as an NMI.
    454	 */
    455	if (cpu_has_feature(CPU_FTR_HVMODE)) {
    456		hsrr0 = mfspr(SPRN_HSRR0);
    457		hsrr1 = mfspr(SPRN_HSRR1);
    458		saved_hsrrs = true;
    459	}
    460
    461	hv_nmi_check_nonrecoverable(regs);
    462
    463	__this_cpu_inc(irq_stat.sreset_irqs);
    464
    465	/* See if any machine dependent calls */
    466	if (ppc_md.system_reset_exception) {
    467		if (ppc_md.system_reset_exception(regs))
    468			goto out;
    469	}
    470
    471	if (debugger(regs))
    472		goto out;
    473
    474	kmsg_dump(KMSG_DUMP_OOPS);
    475	/*
    476	 * A system reset is a request to dump, so we always send
    477	 * it through the crashdump code (if fadump or kdump are
    478	 * registered).
    479	 */
    480	crash_fadump(regs, "System Reset");
    481
    482	crash_kexec(regs);
    483
    484	/*
    485	 * We aren't the primary crash CPU. We need to send it
    486	 * to a holding pattern to avoid it ending up in the panic
    487	 * code.
    488	 */
    489	crash_kexec_secondary(regs);
    490
    491	/*
    492	 * No debugger or crash dump registered, print logs then
    493	 * panic.
    494	 */
    495	die("System Reset", regs, SIGABRT);
    496
    497	mdelay(2*MSEC_PER_SEC); /* Wait a little while for others to print */
    498	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
    499	nmi_panic(regs, "System Reset");
    500
    501out:
    502#ifdef CONFIG_PPC_BOOK3S_64
    503	BUG_ON(get_paca()->in_nmi == 0);
    504	if (get_paca()->in_nmi > 1)
    505		die("Unrecoverable nested System Reset", regs, SIGABRT);
    506#endif
    507	/* Must die if the interrupt is not recoverable */
    508	if (regs_is_unrecoverable(regs)) {
    509		/* For the reason explained in die_mce, nmi_exit before die */
    510		nmi_exit();
    511		die("Unrecoverable System Reset", regs, SIGABRT);
    512	}
    513
    514	if (saved_hsrrs) {
    515		mtspr(SPRN_HSRR0, hsrr0);
    516		mtspr(SPRN_HSRR1, hsrr1);
    517	}
    518
    519	/* What should we do here? We could issue a shutdown or hard reset. */
    520
    521	return 0;
    522}
    523
    524/*
    525 * I/O accesses can cause machine checks on powermacs.
    526 * Check if the NIP corresponds to the address of a sync
    527 * instruction for which there is an entry in the exception
    528 * table.
    529 *  -- paulus.
    530 */
    531static inline int check_io_access(struct pt_regs *regs)
    532{
    533#ifdef CONFIG_PPC32
    534	unsigned long msr = regs->msr;
    535	const struct exception_table_entry *entry;
    536	unsigned int *nip = (unsigned int *)regs->nip;
    537
    538	if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
    539	    && (entry = search_exception_tables(regs->nip)) != NULL) {
    540		/*
    541		 * Check that it's a sync instruction, or somewhere
    542		 * in the twi; isync; nop sequence that inb/inw/inl uses.
    543		 * As the address is in the exception table
    544		 * we should be able to read the instr there.
    545		 * For the debug message, we look at the preceding
    546		 * load or store.
    547		 */
    548		if (*nip == PPC_RAW_NOP())
    549			nip -= 2;
    550		else if (*nip == PPC_RAW_ISYNC())
    551			--nip;
    552		if (*nip == PPC_RAW_SYNC() || get_op(*nip) == OP_TRAP) {
    553			unsigned int rb;
    554
    555			--nip;
    556			rb = (*nip >> 11) & 0x1f;
    557			printk(KERN_DEBUG "%s bad port %lx at %p\n",
    558			       (*nip & 0x100)? "OUT to": "IN from",
    559			       regs->gpr[rb] - _IO_BASE, nip);
    560			regs_set_recoverable(regs);
    561			regs_set_return_ip(regs, extable_fixup(entry));
    562			return 1;
    563		}
    564	}
    565#endif /* CONFIG_PPC32 */
    566	return 0;
    567}
    568
    569#ifdef CONFIG_PPC_ADV_DEBUG_REGS
    570/* On 4xx, the reason for the machine check or program exception
    571   is in the ESR. */
    572#define get_reason(regs)	((regs)->esr)
    573#define REASON_FP		ESR_FP
    574#define REASON_ILLEGAL		(ESR_PIL | ESR_PUO)
    575#define REASON_PRIVILEGED	ESR_PPR
    576#define REASON_TRAP		ESR_PTR
    577#define REASON_PREFIXED		0
    578#define REASON_BOUNDARY		0
    579
    580/* single-step stuff */
    581#define single_stepping(regs)	(current->thread.debug.dbcr0 & DBCR0_IC)
    582#define clear_single_step(regs)	(current->thread.debug.dbcr0 &= ~DBCR0_IC)
    583#define clear_br_trace(regs)	do {} while(0)
    584#else
    585/* On non-4xx, the reason for the machine check or program
    586   exception is in the MSR. */
    587#define get_reason(regs)	((regs)->msr)
    588#define REASON_TM		SRR1_PROGTM
    589#define REASON_FP		SRR1_PROGFPE
    590#define REASON_ILLEGAL		SRR1_PROGILL
    591#define REASON_PRIVILEGED	SRR1_PROGPRIV
    592#define REASON_TRAP		SRR1_PROGTRAP
    593#define REASON_PREFIXED		SRR1_PREFIXED
    594#define REASON_BOUNDARY		SRR1_BOUNDARY
    595
    596#define single_stepping(regs)	((regs)->msr & MSR_SE)
    597#define clear_single_step(regs)	(regs_set_return_msr((regs), (regs)->msr & ~MSR_SE))
    598#define clear_br_trace(regs)	(regs_set_return_msr((regs), (regs)->msr & ~MSR_BE))
    599#endif
    600
    601#define inst_length(reason)	(((reason) & REASON_PREFIXED) ? 8 : 4)
    602
    603#if defined(CONFIG_E500)
    604int machine_check_e500mc(struct pt_regs *regs)
    605{
    606	unsigned long mcsr = mfspr(SPRN_MCSR);
    607	unsigned long pvr = mfspr(SPRN_PVR);
    608	unsigned long reason = mcsr;
    609	int recoverable = 1;
    610
    611	if (reason & MCSR_LD) {
    612		recoverable = fsl_rio_mcheck_exception(regs);
    613		if (recoverable == 1)
    614			goto silent_out;
    615	}
    616
    617	printk("Machine check in kernel mode.\n");
    618	printk("Caused by (from MCSR=%lx): ", reason);
    619
    620	if (reason & MCSR_MCP)
    621		pr_cont("Machine Check Signal\n");
    622
    623	if (reason & MCSR_ICPERR) {
    624		pr_cont("Instruction Cache Parity Error\n");
    625
    626		/*
    627		 * This is recoverable by invalidating the i-cache.
    628		 */
    629		mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
    630		while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
    631			;
    632
    633		/*
    634		 * This will generally be accompanied by an instruction
    635		 * fetch error report -- only treat MCSR_IF as fatal
    636		 * if it wasn't due to an L1 parity error.
    637		 */
    638		reason &= ~MCSR_IF;
    639	}
    640
    641	if (reason & MCSR_DCPERR_MC) {
    642		pr_cont("Data Cache Parity Error\n");
    643
    644		/*
    645		 * In write shadow mode we auto-recover from the error, but it
    646		 * may still get logged and cause a machine check.  We should
    647		 * only treat the non-write shadow case as non-recoverable.
    648		 */
    649		/* On e6500 core, L1 DCWS (Data cache write shadow mode) bit
    650		 * is not implemented but L1 data cache always runs in write
    651		 * shadow mode. Hence on data cache parity errors HW will
    652		 * automatically invalidate the L1 Data Cache.
    653		 */
    654		if (PVR_VER(pvr) != PVR_VER_E6500) {
    655			if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
    656				recoverable = 0;
    657		}
    658	}
    659
    660	if (reason & MCSR_L2MMU_MHIT) {
    661		pr_cont("Hit on multiple TLB entries\n");
    662		recoverable = 0;
    663	}
    664
    665	if (reason & MCSR_NMI)
    666		pr_cont("Non-maskable interrupt\n");
    667
    668	if (reason & MCSR_IF) {
    669		pr_cont("Instruction Fetch Error Report\n");
    670		recoverable = 0;
    671	}
    672
    673	if (reason & MCSR_LD) {
    674		pr_cont("Load Error Report\n");
    675		recoverable = 0;
    676	}
    677
    678	if (reason & MCSR_ST) {
    679		pr_cont("Store Error Report\n");
    680		recoverable = 0;
    681	}
    682
    683	if (reason & MCSR_LDG) {
    684		pr_cont("Guarded Load Error Report\n");
    685		recoverable = 0;
    686	}
    687
    688	if (reason & MCSR_TLBSYNC)
    689		pr_cont("Simultaneous tlbsync operations\n");
    690
    691	if (reason & MCSR_BSL2_ERR) {
    692		pr_cont("Level 2 Cache Error\n");
    693		recoverable = 0;
    694	}
    695
    696	if (reason & MCSR_MAV) {
    697		u64 addr;
    698
    699		addr = mfspr(SPRN_MCAR);
    700		addr |= (u64)mfspr(SPRN_MCARU) << 32;
    701
    702		pr_cont("Machine Check %s Address: %#llx\n",
    703		       reason & MCSR_MEA ? "Effective" : "Physical", addr);
    704	}
    705
    706silent_out:
    707	mtspr(SPRN_MCSR, mcsr);
    708	return mfspr(SPRN_MCSR) == 0 && recoverable;
    709}
    710
    711int machine_check_e500(struct pt_regs *regs)
    712{
    713	unsigned long reason = mfspr(SPRN_MCSR);
    714
    715	if (reason & MCSR_BUS_RBERR) {
    716		if (fsl_rio_mcheck_exception(regs))
    717			return 1;
    718		if (fsl_pci_mcheck_exception(regs))
    719			return 1;
    720	}
    721
    722	printk("Machine check in kernel mode.\n");
    723	printk("Caused by (from MCSR=%lx): ", reason);
    724
    725	if (reason & MCSR_MCP)
    726		pr_cont("Machine Check Signal\n");
    727	if (reason & MCSR_ICPERR)
    728		pr_cont("Instruction Cache Parity Error\n");
    729	if (reason & MCSR_DCP_PERR)
    730		pr_cont("Data Cache Push Parity Error\n");
    731	if (reason & MCSR_DCPERR)
    732		pr_cont("Data Cache Parity Error\n");
    733	if (reason & MCSR_BUS_IAERR)
    734		pr_cont("Bus - Instruction Address Error\n");
    735	if (reason & MCSR_BUS_RAERR)
    736		pr_cont("Bus - Read Address Error\n");
    737	if (reason & MCSR_BUS_WAERR)
    738		pr_cont("Bus - Write Address Error\n");
    739	if (reason & MCSR_BUS_IBERR)
    740		pr_cont("Bus - Instruction Data Error\n");
    741	if (reason & MCSR_BUS_RBERR)
    742		pr_cont("Bus - Read Data Bus Error\n");
    743	if (reason & MCSR_BUS_WBERR)
    744		pr_cont("Bus - Write Data Bus Error\n");
    745	if (reason & MCSR_BUS_IPERR)
    746		pr_cont("Bus - Instruction Parity Error\n");
    747	if (reason & MCSR_BUS_RPERR)
    748		pr_cont("Bus - Read Parity Error\n");
    749
    750	return 0;
    751}
    752
    753int machine_check_generic(struct pt_regs *regs)
    754{
    755	return 0;
    756}
    757#elif defined(CONFIG_PPC32)
    758int machine_check_generic(struct pt_regs *regs)
    759{
    760	unsigned long reason = regs->msr;
    761
    762	printk("Machine check in kernel mode.\n");
    763	printk("Caused by (from SRR1=%lx): ", reason);
    764	switch (reason & 0x601F0000) {
    765	case 0x80000:
    766		pr_cont("Machine check signal\n");
    767		break;
    768	case 0x40000:
    769	case 0x140000:	/* 7450 MSS error and TEA */
    770		pr_cont("Transfer error ack signal\n");
    771		break;
    772	case 0x20000:
    773		pr_cont("Data parity error signal\n");
    774		break;
    775	case 0x10000:
    776		pr_cont("Address parity error signal\n");
    777		break;
    778	case 0x20000000:
    779		pr_cont("L1 Data Cache error\n");
    780		break;
    781	case 0x40000000:
    782		pr_cont("L1 Instruction Cache error\n");
    783		break;
    784	case 0x00100000:
    785		pr_cont("L2 data cache parity error\n");
    786		break;
    787	default:
    788		pr_cont("Unknown values in msr\n");
    789	}
    790	return 0;
    791}
    792#endif /* everything else */
    793
    794void die_mce(const char *str, struct pt_regs *regs, long err)
    795{
    796	/*
    797	 * The machine check wants to kill the interrupted context,
    798	 * but make_task_dead() checks for in_interrupt() and panics
    799	 * in that case, so exit the irq/nmi before calling die.
    800	 */
    801	if (in_nmi())
    802		nmi_exit();
    803	else
    804		irq_exit();
    805	die(str, regs, err);
    806}
    807
    808/*
    809 * BOOK3S_64 does not usually call this handler as a non-maskable interrupt
    810 * (it uses its own early real-mode handler to handle the MCE proper
    811 * and then raises irq_work to call this handler when interrupts are
    812 * enabled). The only time when this is not true is if the early handler
    813 * is unrecoverable, then it does call this directly to try to get a
    814 * message out.
    815 */
    816static void __machine_check_exception(struct pt_regs *regs)
    817{
    818	int recover = 0;
    819
    820	__this_cpu_inc(irq_stat.mce_exceptions);
    821
    822	add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
    823
    824	/* See if any machine dependent calls. In theory, we would want
    825	 * to call the CPU first, and call the ppc_md. one if the CPU
    826	 * one returns a positive number. However there is existing code
    827	 * that assumes the board gets a first chance, so let's keep it
    828	 * that way for now and fix things later. --BenH.
    829	 */
    830	if (ppc_md.machine_check_exception)
    831		recover = ppc_md.machine_check_exception(regs);
    832	else if (cur_cpu_spec->machine_check)
    833		recover = cur_cpu_spec->machine_check(regs);
    834
    835	if (recover > 0)
    836		goto bail;
    837
    838	if (debugger_fault_handler(regs))
    839		goto bail;
    840
    841	if (check_io_access(regs))
    842		goto bail;
    843
    844	die_mce("Machine check", regs, SIGBUS);
    845
    846bail:
    847	/* Must die if the interrupt is not recoverable */
    848	if (regs_is_unrecoverable(regs))
    849		die_mce("Unrecoverable Machine check", regs, SIGBUS);
    850}
    851
    852#ifdef CONFIG_PPC_BOOK3S_64
    853DEFINE_INTERRUPT_HANDLER_ASYNC(machine_check_exception_async)
    854{
    855	__machine_check_exception(regs);
    856}
    857#endif
    858DEFINE_INTERRUPT_HANDLER_NMI(machine_check_exception)
    859{
    860	__machine_check_exception(regs);
    861
    862	return 0;
    863}
    864
    865DEFINE_INTERRUPT_HANDLER(SMIException) /* async? */
    866{
    867	die("System Management Interrupt", regs, SIGABRT);
    868}
    869
    870#ifdef CONFIG_VSX
    871static void p9_hmi_special_emu(struct pt_regs *regs)
    872{
    873	unsigned int ra, rb, t, i, sel, instr, rc;
    874	const void __user *addr;
    875	u8 vbuf[16] __aligned(16), *vdst;
    876	unsigned long ea, msr, msr_mask;
    877	bool swap;
    878
    879	if (__get_user(instr, (unsigned int __user *)regs->nip))
    880		return;
    881
    882	/*
    883	 * lxvb16x	opcode: 0x7c0006d8
    884	 * lxvd2x	opcode: 0x7c000698
    885	 * lxvh8x	opcode: 0x7c000658
    886	 * lxvw4x	opcode: 0x7c000618
    887	 */
    888	if ((instr & 0xfc00073e) != 0x7c000618) {
    889		pr_devel("HMI vec emu: not vector CI %i:%s[%d] nip=%016lx"
    890			 " instr=%08x\n",
    891			 smp_processor_id(), current->comm, current->pid,
    892			 regs->nip, instr);
    893		return;
    894	}
    895
    896	/* Grab vector registers into the task struct */
    897	msr = regs->msr; /* Grab msr before we flush the bits */
    898	flush_vsx_to_thread(current);
    899	enable_kernel_altivec();
    900
    901	/*
    902	 * Is userspace running with a different endian (this is rare but
    903	 * not impossible)
    904	 */
    905	swap = (msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
    906
    907	/* Decode the instruction */
    908	ra = (instr >> 16) & 0x1f;
    909	rb = (instr >> 11) & 0x1f;
    910	t = (instr >> 21) & 0x1f;
    911	if (instr & 1)
    912		vdst = (u8 *)&current->thread.vr_state.vr[t];
    913	else
    914		vdst = (u8 *)&current->thread.fp_state.fpr[t][0];
    915
    916	/* Grab the vector address */
    917	ea = regs->gpr[rb] + (ra ? regs->gpr[ra] : 0);
    918	if (is_32bit_task())
    919		ea &= 0xfffffffful;
    920	addr = (__force const void __user *)ea;
    921
    922	/* Check it */
    923	if (!access_ok(addr, 16)) {
    924		pr_devel("HMI vec emu: bad access %i:%s[%d] nip=%016lx"
    925			 " instr=%08x addr=%016lx\n",
    926			 smp_processor_id(), current->comm, current->pid,
    927			 regs->nip, instr, (unsigned long)addr);
    928		return;
    929	}
    930
    931	/* Read the vector */
    932	rc = 0;
    933	if ((unsigned long)addr & 0xfUL)
    934		/* unaligned case */
    935		rc = __copy_from_user_inatomic(vbuf, addr, 16);
    936	else
    937		__get_user_atomic_128_aligned(vbuf, addr, rc);
    938	if (rc) {
    939		pr_devel("HMI vec emu: page fault %i:%s[%d] nip=%016lx"
    940			 " instr=%08x addr=%016lx\n",
    941			 smp_processor_id(), current->comm, current->pid,
    942			 regs->nip, instr, (unsigned long)addr);
    943		return;
    944	}
    945
    946	pr_devel("HMI vec emu: emulated vector CI %i:%s[%d] nip=%016lx"
    947		 " instr=%08x addr=%016lx\n",
    948		 smp_processor_id(), current->comm, current->pid, regs->nip,
    949		 instr, (unsigned long) addr);
    950
    951	/* Grab instruction "selector" */
    952	sel = (instr >> 6) & 3;
    953
    954	/*
    955	 * Check to make sure the facility is actually enabled. This
    956	 * could happen if we get a false positive hit.
    957	 *
    958	 * lxvd2x/lxvw4x always check MSR VSX sel = 0,2
    959	 * lxvh8x/lxvb16x check MSR VSX or VEC depending on VSR used sel = 1,3
    960	 */
    961	msr_mask = MSR_VSX;
    962	if ((sel & 1) && (instr & 1)) /* lxvh8x & lxvb16x + VSR >= 32 */
    963		msr_mask = MSR_VEC;
    964	if (!(msr & msr_mask)) {
    965		pr_devel("HMI vec emu: MSR fac clear %i:%s[%d] nip=%016lx"
    966			 " instr=%08x msr:%016lx\n",
    967			 smp_processor_id(), current->comm, current->pid,
    968			 regs->nip, instr, msr);
    969		return;
    970	}
    971
    972	/* Do logging here before we modify sel based on endian */
    973	switch (sel) {
    974	case 0:	/* lxvw4x */
    975		PPC_WARN_EMULATED(lxvw4x, regs);
    976		break;
    977	case 1: /* lxvh8x */
    978		PPC_WARN_EMULATED(lxvh8x, regs);
    979		break;
    980	case 2: /* lxvd2x */
    981		PPC_WARN_EMULATED(lxvd2x, regs);
    982		break;
    983	case 3: /* lxvb16x */
    984		PPC_WARN_EMULATED(lxvb16x, regs);
    985		break;
    986	}
    987
    988#ifdef __LITTLE_ENDIAN__
    989	/*
    990	 * An LE kernel stores the vector in the task struct as an LE
    991	 * byte array (effectively swapping both the components and
    992	 * the content of the components). Those instructions expect
    993	 * the components to remain in ascending address order, so we
    994	 * swap them back.
    995	 *
    996	 * If we are running a BE user space, the expectation is that
    997	 * of a simple memcpy, so forcing the emulation to look like
    998	 * a lxvb16x should do the trick.
    999	 */
   1000	if (swap)
   1001		sel = 3;
   1002
   1003	switch (sel) {
   1004	case 0:	/* lxvw4x */
   1005		for (i = 0; i < 4; i++)
   1006			((u32 *)vdst)[i] = ((u32 *)vbuf)[3-i];
   1007		break;
   1008	case 1: /* lxvh8x */
   1009		for (i = 0; i < 8; i++)
   1010			((u16 *)vdst)[i] = ((u16 *)vbuf)[7-i];
   1011		break;
   1012	case 2: /* lxvd2x */
   1013		for (i = 0; i < 2; i++)
   1014			((u64 *)vdst)[i] = ((u64 *)vbuf)[1-i];
   1015		break;
   1016	case 3: /* lxvb16x */
   1017		for (i = 0; i < 16; i++)
   1018			vdst[i] = vbuf[15-i];
   1019		break;
   1020	}
   1021#else /* __LITTLE_ENDIAN__ */
   1022	/* On a big endian kernel, a BE userspace only needs a memcpy */
   1023	if (!swap)
   1024		sel = 3;
   1025
   1026	/* Otherwise, we need to swap the content of the components */
   1027	switch (sel) {
   1028	case 0:	/* lxvw4x */
   1029		for (i = 0; i < 4; i++)
   1030			((u32 *)vdst)[i] = cpu_to_le32(((u32 *)vbuf)[i]);
   1031		break;
   1032	case 1: /* lxvh8x */
   1033		for (i = 0; i < 8; i++)
   1034			((u16 *)vdst)[i] = cpu_to_le16(((u16 *)vbuf)[i]);
   1035		break;
   1036	case 2: /* lxvd2x */
   1037		for (i = 0; i < 2; i++)
   1038			((u64 *)vdst)[i] = cpu_to_le64(((u64 *)vbuf)[i]);
   1039		break;
   1040	case 3: /* lxvb16x */
   1041		memcpy(vdst, vbuf, 16);
   1042		break;
   1043	}
   1044#endif /* !__LITTLE_ENDIAN__ */
   1045
   1046	/* Go to next instruction */
   1047	regs_add_return_ip(regs, 4);
   1048}
   1049#endif /* CONFIG_VSX */
   1050
   1051DEFINE_INTERRUPT_HANDLER_ASYNC(handle_hmi_exception)
   1052{
   1053	struct pt_regs *old_regs;
   1054
   1055	old_regs = set_irq_regs(regs);
   1056
   1057#ifdef CONFIG_VSX
   1058	/* Real mode flagged P9 special emu is needed */
   1059	if (local_paca->hmi_p9_special_emu) {
   1060		local_paca->hmi_p9_special_emu = 0;
   1061
   1062		/*
   1063		 * We don't want to take page faults while doing the
   1064		 * emulation, we just replay the instruction if necessary.
   1065		 */
   1066		pagefault_disable();
   1067		p9_hmi_special_emu(regs);
   1068		pagefault_enable();
   1069	}
   1070#endif /* CONFIG_VSX */
   1071
   1072	if (ppc_md.handle_hmi_exception)
   1073		ppc_md.handle_hmi_exception(regs);
   1074
   1075	set_irq_regs(old_regs);
   1076}
   1077
   1078DEFINE_INTERRUPT_HANDLER(unknown_exception)
   1079{
   1080	printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
   1081	       regs->nip, regs->msr, regs->trap);
   1082
   1083	_exception(SIGTRAP, regs, TRAP_UNK, 0);
   1084}
   1085
   1086DEFINE_INTERRUPT_HANDLER_ASYNC(unknown_async_exception)
   1087{
   1088	printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
   1089	       regs->nip, regs->msr, regs->trap);
   1090
   1091	_exception(SIGTRAP, regs, TRAP_UNK, 0);
   1092}
   1093
   1094DEFINE_INTERRUPT_HANDLER_NMI(unknown_nmi_exception)
   1095{
   1096	printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
   1097	       regs->nip, regs->msr, regs->trap);
   1098
   1099	_exception(SIGTRAP, regs, TRAP_UNK, 0);
   1100
   1101	return 0;
   1102}
   1103
   1104DEFINE_INTERRUPT_HANDLER(instruction_breakpoint_exception)
   1105{
   1106	if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
   1107					5, SIGTRAP) == NOTIFY_STOP)
   1108		return;
   1109	if (debugger_iabr_match(regs))
   1110		return;
   1111	_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
   1112}
   1113
   1114DEFINE_INTERRUPT_HANDLER(RunModeException)
   1115{
   1116	_exception(SIGTRAP, regs, TRAP_UNK, 0);
   1117}
   1118
   1119static void __single_step_exception(struct pt_regs *regs)
   1120{
   1121	clear_single_step(regs);
   1122	clear_br_trace(regs);
   1123
   1124	if (kprobe_post_handler(regs))
   1125		return;
   1126
   1127	if (notify_die(DIE_SSTEP, "single_step", regs, 5,
   1128					5, SIGTRAP) == NOTIFY_STOP)
   1129		return;
   1130	if (debugger_sstep(regs))
   1131		return;
   1132
   1133	_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
   1134}
   1135
   1136DEFINE_INTERRUPT_HANDLER(single_step_exception)
   1137{
   1138	__single_step_exception(regs);
   1139}
   1140
   1141/*
   1142 * After we have successfully emulated an instruction, we have to
   1143 * check if the instruction was being single-stepped, and if so,
   1144 * pretend we got a single-step exception.  This was pointed out
   1145 * by Kumar Gala.  -- paulus
   1146 */
   1147static void emulate_single_step(struct pt_regs *regs)
   1148{
   1149	if (single_stepping(regs))
   1150		__single_step_exception(regs);
   1151}
   1152
   1153static inline int __parse_fpscr(unsigned long fpscr)
   1154{
   1155	int ret = FPE_FLTUNK;
   1156
   1157	/* Invalid operation */
   1158	if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
   1159		ret = FPE_FLTINV;
   1160
   1161	/* Overflow */
   1162	else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
   1163		ret = FPE_FLTOVF;
   1164
   1165	/* Underflow */
   1166	else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
   1167		ret = FPE_FLTUND;
   1168
   1169	/* Divide by zero */
   1170	else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
   1171		ret = FPE_FLTDIV;
   1172
   1173	/* Inexact result */
   1174	else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
   1175		ret = FPE_FLTRES;
   1176
   1177	return ret;
   1178}
   1179
   1180static void parse_fpe(struct pt_regs *regs)
   1181{
   1182	int code = 0;
   1183
   1184	flush_fp_to_thread(current);
   1185
   1186#ifdef CONFIG_PPC_FPU_REGS
   1187	code = __parse_fpscr(current->thread.fp_state.fpscr);
   1188#endif
   1189
   1190	_exception(SIGFPE, regs, code, regs->nip);
   1191}
   1192
   1193/*
   1194 * Illegal instruction emulation support.  Originally written to
   1195 * provide the PVR to user applications using the mfspr rd, PVR.
   1196 * Return non-zero if we can't emulate, or -EFAULT if the associated
   1197 * memory access caused an access fault.  Return zero on success.
   1198 *
   1199 * There are a couple of ways to do this, either "decode" the instruction
   1200 * or directly match lots of bits.  In this case, matching lots of
   1201 * bits is faster and easier.
   1202 *
   1203 */
   1204static int emulate_string_inst(struct pt_regs *regs, u32 instword)
   1205{
   1206	u8 rT = (instword >> 21) & 0x1f;
   1207	u8 rA = (instword >> 16) & 0x1f;
   1208	u8 NB_RB = (instword >> 11) & 0x1f;
   1209	u32 num_bytes;
   1210	unsigned long EA;
   1211	int pos = 0;
   1212
   1213	/* Early out if we are an invalid form of lswx */
   1214	if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
   1215		if ((rT == rA) || (rT == NB_RB))
   1216			return -EINVAL;
   1217
   1218	EA = (rA == 0) ? 0 : regs->gpr[rA];
   1219
   1220	switch (instword & PPC_INST_STRING_MASK) {
   1221		case PPC_INST_LSWX:
   1222		case PPC_INST_STSWX:
   1223			EA += NB_RB;
   1224			num_bytes = regs->xer & 0x7f;
   1225			break;
   1226		case PPC_INST_LSWI:
   1227		case PPC_INST_STSWI:
   1228			num_bytes = (NB_RB == 0) ? 32 : NB_RB;
   1229			break;
   1230		default:
   1231			return -EINVAL;
   1232	}
   1233
   1234	while (num_bytes != 0)
   1235	{
   1236		u8 val;
   1237		u32 shift = 8 * (3 - (pos & 0x3));
   1238
   1239		/* if process is 32-bit, clear upper 32 bits of EA */
   1240		if ((regs->msr & MSR_64BIT) == 0)
   1241			EA &= 0xFFFFFFFF;
   1242
   1243		switch ((instword & PPC_INST_STRING_MASK)) {
   1244			case PPC_INST_LSWX:
   1245			case PPC_INST_LSWI:
   1246				if (get_user(val, (u8 __user *)EA))
   1247					return -EFAULT;
   1248				/* first time updating this reg,
   1249				 * zero it out */
   1250				if (pos == 0)
   1251					regs->gpr[rT] = 0;
   1252				regs->gpr[rT] |= val << shift;
   1253				break;
   1254			case PPC_INST_STSWI:
   1255			case PPC_INST_STSWX:
   1256				val = regs->gpr[rT] >> shift;
   1257				if (put_user(val, (u8 __user *)EA))
   1258					return -EFAULT;
   1259				break;
   1260		}
   1261		/* move EA to next address */
   1262		EA += 1;
   1263		num_bytes--;
   1264
   1265		/* manage our position within the register */
   1266		if (++pos == 4) {
   1267			pos = 0;
   1268			if (++rT == 32)
   1269				rT = 0;
   1270		}
   1271	}
   1272
   1273	return 0;
   1274}
   1275
   1276static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
   1277{
   1278	u32 ra,rs;
   1279	unsigned long tmp;
   1280
   1281	ra = (instword >> 16) & 0x1f;
   1282	rs = (instword >> 21) & 0x1f;
   1283
   1284	tmp = regs->gpr[rs];
   1285	tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
   1286	tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
   1287	tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
   1288	regs->gpr[ra] = tmp;
   1289
   1290	return 0;
   1291}
   1292
   1293static int emulate_isel(struct pt_regs *regs, u32 instword)
   1294{
   1295	u8 rT = (instword >> 21) & 0x1f;
   1296	u8 rA = (instword >> 16) & 0x1f;
   1297	u8 rB = (instword >> 11) & 0x1f;
   1298	u8 BC = (instword >> 6) & 0x1f;
   1299	u8 bit;
   1300	unsigned long tmp;
   1301
   1302	tmp = (rA == 0) ? 0 : regs->gpr[rA];
   1303	bit = (regs->ccr >> (31 - BC)) & 0x1;
   1304
   1305	regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
   1306
   1307	return 0;
   1308}
   1309
   1310#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
   1311static inline bool tm_abort_check(struct pt_regs *regs, int cause)
   1312{
   1313        /* If we're emulating a load/store in an active transaction, we cannot
   1314         * emulate it as the kernel operates in transaction suspended context.
   1315         * We need to abort the transaction.  This creates a persistent TM
   1316         * abort so tell the user what caused it with a new code.
   1317	 */
   1318	if (MSR_TM_TRANSACTIONAL(regs->msr)) {
   1319		tm_enable();
   1320		tm_abort(cause);
   1321		return true;
   1322	}
   1323	return false;
   1324}
   1325#else
   1326static inline bool tm_abort_check(struct pt_regs *regs, int reason)
   1327{
   1328	return false;
   1329}
   1330#endif
   1331
   1332static int emulate_instruction(struct pt_regs *regs)
   1333{
   1334	u32 instword;
   1335	u32 rd;
   1336
   1337	if (!user_mode(regs))
   1338		return -EINVAL;
   1339
   1340	if (get_user(instword, (u32 __user *)(regs->nip)))
   1341		return -EFAULT;
   1342
   1343	/* Emulate the mfspr rD, PVR. */
   1344	if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
   1345		PPC_WARN_EMULATED(mfpvr, regs);
   1346		rd = (instword >> 21) & 0x1f;
   1347		regs->gpr[rd] = mfspr(SPRN_PVR);
   1348		return 0;
   1349	}
   1350
   1351	/* Emulating the dcba insn is just a no-op.  */
   1352	if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
   1353		PPC_WARN_EMULATED(dcba, regs);
   1354		return 0;
   1355	}
   1356
   1357	/* Emulate the mcrxr insn.  */
   1358	if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
   1359		int shift = (instword >> 21) & 0x1c;
   1360		unsigned long msk = 0xf0000000UL >> shift;
   1361
   1362		PPC_WARN_EMULATED(mcrxr, regs);
   1363		regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
   1364		regs->xer &= ~0xf0000000UL;
   1365		return 0;
   1366	}
   1367
   1368	/* Emulate load/store string insn. */
   1369	if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
   1370		if (tm_abort_check(regs,
   1371				   TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
   1372			return -EINVAL;
   1373		PPC_WARN_EMULATED(string, regs);
   1374		return emulate_string_inst(regs, instword);
   1375	}
   1376
   1377	/* Emulate the popcntb (Population Count Bytes) instruction. */
   1378	if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
   1379		PPC_WARN_EMULATED(popcntb, regs);
   1380		return emulate_popcntb_inst(regs, instword);
   1381	}
   1382
   1383	/* Emulate isel (Integer Select) instruction */
   1384	if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
   1385		PPC_WARN_EMULATED(isel, regs);
   1386		return emulate_isel(regs, instword);
   1387	}
   1388
   1389	/* Emulate sync instruction variants */
   1390	if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
   1391		PPC_WARN_EMULATED(sync, regs);
   1392		asm volatile("sync");
   1393		return 0;
   1394	}
   1395
   1396#ifdef CONFIG_PPC64
   1397	/* Emulate the mfspr rD, DSCR. */
   1398	if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
   1399		PPC_INST_MFSPR_DSCR_USER) ||
   1400	     ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
   1401		PPC_INST_MFSPR_DSCR)) &&
   1402			cpu_has_feature(CPU_FTR_DSCR)) {
   1403		PPC_WARN_EMULATED(mfdscr, regs);
   1404		rd = (instword >> 21) & 0x1f;
   1405		regs->gpr[rd] = mfspr(SPRN_DSCR);
   1406		return 0;
   1407	}
   1408	/* Emulate the mtspr DSCR, rD. */
   1409	if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
   1410		PPC_INST_MTSPR_DSCR_USER) ||
   1411	     ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
   1412		PPC_INST_MTSPR_DSCR)) &&
   1413			cpu_has_feature(CPU_FTR_DSCR)) {
   1414		PPC_WARN_EMULATED(mtdscr, regs);
   1415		rd = (instword >> 21) & 0x1f;
   1416		current->thread.dscr = regs->gpr[rd];
   1417		current->thread.dscr_inherit = 1;
   1418		mtspr(SPRN_DSCR, current->thread.dscr);
   1419		return 0;
   1420	}
   1421#endif
   1422
   1423	return -EINVAL;
   1424}
   1425
   1426int is_valid_bugaddr(unsigned long addr)
   1427{
   1428	return is_kernel_addr(addr);
   1429}
   1430
   1431#ifdef CONFIG_MATH_EMULATION
   1432static int emulate_math(struct pt_regs *regs)
   1433{
   1434	int ret;
   1435
   1436	ret = do_mathemu(regs);
   1437	if (ret >= 0)
   1438		PPC_WARN_EMULATED(math, regs);
   1439
   1440	switch (ret) {
   1441	case 0:
   1442		emulate_single_step(regs);
   1443		return 0;
   1444	case 1: {
   1445			int code = 0;
   1446			code = __parse_fpscr(current->thread.fp_state.fpscr);
   1447			_exception(SIGFPE, regs, code, regs->nip);
   1448			return 0;
   1449		}
   1450	case -EFAULT:
   1451		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
   1452		return 0;
   1453	}
   1454
   1455	return -1;
   1456}
   1457#else
   1458static inline int emulate_math(struct pt_regs *regs) { return -1; }
   1459#endif
   1460
   1461static void do_program_check(struct pt_regs *regs)
   1462{
   1463	unsigned int reason = get_reason(regs);
   1464
   1465	/* We can now get here via a FP Unavailable exception if the core
   1466	 * has no FPU, in that case the reason flags will be 0 */
   1467
   1468	if (reason & REASON_FP) {
   1469		/* IEEE FP exception */
   1470		parse_fpe(regs);
   1471		return;
   1472	}
   1473	if (reason & REASON_TRAP) {
   1474		unsigned long bugaddr;
   1475		/* Debugger is first in line to stop recursive faults in
   1476		 * rcu_lock, notify_die, or atomic_notifier_call_chain */
   1477		if (debugger_bpt(regs))
   1478			return;
   1479
   1480		if (kprobe_handler(regs))
   1481			return;
   1482
   1483		/* trap exception */
   1484		if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
   1485				== NOTIFY_STOP)
   1486			return;
   1487
   1488		bugaddr = regs->nip;
   1489		/*
   1490		 * Fixup bugaddr for BUG_ON() in real mode
   1491		 */
   1492		if (!is_kernel_addr(bugaddr) && !(regs->msr & MSR_IR))
   1493			bugaddr += PAGE_OFFSET;
   1494
   1495		if (!(regs->msr & MSR_PR) &&  /* not user-mode */
   1496		    report_bug(bugaddr, regs) == BUG_TRAP_TYPE_WARN) {
   1497			const struct exception_table_entry *entry;
   1498
   1499			entry = search_exception_tables(bugaddr);
   1500			if (entry) {
   1501				regs_set_return_ip(regs, extable_fixup(entry) + regs->nip - bugaddr);
   1502				return;
   1503			}
   1504		}
   1505		_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
   1506		return;
   1507	}
   1508#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
   1509	if (reason & REASON_TM) {
   1510		/* This is a TM "Bad Thing Exception" program check.
   1511		 * This occurs when:
   1512		 * -  An rfid/hrfid/mtmsrd attempts to cause an illegal
   1513		 *    transition in TM states.
   1514		 * -  A trechkpt is attempted when transactional.
   1515		 * -  A treclaim is attempted when non transactional.
   1516		 * -  A tend is illegally attempted.
   1517		 * -  writing a TM SPR when transactional.
   1518		 *
   1519		 * If usermode caused this, it's done something illegal and
   1520		 * gets a SIGILL slap on the wrist.  We call it an illegal
   1521		 * operand to distinguish from the instruction just being bad
   1522		 * (e.g. executing a 'tend' on a CPU without TM!); it's an
   1523		 * illegal /placement/ of a valid instruction.
   1524		 */
   1525		if (user_mode(regs)) {
   1526			_exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
   1527			return;
   1528		} else {
   1529			printk(KERN_EMERG "Unexpected TM Bad Thing exception "
   1530			       "at %lx (msr 0x%lx) tm_scratch=%llx\n",
   1531			       regs->nip, regs->msr, get_paca()->tm_scratch);
   1532			die("Unrecoverable exception", regs, SIGABRT);
   1533		}
   1534	}
   1535#endif
   1536
   1537	/*
   1538	 * If we took the program check in the kernel skip down to sending a
   1539	 * SIGILL. The subsequent cases all relate to emulating instructions
   1540	 * which we should only do for userspace. We also do not want to enable
   1541	 * interrupts for kernel faults because that might lead to further
   1542	 * faults, and loose the context of the original exception.
   1543	 */
   1544	if (!user_mode(regs))
   1545		goto sigill;
   1546
   1547	interrupt_cond_local_irq_enable(regs);
   1548
   1549	/* (reason & REASON_ILLEGAL) would be the obvious thing here,
   1550	 * but there seems to be a hardware bug on the 405GP (RevD)
   1551	 * that means ESR is sometimes set incorrectly - either to
   1552	 * ESR_DST (!?) or 0.  In the process of chasing this with the
   1553	 * hardware people - not sure if it can happen on any illegal
   1554	 * instruction or only on FP instructions, whether there is a
   1555	 * pattern to occurrences etc. -dgibson 31/Mar/2003
   1556	 */
   1557	if (!emulate_math(regs))
   1558		return;
   1559
   1560	/* Try to emulate it if we should. */
   1561	if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
   1562		switch (emulate_instruction(regs)) {
   1563		case 0:
   1564			regs_add_return_ip(regs, 4);
   1565			emulate_single_step(regs);
   1566			return;
   1567		case -EFAULT:
   1568			_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
   1569			return;
   1570		}
   1571	}
   1572
   1573sigill:
   1574	if (reason & REASON_PRIVILEGED)
   1575		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
   1576	else
   1577		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
   1578
   1579}
   1580
   1581DEFINE_INTERRUPT_HANDLER(program_check_exception)
   1582{
   1583	do_program_check(regs);
   1584}
   1585
   1586/*
   1587 * This occurs when running in hypervisor mode on POWER6 or later
   1588 * and an illegal instruction is encountered.
   1589 */
   1590DEFINE_INTERRUPT_HANDLER(emulation_assist_interrupt)
   1591{
   1592	regs_set_return_msr(regs, regs->msr | REASON_ILLEGAL);
   1593	do_program_check(regs);
   1594}
   1595
   1596DEFINE_INTERRUPT_HANDLER(alignment_exception)
   1597{
   1598	int sig, code, fixed = 0;
   1599	unsigned long  reason;
   1600
   1601	interrupt_cond_local_irq_enable(regs);
   1602
   1603	reason = get_reason(regs);
   1604	if (reason & REASON_BOUNDARY) {
   1605		sig = SIGBUS;
   1606		code = BUS_ADRALN;
   1607		goto bad;
   1608	}
   1609
   1610	if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
   1611		return;
   1612
   1613	/* we don't implement logging of alignment exceptions */
   1614	if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
   1615		fixed = fix_alignment(regs);
   1616
   1617	if (fixed == 1) {
   1618		/* skip over emulated instruction */
   1619		regs_add_return_ip(regs, inst_length(reason));
   1620		emulate_single_step(regs);
   1621		return;
   1622	}
   1623
   1624	/* Operand address was bad */
   1625	if (fixed == -EFAULT) {
   1626		sig = SIGSEGV;
   1627		code = SEGV_ACCERR;
   1628	} else {
   1629		sig = SIGBUS;
   1630		code = BUS_ADRALN;
   1631	}
   1632bad:
   1633	if (user_mode(regs))
   1634		_exception(sig, regs, code, regs->dar);
   1635	else
   1636		bad_page_fault(regs, sig);
   1637}
   1638
   1639DEFINE_INTERRUPT_HANDLER(stack_overflow_exception)
   1640{
   1641	die("Kernel stack overflow", regs, SIGSEGV);
   1642}
   1643
   1644DEFINE_INTERRUPT_HANDLER(kernel_fp_unavailable_exception)
   1645{
   1646	printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
   1647			  "%lx at %lx\n", regs->trap, regs->nip);
   1648	die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
   1649}
   1650
   1651DEFINE_INTERRUPT_HANDLER(altivec_unavailable_exception)
   1652{
   1653	if (user_mode(regs)) {
   1654		/* A user program has executed an altivec instruction,
   1655		   but this kernel doesn't support altivec. */
   1656		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
   1657		return;
   1658	}
   1659
   1660	printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
   1661			"%lx at %lx\n", regs->trap, regs->nip);
   1662	die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
   1663}
   1664
   1665DEFINE_INTERRUPT_HANDLER(vsx_unavailable_exception)
   1666{
   1667	if (user_mode(regs)) {
   1668		/* A user program has executed an vsx instruction,
   1669		   but this kernel doesn't support vsx. */
   1670		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
   1671		return;
   1672	}
   1673
   1674	printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
   1675			"%lx at %lx\n", regs->trap, regs->nip);
   1676	die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
   1677}
   1678
   1679#ifdef CONFIG_PPC64
   1680static void tm_unavailable(struct pt_regs *regs)
   1681{
   1682#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
   1683	if (user_mode(regs)) {
   1684		current->thread.load_tm++;
   1685		regs_set_return_msr(regs, regs->msr | MSR_TM);
   1686		tm_enable();
   1687		tm_restore_sprs(&current->thread);
   1688		return;
   1689	}
   1690#endif
   1691	pr_emerg("Unrecoverable TM Unavailable Exception "
   1692			"%lx at %lx\n", regs->trap, regs->nip);
   1693	die("Unrecoverable TM Unavailable Exception", regs, SIGABRT);
   1694}
   1695
   1696DEFINE_INTERRUPT_HANDLER(facility_unavailable_exception)
   1697{
   1698	static char *facility_strings[] = {
   1699		[FSCR_FP_LG] = "FPU",
   1700		[FSCR_VECVSX_LG] = "VMX/VSX",
   1701		[FSCR_DSCR_LG] = "DSCR",
   1702		[FSCR_PM_LG] = "PMU SPRs",
   1703		[FSCR_BHRB_LG] = "BHRB",
   1704		[FSCR_TM_LG] = "TM",
   1705		[FSCR_EBB_LG] = "EBB",
   1706		[FSCR_TAR_LG] = "TAR",
   1707		[FSCR_MSGP_LG] = "MSGP",
   1708		[FSCR_SCV_LG] = "SCV",
   1709		[FSCR_PREFIX_LG] = "PREFIX",
   1710	};
   1711	char *facility = "unknown";
   1712	u64 value;
   1713	u32 instword, rd;
   1714	u8 status;
   1715	bool hv;
   1716
   1717	hv = (TRAP(regs) == INTERRUPT_H_FAC_UNAVAIL);
   1718	if (hv)
   1719		value = mfspr(SPRN_HFSCR);
   1720	else
   1721		value = mfspr(SPRN_FSCR);
   1722
   1723	status = value >> 56;
   1724	if ((hv || status >= 2) &&
   1725	    (status < ARRAY_SIZE(facility_strings)) &&
   1726	    facility_strings[status])
   1727		facility = facility_strings[status];
   1728
   1729	/* We should not have taken this interrupt in kernel */
   1730	if (!user_mode(regs)) {
   1731		pr_emerg("Facility '%s' unavailable (%d) exception in kernel mode at %lx\n",
   1732			 facility, status, regs->nip);
   1733		die("Unexpected facility unavailable exception", regs, SIGABRT);
   1734	}
   1735
   1736	interrupt_cond_local_irq_enable(regs);
   1737
   1738	if (status == FSCR_DSCR_LG) {
   1739		/*
   1740		 * User is accessing the DSCR register using the problem
   1741		 * state only SPR number (0x03) either through a mfspr or
   1742		 * a mtspr instruction. If it is a write attempt through
   1743		 * a mtspr, then we set the inherit bit. This also allows
   1744		 * the user to write or read the register directly in the
   1745		 * future by setting via the FSCR DSCR bit. But in case it
   1746		 * is a read DSCR attempt through a mfspr instruction, we
   1747		 * just emulate the instruction instead. This code path will
   1748		 * always emulate all the mfspr instructions till the user
   1749		 * has attempted at least one mtspr instruction. This way it
   1750		 * preserves the same behaviour when the user is accessing
   1751		 * the DSCR through privilege level only SPR number (0x11)
   1752		 * which is emulated through illegal instruction exception.
   1753		 * We always leave HFSCR DSCR set.
   1754		 */
   1755		if (get_user(instword, (u32 __user *)(regs->nip))) {
   1756			pr_err("Failed to fetch the user instruction\n");
   1757			return;
   1758		}
   1759
   1760		/* Write into DSCR (mtspr 0x03, RS) */
   1761		if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK)
   1762				== PPC_INST_MTSPR_DSCR_USER) {
   1763			rd = (instword >> 21) & 0x1f;
   1764			current->thread.dscr = regs->gpr[rd];
   1765			current->thread.dscr_inherit = 1;
   1766			current->thread.fscr |= FSCR_DSCR;
   1767			mtspr(SPRN_FSCR, current->thread.fscr);
   1768		}
   1769
   1770		/* Read from DSCR (mfspr RT, 0x03) */
   1771		if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK)
   1772				== PPC_INST_MFSPR_DSCR_USER) {
   1773			if (emulate_instruction(regs)) {
   1774				pr_err("DSCR based mfspr emulation failed\n");
   1775				return;
   1776			}
   1777			regs_add_return_ip(regs, 4);
   1778			emulate_single_step(regs);
   1779		}
   1780		return;
   1781	}
   1782
   1783	if (status == FSCR_TM_LG) {
   1784		/*
   1785		 * If we're here then the hardware is TM aware because it
   1786		 * generated an exception with FSRM_TM set.
   1787		 *
   1788		 * If cpu_has_feature(CPU_FTR_TM) is false, then either firmware
   1789		 * told us not to do TM, or the kernel is not built with TM
   1790		 * support.
   1791		 *
   1792		 * If both of those things are true, then userspace can spam the
   1793		 * console by triggering the printk() below just by continually
   1794		 * doing tbegin (or any TM instruction). So in that case just
   1795		 * send the process a SIGILL immediately.
   1796		 */
   1797		if (!cpu_has_feature(CPU_FTR_TM))
   1798			goto out;
   1799
   1800		tm_unavailable(regs);
   1801		return;
   1802	}
   1803
   1804	pr_err_ratelimited("%sFacility '%s' unavailable (%d), exception at 0x%lx, MSR=%lx\n",
   1805		hv ? "Hypervisor " : "", facility, status, regs->nip, regs->msr);
   1806
   1807out:
   1808	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
   1809}
   1810#endif
   1811
   1812#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
   1813
   1814DEFINE_INTERRUPT_HANDLER(fp_unavailable_tm)
   1815{
   1816	/* Note:  This does not handle any kind of FP laziness. */
   1817
   1818	TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
   1819		 regs->nip, regs->msr);
   1820
   1821        /* We can only have got here if the task started using FP after
   1822         * beginning the transaction.  So, the transactional regs are just a
   1823         * copy of the checkpointed ones.  But, we still need to recheckpoint
   1824         * as we're enabling FP for the process; it will return, abort the
   1825         * transaction, and probably retry but now with FP enabled.  So the
   1826         * checkpointed FP registers need to be loaded.
   1827	 */
   1828	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
   1829
   1830	/*
   1831	 * Reclaim initially saved out bogus (lazy) FPRs to ckfp_state, and
   1832	 * then it was overwrite by the thr->fp_state by tm_reclaim_thread().
   1833	 *
   1834	 * At this point, ck{fp,vr}_state contains the exact values we want to
   1835	 * recheckpoint.
   1836	 */
   1837
   1838	/* Enable FP for the task: */
   1839	current->thread.load_fp = 1;
   1840
   1841	/*
   1842	 * Recheckpoint all the checkpointed ckpt, ck{fp, vr}_state registers.
   1843	 */
   1844	tm_recheckpoint(&current->thread);
   1845}
   1846
   1847DEFINE_INTERRUPT_HANDLER(altivec_unavailable_tm)
   1848{
   1849	/* See the comments in fp_unavailable_tm().  This function operates
   1850	 * the same way.
   1851	 */
   1852
   1853	TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
   1854		 "MSR=%lx\n",
   1855		 regs->nip, regs->msr);
   1856	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
   1857	current->thread.load_vec = 1;
   1858	tm_recheckpoint(&current->thread);
   1859	current->thread.used_vr = 1;
   1860}
   1861
   1862DEFINE_INTERRUPT_HANDLER(vsx_unavailable_tm)
   1863{
   1864	/* See the comments in fp_unavailable_tm().  This works similarly,
   1865	 * though we're loading both FP and VEC registers in here.
   1866	 *
   1867	 * If FP isn't in use, load FP regs.  If VEC isn't in use, load VEC
   1868	 * regs.  Either way, set MSR_VSX.
   1869	 */
   1870
   1871	TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
   1872		 "MSR=%lx\n",
   1873		 regs->nip, regs->msr);
   1874
   1875	current->thread.used_vsr = 1;
   1876
   1877	/* This reclaims FP and/or VR regs if they're already enabled */
   1878	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
   1879
   1880	current->thread.load_vec = 1;
   1881	current->thread.load_fp = 1;
   1882
   1883	tm_recheckpoint(&current->thread);
   1884}
   1885#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
   1886
   1887#ifdef CONFIG_PPC64
   1888DECLARE_INTERRUPT_HANDLER_NMI(performance_monitor_exception_nmi);
   1889DEFINE_INTERRUPT_HANDLER_NMI(performance_monitor_exception_nmi)
   1890{
   1891	__this_cpu_inc(irq_stat.pmu_irqs);
   1892
   1893	perf_irq(regs);
   1894
   1895	return 0;
   1896}
   1897#endif
   1898
   1899DECLARE_INTERRUPT_HANDLER_ASYNC(performance_monitor_exception_async);
   1900DEFINE_INTERRUPT_HANDLER_ASYNC(performance_monitor_exception_async)
   1901{
   1902	__this_cpu_inc(irq_stat.pmu_irqs);
   1903
   1904	perf_irq(regs);
   1905}
   1906
   1907DEFINE_INTERRUPT_HANDLER_RAW(performance_monitor_exception)
   1908{
   1909	/*
   1910	 * On 64-bit, if perf interrupts hit in a local_irq_disable
   1911	 * (soft-masked) region, we consider them as NMIs. This is required to
   1912	 * prevent hash faults on user addresses when reading callchains (and
   1913	 * looks better from an irq tracing perspective).
   1914	 */
   1915	if (IS_ENABLED(CONFIG_PPC64) && unlikely(arch_irq_disabled_regs(regs)))
   1916		performance_monitor_exception_nmi(regs);
   1917	else
   1918		performance_monitor_exception_async(regs);
   1919
   1920	return 0;
   1921}
   1922
   1923#ifdef CONFIG_PPC_ADV_DEBUG_REGS
   1924static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
   1925{
   1926	int changed = 0;
   1927	/*
   1928	 * Determine the cause of the debug event, clear the
   1929	 * event flags and send a trap to the handler. Torez
   1930	 */
   1931	if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
   1932		dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
   1933#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
   1934		current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
   1935#endif
   1936		do_send_trap(regs, mfspr(SPRN_DAC1), debug_status,
   1937			     5);
   1938		changed |= 0x01;
   1939	}  else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
   1940		dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
   1941		do_send_trap(regs, mfspr(SPRN_DAC2), debug_status,
   1942			     6);
   1943		changed |= 0x01;
   1944	}  else if (debug_status & DBSR_IAC1) {
   1945		current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
   1946		dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
   1947		do_send_trap(regs, mfspr(SPRN_IAC1), debug_status,
   1948			     1);
   1949		changed |= 0x01;
   1950	}  else if (debug_status & DBSR_IAC2) {
   1951		current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
   1952		do_send_trap(regs, mfspr(SPRN_IAC2), debug_status,
   1953			     2);
   1954		changed |= 0x01;
   1955	}  else if (debug_status & DBSR_IAC3) {
   1956		current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
   1957		dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
   1958		do_send_trap(regs, mfspr(SPRN_IAC3), debug_status,
   1959			     3);
   1960		changed |= 0x01;
   1961	}  else if (debug_status & DBSR_IAC4) {
   1962		current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
   1963		do_send_trap(regs, mfspr(SPRN_IAC4), debug_status,
   1964			     4);
   1965		changed |= 0x01;
   1966	}
   1967	/*
   1968	 * At the point this routine was called, the MSR(DE) was turned off.
   1969	 * Check all other debug flags and see if that bit needs to be turned
   1970	 * back on or not.
   1971	 */
   1972	if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
   1973			       current->thread.debug.dbcr1))
   1974		regs_set_return_msr(regs, regs->msr | MSR_DE);
   1975	else
   1976		/* Make sure the IDM flag is off */
   1977		current->thread.debug.dbcr0 &= ~DBCR0_IDM;
   1978
   1979	if (changed & 0x01)
   1980		mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
   1981}
   1982
   1983DEFINE_INTERRUPT_HANDLER(DebugException)
   1984{
   1985	unsigned long debug_status = regs->dsisr;
   1986
   1987	current->thread.debug.dbsr = debug_status;
   1988
   1989	/* Hack alert: On BookE, Branch Taken stops on the branch itself, while
   1990	 * on server, it stops on the target of the branch. In order to simulate
   1991	 * the server behaviour, we thus restart right away with a single step
   1992	 * instead of stopping here when hitting a BT
   1993	 */
   1994	if (debug_status & DBSR_BT) {
   1995		regs_set_return_msr(regs, regs->msr & ~MSR_DE);
   1996
   1997		/* Disable BT */
   1998		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
   1999		/* Clear the BT event */
   2000		mtspr(SPRN_DBSR, DBSR_BT);
   2001
   2002		/* Do the single step trick only when coming from userspace */
   2003		if (user_mode(regs)) {
   2004			current->thread.debug.dbcr0 &= ~DBCR0_BT;
   2005			current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
   2006			regs_set_return_msr(regs, regs->msr | MSR_DE);
   2007			return;
   2008		}
   2009
   2010		if (kprobe_post_handler(regs))
   2011			return;
   2012
   2013		if (notify_die(DIE_SSTEP, "block_step", regs, 5,
   2014			       5, SIGTRAP) == NOTIFY_STOP) {
   2015			return;
   2016		}
   2017		if (debugger_sstep(regs))
   2018			return;
   2019	} else if (debug_status & DBSR_IC) { 	/* Instruction complete */
   2020		regs_set_return_msr(regs, regs->msr & ~MSR_DE);
   2021
   2022		/* Disable instruction completion */
   2023		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
   2024		/* Clear the instruction completion event */
   2025		mtspr(SPRN_DBSR, DBSR_IC);
   2026
   2027		if (kprobe_post_handler(regs))
   2028			return;
   2029
   2030		if (notify_die(DIE_SSTEP, "single_step", regs, 5,
   2031			       5, SIGTRAP) == NOTIFY_STOP) {
   2032			return;
   2033		}
   2034
   2035		if (debugger_sstep(regs))
   2036			return;
   2037
   2038		if (user_mode(regs)) {
   2039			current->thread.debug.dbcr0 &= ~DBCR0_IC;
   2040			if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
   2041					       current->thread.debug.dbcr1))
   2042				regs_set_return_msr(regs, regs->msr | MSR_DE);
   2043			else
   2044				/* Make sure the IDM bit is off */
   2045				current->thread.debug.dbcr0 &= ~DBCR0_IDM;
   2046		}
   2047
   2048		_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
   2049	} else
   2050		handle_debug(regs, debug_status);
   2051}
   2052#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
   2053
   2054#ifdef CONFIG_ALTIVEC
   2055DEFINE_INTERRUPT_HANDLER(altivec_assist_exception)
   2056{
   2057	int err;
   2058
   2059	if (!user_mode(regs)) {
   2060		printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
   2061		       " at %lx\n", regs->nip);
   2062		die("Kernel VMX/Altivec assist exception", regs, SIGILL);
   2063	}
   2064
   2065	flush_altivec_to_thread(current);
   2066
   2067	PPC_WARN_EMULATED(altivec, regs);
   2068	err = emulate_altivec(regs);
   2069	if (err == 0) {
   2070		regs_add_return_ip(regs, 4); /* skip emulated instruction */
   2071		emulate_single_step(regs);
   2072		return;
   2073	}
   2074
   2075	if (err == -EFAULT) {
   2076		/* got an error reading the instruction */
   2077		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
   2078	} else {
   2079		/* didn't recognize the instruction */
   2080		/* XXX quick hack for now: set the non-Java bit in the VSCR */
   2081		printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
   2082				   "in %s at %lx\n", current->comm, regs->nip);
   2083		current->thread.vr_state.vscr.u[3] |= 0x10000;
   2084	}
   2085}
   2086#endif /* CONFIG_ALTIVEC */
   2087
   2088#ifdef CONFIG_FSL_BOOKE
   2089DEFINE_INTERRUPT_HANDLER(CacheLockingException)
   2090{
   2091	unsigned long error_code = regs->dsisr;
   2092
   2093	/* We treat cache locking instructions from the user
   2094	 * as priv ops, in the future we could try to do
   2095	 * something smarter
   2096	 */
   2097	if (error_code & (ESR_DLK|ESR_ILK))
   2098		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
   2099	return;
   2100}
   2101#endif /* CONFIG_FSL_BOOKE */
   2102
   2103#ifdef CONFIG_SPE
   2104DEFINE_INTERRUPT_HANDLER(SPEFloatingPointException)
   2105{
   2106	extern int do_spe_mathemu(struct pt_regs *regs);
   2107	unsigned long spefscr;
   2108	int fpexc_mode;
   2109	int code = FPE_FLTUNK;
   2110	int err;
   2111
   2112	interrupt_cond_local_irq_enable(regs);
   2113
   2114	flush_spe_to_thread(current);
   2115
   2116	spefscr = current->thread.spefscr;
   2117	fpexc_mode = current->thread.fpexc_mode;
   2118
   2119	if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
   2120		code = FPE_FLTOVF;
   2121	}
   2122	else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
   2123		code = FPE_FLTUND;
   2124	}
   2125	else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
   2126		code = FPE_FLTDIV;
   2127	else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
   2128		code = FPE_FLTINV;
   2129	}
   2130	else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
   2131		code = FPE_FLTRES;
   2132
   2133	err = do_spe_mathemu(regs);
   2134	if (err == 0) {
   2135		regs_add_return_ip(regs, 4); /* skip emulated instruction */
   2136		emulate_single_step(regs);
   2137		return;
   2138	}
   2139
   2140	if (err == -EFAULT) {
   2141		/* got an error reading the instruction */
   2142		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
   2143	} else if (err == -EINVAL) {
   2144		/* didn't recognize the instruction */
   2145		printk(KERN_ERR "unrecognized spe instruction "
   2146		       "in %s at %lx\n", current->comm, regs->nip);
   2147	} else {
   2148		_exception(SIGFPE, regs, code, regs->nip);
   2149	}
   2150
   2151	return;
   2152}
   2153
   2154DEFINE_INTERRUPT_HANDLER(SPEFloatingPointRoundException)
   2155{
   2156	extern int speround_handler(struct pt_regs *regs);
   2157	int err;
   2158
   2159	interrupt_cond_local_irq_enable(regs);
   2160
   2161	preempt_disable();
   2162	if (regs->msr & MSR_SPE)
   2163		giveup_spe(current);
   2164	preempt_enable();
   2165
   2166	regs_add_return_ip(regs, -4);
   2167	err = speround_handler(regs);
   2168	if (err == 0) {
   2169		regs_add_return_ip(regs, 4); /* skip emulated instruction */
   2170		emulate_single_step(regs);
   2171		return;
   2172	}
   2173
   2174	if (err == -EFAULT) {
   2175		/* got an error reading the instruction */
   2176		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
   2177	} else if (err == -EINVAL) {
   2178		/* didn't recognize the instruction */
   2179		printk(KERN_ERR "unrecognized spe instruction "
   2180		       "in %s at %lx\n", current->comm, regs->nip);
   2181	} else {
   2182		_exception(SIGFPE, regs, FPE_FLTUNK, regs->nip);
   2183		return;
   2184	}
   2185}
   2186#endif
   2187
   2188/*
   2189 * We enter here if we get an unrecoverable exception, that is, one
   2190 * that happened at a point where the RI (recoverable interrupt) bit
   2191 * in the MSR is 0.  This indicates that SRR0/1 are live, and that
   2192 * we therefore lost state by taking this exception.
   2193 */
   2194void __noreturn unrecoverable_exception(struct pt_regs *regs)
   2195{
   2196	pr_emerg("Unrecoverable exception %lx at %lx (msr=%lx)\n",
   2197		 regs->trap, regs->nip, regs->msr);
   2198	die("Unrecoverable exception", regs, SIGABRT);
   2199	/* die() should not return */
   2200	for (;;)
   2201		;
   2202}
   2203
   2204#if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
   2205/*
   2206 * Default handler for a Watchdog exception,
   2207 * spins until a reboot occurs
   2208 */
   2209void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
   2210{
   2211	/* Generic WatchdogHandler, implement your own */
   2212	mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
   2213	return;
   2214}
   2215
   2216DEFINE_INTERRUPT_HANDLER_NMI(WatchdogException)
   2217{
   2218	printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
   2219	WatchdogHandler(regs);
   2220	return 0;
   2221}
   2222#endif
   2223
   2224/*
   2225 * We enter here if we discover during exception entry that we are
   2226 * running in supervisor mode with a userspace value in the stack pointer.
   2227 */
   2228DEFINE_INTERRUPT_HANDLER(kernel_bad_stack)
   2229{
   2230	printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
   2231	       regs->gpr[1], regs->nip);
   2232	die("Bad kernel stack pointer", regs, SIGABRT);
   2233}
   2234
   2235#ifdef CONFIG_PPC_EMULATED_STATS
   2236
   2237#define WARN_EMULATED_SETUP(type)	.type = { .name = #type }
   2238
   2239struct ppc_emulated ppc_emulated = {
   2240#ifdef CONFIG_ALTIVEC
   2241	WARN_EMULATED_SETUP(altivec),
   2242#endif
   2243	WARN_EMULATED_SETUP(dcba),
   2244	WARN_EMULATED_SETUP(dcbz),
   2245	WARN_EMULATED_SETUP(fp_pair),
   2246	WARN_EMULATED_SETUP(isel),
   2247	WARN_EMULATED_SETUP(mcrxr),
   2248	WARN_EMULATED_SETUP(mfpvr),
   2249	WARN_EMULATED_SETUP(multiple),
   2250	WARN_EMULATED_SETUP(popcntb),
   2251	WARN_EMULATED_SETUP(spe),
   2252	WARN_EMULATED_SETUP(string),
   2253	WARN_EMULATED_SETUP(sync),
   2254	WARN_EMULATED_SETUP(unaligned),
   2255#ifdef CONFIG_MATH_EMULATION
   2256	WARN_EMULATED_SETUP(math),
   2257#endif
   2258#ifdef CONFIG_VSX
   2259	WARN_EMULATED_SETUP(vsx),
   2260#endif
   2261#ifdef CONFIG_PPC64
   2262	WARN_EMULATED_SETUP(mfdscr),
   2263	WARN_EMULATED_SETUP(mtdscr),
   2264	WARN_EMULATED_SETUP(lq_stq),
   2265	WARN_EMULATED_SETUP(lxvw4x),
   2266	WARN_EMULATED_SETUP(lxvh8x),
   2267	WARN_EMULATED_SETUP(lxvd2x),
   2268	WARN_EMULATED_SETUP(lxvb16x),
   2269#endif
   2270};
   2271
   2272u32 ppc_warn_emulated;
   2273
   2274void ppc_warn_emulated_print(const char *type)
   2275{
   2276	pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
   2277			    type);
   2278}
   2279
   2280static int __init ppc_warn_emulated_init(void)
   2281{
   2282	struct dentry *dir;
   2283	unsigned int i;
   2284	struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
   2285
   2286	dir = debugfs_create_dir("emulated_instructions",
   2287				 arch_debugfs_dir);
   2288
   2289	debugfs_create_u32("do_warn", 0644, dir, &ppc_warn_emulated);
   2290
   2291	for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++)
   2292		debugfs_create_u32(entries[i].name, 0644, dir,
   2293				   (u32 *)&entries[i].val.counter);
   2294
   2295	return 0;
   2296}
   2297
   2298device_initcall(ppc_warn_emulated_init);
   2299
   2300#endif /* CONFIG_PPC_EMULATED_STATS */