core_64.c (11693B)
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * PPC64 code to handle Linux booting another kernel. 4 * 5 * Copyright (C) 2004-2005, IBM Corp. 6 * 7 * Created by: Milton D Miller II 8 */ 9 10 11#include <linux/kexec.h> 12#include <linux/smp.h> 13#include <linux/thread_info.h> 14#include <linux/init_task.h> 15#include <linux/errno.h> 16#include <linux/kernel.h> 17#include <linux/cpu.h> 18#include <linux/hardirq.h> 19#include <linux/of.h> 20 21#include <asm/page.h> 22#include <asm/current.h> 23#include <asm/machdep.h> 24#include <asm/cacheflush.h> 25#include <asm/firmware.h> 26#include <asm/paca.h> 27#include <asm/mmu.h> 28#include <asm/sections.h> /* _end */ 29#include <asm/smp.h> 30#include <asm/hw_breakpoint.h> 31#include <asm/svm.h> 32#include <asm/ultravisor.h> 33 34int machine_kexec_prepare(struct kimage *image) 35{ 36 int i; 37 unsigned long begin, end; /* limits of segment */ 38 unsigned long low, high; /* limits of blocked memory range */ 39 struct device_node *node; 40 const unsigned long *basep; 41 const unsigned int *sizep; 42 43 /* 44 * Since we use the kernel fault handlers and paging code to 45 * handle the virtual mode, we must make sure no destination 46 * overlaps kernel static data or bss. 47 */ 48 for (i = 0; i < image->nr_segments; i++) 49 if (image->segment[i].mem < __pa(_end)) 50 return -ETXTBSY; 51 52 /* We also should not overwrite the tce tables */ 53 for_each_node_by_type(node, "pci") { 54 basep = of_get_property(node, "linux,tce-base", NULL); 55 sizep = of_get_property(node, "linux,tce-size", NULL); 56 if (basep == NULL || sizep == NULL) 57 continue; 58 59 low = *basep; 60 high = low + (*sizep); 61 62 for (i = 0; i < image->nr_segments; i++) { 63 begin = image->segment[i].mem; 64 end = begin + image->segment[i].memsz; 65 66 if ((begin < high) && (end > low)) { 67 of_node_put(node); 68 return -ETXTBSY; 69 } 70 } 71 } 72 73 return 0; 74} 75 76/* Called during kexec sequence with MMU off */ 77static notrace void copy_segments(unsigned long ind) 78{ 79 unsigned long entry; 80 unsigned long *ptr; 81 void *dest; 82 void *addr; 83 84 /* 85 * We rely on kexec_load to create a lists that properly 86 * initializes these pointers before they are used. 87 * We will still crash if the list is wrong, but at least 88 * the compiler will be quiet. 89 */ 90 ptr = NULL; 91 dest = NULL; 92 93 for (entry = ind; !(entry & IND_DONE); entry = *ptr++) { 94 addr = __va(entry & PAGE_MASK); 95 96 switch (entry & IND_FLAGS) { 97 case IND_DESTINATION: 98 dest = addr; 99 break; 100 case IND_INDIRECTION: 101 ptr = addr; 102 break; 103 case IND_SOURCE: 104 copy_page(dest, addr); 105 dest += PAGE_SIZE; 106 } 107 } 108} 109 110/* Called during kexec sequence with MMU off */ 111notrace void kexec_copy_flush(struct kimage *image) 112{ 113 long i, nr_segments = image->nr_segments; 114 struct kexec_segment ranges[KEXEC_SEGMENT_MAX]; 115 116 /* save the ranges on the stack to efficiently flush the icache */ 117 memcpy(ranges, image->segment, sizeof(ranges)); 118 119 /* 120 * After this call we may not use anything allocated in dynamic 121 * memory, including *image. 122 * 123 * Only globals and the stack are allowed. 124 */ 125 copy_segments(image->head); 126 127 /* 128 * we need to clear the icache for all dest pages sometime, 129 * including ones that were in place on the original copy 130 */ 131 for (i = 0; i < nr_segments; i++) 132 flush_icache_range((unsigned long)__va(ranges[i].mem), 133 (unsigned long)__va(ranges[i].mem + ranges[i].memsz)); 134} 135 136#ifdef CONFIG_SMP 137 138static int kexec_all_irq_disabled = 0; 139 140static void kexec_smp_down(void *arg) 141{ 142 local_irq_disable(); 143 hard_irq_disable(); 144 145 mb(); /* make sure our irqs are disabled before we say they are */ 146 get_paca()->kexec_state = KEXEC_STATE_IRQS_OFF; 147 while(kexec_all_irq_disabled == 0) 148 cpu_relax(); 149 mb(); /* make sure all irqs are disabled before this */ 150 hw_breakpoint_disable(); 151 /* 152 * Now every CPU has IRQs off, we can clear out any pending 153 * IPIs and be sure that no more will come in after this. 154 */ 155 if (ppc_md.kexec_cpu_down) 156 ppc_md.kexec_cpu_down(0, 1); 157 158 reset_sprs(); 159 160 kexec_smp_wait(); 161 /* NOTREACHED */ 162} 163 164static void kexec_prepare_cpus_wait(int wait_state) 165{ 166 int my_cpu, i, notified=-1; 167 168 hw_breakpoint_disable(); 169 my_cpu = get_cpu(); 170 /* Make sure each CPU has at least made it to the state we need. 171 * 172 * FIXME: There is a (slim) chance of a problem if not all of the CPUs 173 * are correctly onlined. If somehow we start a CPU on boot with RTAS 174 * start-cpu, but somehow that CPU doesn't write callin_cpu_map[] in 175 * time, the boot CPU will timeout. If it does eventually execute 176 * stuff, the secondary will start up (paca_ptrs[]->cpu_start was 177 * written) and get into a peculiar state. 178 * If the platform supports smp_ops->take_timebase(), the secondary CPU 179 * will probably be spinning in there. If not (i.e. pseries), the 180 * secondary will continue on and try to online itself/idle/etc. If it 181 * survives that, we need to find these 182 * possible-but-not-online-but-should-be CPUs and chaperone them into 183 * kexec_smp_wait(). 184 */ 185 for_each_online_cpu(i) { 186 if (i == my_cpu) 187 continue; 188 189 while (paca_ptrs[i]->kexec_state < wait_state) { 190 barrier(); 191 if (i != notified) { 192 printk(KERN_INFO "kexec: waiting for cpu %d " 193 "(physical %d) to enter %i state\n", 194 i, paca_ptrs[i]->hw_cpu_id, wait_state); 195 notified = i; 196 } 197 } 198 } 199 mb(); 200} 201 202/* 203 * We need to make sure each present CPU is online. The next kernel will scan 204 * the device tree and assume primary threads are online and query secondary 205 * threads via RTAS to online them if required. If we don't online primary 206 * threads, they will be stuck. However, we also online secondary threads as we 207 * may be using 'cede offline'. In this case RTAS doesn't see the secondary 208 * threads as offline -- and again, these CPUs will be stuck. 209 * 210 * So, we online all CPUs that should be running, including secondary threads. 211 */ 212static void wake_offline_cpus(void) 213{ 214 int cpu = 0; 215 216 for_each_present_cpu(cpu) { 217 if (!cpu_online(cpu)) { 218 printk(KERN_INFO "kexec: Waking offline cpu %d.\n", 219 cpu); 220 WARN_ON(add_cpu(cpu)); 221 } 222 } 223} 224 225static void kexec_prepare_cpus(void) 226{ 227 wake_offline_cpus(); 228 smp_call_function(kexec_smp_down, NULL, /* wait */0); 229 local_irq_disable(); 230 hard_irq_disable(); 231 232 mb(); /* make sure IRQs are disabled before we say they are */ 233 get_paca()->kexec_state = KEXEC_STATE_IRQS_OFF; 234 235 kexec_prepare_cpus_wait(KEXEC_STATE_IRQS_OFF); 236 /* we are sure every CPU has IRQs off at this point */ 237 kexec_all_irq_disabled = 1; 238 239 /* 240 * Before removing MMU mappings make sure all CPUs have entered real 241 * mode: 242 */ 243 kexec_prepare_cpus_wait(KEXEC_STATE_REAL_MODE); 244 245 /* after we tell the others to go down */ 246 if (ppc_md.kexec_cpu_down) 247 ppc_md.kexec_cpu_down(0, 0); 248 249 put_cpu(); 250} 251 252#else /* ! SMP */ 253 254static void kexec_prepare_cpus(void) 255{ 256 /* 257 * move the secondarys to us so that we can copy 258 * the new kernel 0-0x100 safely 259 * 260 * do this if kexec in setup.c ? 261 * 262 * We need to release the cpus if we are ever going from an 263 * UP to an SMP kernel. 264 */ 265 smp_release_cpus(); 266 if (ppc_md.kexec_cpu_down) 267 ppc_md.kexec_cpu_down(0, 0); 268 local_irq_disable(); 269 hard_irq_disable(); 270} 271 272#endif /* SMP */ 273 274/* 275 * kexec thread structure and stack. 276 * 277 * We need to make sure that this is 16384-byte aligned due to the 278 * way process stacks are handled. It also must be statically allocated 279 * or allocated as part of the kimage, because everything else may be 280 * overwritten when we copy the kexec image. We piggyback on the 281 * "init_task" linker section here to statically allocate a stack. 282 * 283 * We could use a smaller stack if we don't care about anything using 284 * current, but that audit has not been performed. 285 */ 286static union thread_union kexec_stack __init_task_data = 287 { }; 288 289/* 290 * For similar reasons to the stack above, the kexecing CPU needs to be on a 291 * static PACA; we switch to kexec_paca. 292 */ 293static struct paca_struct kexec_paca; 294 295/* Our assembly helper, in misc_64.S */ 296extern void kexec_sequence(void *newstack, unsigned long start, 297 void *image, void *control, 298 void (*clear_all)(void), 299 bool copy_with_mmu_off) __noreturn; 300 301/* too late to fail here */ 302void default_machine_kexec(struct kimage *image) 303{ 304 bool copy_with_mmu_off; 305 306 /* prepare control code if any */ 307 308 /* 309 * If the kexec boot is the normal one, need to shutdown other cpus 310 * into our wait loop and quiesce interrupts. 311 * Otherwise, in the case of crashed mode (crashing_cpu >= 0), 312 * stopping other CPUs and collecting their pt_regs is done before 313 * using debugger IPI. 314 */ 315 316 if (!kdump_in_progress()) 317 kexec_prepare_cpus(); 318 319 printk("kexec: Starting switchover sequence.\n"); 320 321 /* switch to a staticly allocated stack. Based on irq stack code. 322 * We setup preempt_count to avoid using VMX in memcpy. 323 * XXX: the task struct will likely be invalid once we do the copy! 324 */ 325 current_thread_info()->flags = 0; 326 current_thread_info()->preempt_count = HARDIRQ_OFFSET; 327 328 /* We need a static PACA, too; copy this CPU's PACA over and switch to 329 * it. Also poison per_cpu_offset and NULL lppaca to catch anyone using 330 * non-static data. 331 */ 332 memcpy(&kexec_paca, get_paca(), sizeof(struct paca_struct)); 333 kexec_paca.data_offset = 0xedeaddeadeeeeeeeUL; 334#ifdef CONFIG_PPC_PSERIES 335 kexec_paca.lppaca_ptr = NULL; 336#endif 337 338 if (is_secure_guest() && !(image->preserve_context || 339 image->type == KEXEC_TYPE_CRASH)) { 340 uv_unshare_all_pages(); 341 printk("kexec: Unshared all shared pages.\n"); 342 } 343 344 paca_ptrs[kexec_paca.paca_index] = &kexec_paca; 345 346 setup_paca(&kexec_paca); 347 348 /* 349 * The lppaca should be unregistered at this point so the HV won't 350 * touch it. In the case of a crash, none of the lppacas are 351 * unregistered so there is not much we can do about it here. 352 */ 353 354 /* 355 * On Book3S, the copy must happen with the MMU off if we are either 356 * using Radix page tables or we are not in an LPAR since we can 357 * overwrite the page tables while copying. 358 * 359 * In an LPAR, we keep the MMU on otherwise we can't access beyond 360 * the RMA. On BookE there is no real MMU off mode, so we have to 361 * keep it enabled as well (but then we have bolted TLB entries). 362 */ 363#ifdef CONFIG_PPC_BOOK3E 364 copy_with_mmu_off = false; 365#else 366 copy_with_mmu_off = radix_enabled() || 367 !(firmware_has_feature(FW_FEATURE_LPAR) || 368 firmware_has_feature(FW_FEATURE_PS3_LV1)); 369#endif 370 371 /* Some things are best done in assembly. Finding globals with 372 * a toc is easier in C, so pass in what we can. 373 */ 374 kexec_sequence(&kexec_stack, image->start, image, 375 page_address(image->control_code_page), 376 mmu_cleanup_all, copy_with_mmu_off); 377 /* NOTREACHED */ 378} 379 380#ifdef CONFIG_PPC_64S_HASH_MMU 381/* Values we need to export to the second kernel via the device tree. */ 382static unsigned long htab_base; 383static unsigned long htab_size; 384 385static struct property htab_base_prop = { 386 .name = "linux,htab-base", 387 .length = sizeof(unsigned long), 388 .value = &htab_base, 389}; 390 391static struct property htab_size_prop = { 392 .name = "linux,htab-size", 393 .length = sizeof(unsigned long), 394 .value = &htab_size, 395}; 396 397static int __init export_htab_values(void) 398{ 399 struct device_node *node; 400 401 /* On machines with no htab htab_address is NULL */ 402 if (!htab_address) 403 return -ENODEV; 404 405 node = of_find_node_by_path("/chosen"); 406 if (!node) 407 return -ENODEV; 408 409 /* remove any stale properties so ours can be found */ 410 of_remove_property(node, of_find_property(node, htab_base_prop.name, NULL)); 411 of_remove_property(node, of_find_property(node, htab_size_prop.name, NULL)); 412 413 htab_base = cpu_to_be64(__pa(htab_address)); 414 of_add_property(node, &htab_base_prop); 415 htab_size = cpu_to_be64(htab_size_bytes); 416 of_add_property(node, &htab_size_prop); 417 418 of_node_put(node); 419 return 0; 420} 421late_initcall(export_htab_values); 422#endif /* CONFIG_PPC_64S_HASH_MMU */