cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

core_64.c (11693B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * PPC64 code to handle Linux booting another kernel.
      4 *
      5 * Copyright (C) 2004-2005, IBM Corp.
      6 *
      7 * Created by: Milton D Miller II
      8 */
      9
     10
     11#include <linux/kexec.h>
     12#include <linux/smp.h>
     13#include <linux/thread_info.h>
     14#include <linux/init_task.h>
     15#include <linux/errno.h>
     16#include <linux/kernel.h>
     17#include <linux/cpu.h>
     18#include <linux/hardirq.h>
     19#include <linux/of.h>
     20
     21#include <asm/page.h>
     22#include <asm/current.h>
     23#include <asm/machdep.h>
     24#include <asm/cacheflush.h>
     25#include <asm/firmware.h>
     26#include <asm/paca.h>
     27#include <asm/mmu.h>
     28#include <asm/sections.h>	/* _end */
     29#include <asm/smp.h>
     30#include <asm/hw_breakpoint.h>
     31#include <asm/svm.h>
     32#include <asm/ultravisor.h>
     33
     34int machine_kexec_prepare(struct kimage *image)
     35{
     36	int i;
     37	unsigned long begin, end;	/* limits of segment */
     38	unsigned long low, high;	/* limits of blocked memory range */
     39	struct device_node *node;
     40	const unsigned long *basep;
     41	const unsigned int *sizep;
     42
     43	/*
     44	 * Since we use the kernel fault handlers and paging code to
     45	 * handle the virtual mode, we must make sure no destination
     46	 * overlaps kernel static data or bss.
     47	 */
     48	for (i = 0; i < image->nr_segments; i++)
     49		if (image->segment[i].mem < __pa(_end))
     50			return -ETXTBSY;
     51
     52	/* We also should not overwrite the tce tables */
     53	for_each_node_by_type(node, "pci") {
     54		basep = of_get_property(node, "linux,tce-base", NULL);
     55		sizep = of_get_property(node, "linux,tce-size", NULL);
     56		if (basep == NULL || sizep == NULL)
     57			continue;
     58
     59		low = *basep;
     60		high = low + (*sizep);
     61
     62		for (i = 0; i < image->nr_segments; i++) {
     63			begin = image->segment[i].mem;
     64			end = begin + image->segment[i].memsz;
     65
     66			if ((begin < high) && (end > low)) {
     67				of_node_put(node);
     68				return -ETXTBSY;
     69			}
     70		}
     71	}
     72
     73	return 0;
     74}
     75
     76/* Called during kexec sequence with MMU off */
     77static notrace void copy_segments(unsigned long ind)
     78{
     79	unsigned long entry;
     80	unsigned long *ptr;
     81	void *dest;
     82	void *addr;
     83
     84	/*
     85	 * We rely on kexec_load to create a lists that properly
     86	 * initializes these pointers before they are used.
     87	 * We will still crash if the list is wrong, but at least
     88	 * the compiler will be quiet.
     89	 */
     90	ptr = NULL;
     91	dest = NULL;
     92
     93	for (entry = ind; !(entry & IND_DONE); entry = *ptr++) {
     94		addr = __va(entry & PAGE_MASK);
     95
     96		switch (entry & IND_FLAGS) {
     97		case IND_DESTINATION:
     98			dest = addr;
     99			break;
    100		case IND_INDIRECTION:
    101			ptr = addr;
    102			break;
    103		case IND_SOURCE:
    104			copy_page(dest, addr);
    105			dest += PAGE_SIZE;
    106		}
    107	}
    108}
    109
    110/* Called during kexec sequence with MMU off */
    111notrace void kexec_copy_flush(struct kimage *image)
    112{
    113	long i, nr_segments = image->nr_segments;
    114	struct  kexec_segment ranges[KEXEC_SEGMENT_MAX];
    115
    116	/* save the ranges on the stack to efficiently flush the icache */
    117	memcpy(ranges, image->segment, sizeof(ranges));
    118
    119	/*
    120	 * After this call we may not use anything allocated in dynamic
    121	 * memory, including *image.
    122	 *
    123	 * Only globals and the stack are allowed.
    124	 */
    125	copy_segments(image->head);
    126
    127	/*
    128	 * we need to clear the icache for all dest pages sometime,
    129	 * including ones that were in place on the original copy
    130	 */
    131	for (i = 0; i < nr_segments; i++)
    132		flush_icache_range((unsigned long)__va(ranges[i].mem),
    133			(unsigned long)__va(ranges[i].mem + ranges[i].memsz));
    134}
    135
    136#ifdef CONFIG_SMP
    137
    138static int kexec_all_irq_disabled = 0;
    139
    140static void kexec_smp_down(void *arg)
    141{
    142	local_irq_disable();
    143	hard_irq_disable();
    144
    145	mb(); /* make sure our irqs are disabled before we say they are */
    146	get_paca()->kexec_state = KEXEC_STATE_IRQS_OFF;
    147	while(kexec_all_irq_disabled == 0)
    148		cpu_relax();
    149	mb(); /* make sure all irqs are disabled before this */
    150	hw_breakpoint_disable();
    151	/*
    152	 * Now every CPU has IRQs off, we can clear out any pending
    153	 * IPIs and be sure that no more will come in after this.
    154	 */
    155	if (ppc_md.kexec_cpu_down)
    156		ppc_md.kexec_cpu_down(0, 1);
    157
    158	reset_sprs();
    159
    160	kexec_smp_wait();
    161	/* NOTREACHED */
    162}
    163
    164static void kexec_prepare_cpus_wait(int wait_state)
    165{
    166	int my_cpu, i, notified=-1;
    167
    168	hw_breakpoint_disable();
    169	my_cpu = get_cpu();
    170	/* Make sure each CPU has at least made it to the state we need.
    171	 *
    172	 * FIXME: There is a (slim) chance of a problem if not all of the CPUs
    173	 * are correctly onlined.  If somehow we start a CPU on boot with RTAS
    174	 * start-cpu, but somehow that CPU doesn't write callin_cpu_map[] in
    175	 * time, the boot CPU will timeout.  If it does eventually execute
    176	 * stuff, the secondary will start up (paca_ptrs[]->cpu_start was
    177	 * written) and get into a peculiar state.
    178	 * If the platform supports smp_ops->take_timebase(), the secondary CPU
    179	 * will probably be spinning in there.  If not (i.e. pseries), the
    180	 * secondary will continue on and try to online itself/idle/etc. If it
    181	 * survives that, we need to find these
    182	 * possible-but-not-online-but-should-be CPUs and chaperone them into
    183	 * kexec_smp_wait().
    184	 */
    185	for_each_online_cpu(i) {
    186		if (i == my_cpu)
    187			continue;
    188
    189		while (paca_ptrs[i]->kexec_state < wait_state) {
    190			barrier();
    191			if (i != notified) {
    192				printk(KERN_INFO "kexec: waiting for cpu %d "
    193				       "(physical %d) to enter %i state\n",
    194				       i, paca_ptrs[i]->hw_cpu_id, wait_state);
    195				notified = i;
    196			}
    197		}
    198	}
    199	mb();
    200}
    201
    202/*
    203 * We need to make sure each present CPU is online.  The next kernel will scan
    204 * the device tree and assume primary threads are online and query secondary
    205 * threads via RTAS to online them if required.  If we don't online primary
    206 * threads, they will be stuck.  However, we also online secondary threads as we
    207 * may be using 'cede offline'.  In this case RTAS doesn't see the secondary
    208 * threads as offline -- and again, these CPUs will be stuck.
    209 *
    210 * So, we online all CPUs that should be running, including secondary threads.
    211 */
    212static void wake_offline_cpus(void)
    213{
    214	int cpu = 0;
    215
    216	for_each_present_cpu(cpu) {
    217		if (!cpu_online(cpu)) {
    218			printk(KERN_INFO "kexec: Waking offline cpu %d.\n",
    219			       cpu);
    220			WARN_ON(add_cpu(cpu));
    221		}
    222	}
    223}
    224
    225static void kexec_prepare_cpus(void)
    226{
    227	wake_offline_cpus();
    228	smp_call_function(kexec_smp_down, NULL, /* wait */0);
    229	local_irq_disable();
    230	hard_irq_disable();
    231
    232	mb(); /* make sure IRQs are disabled before we say they are */
    233	get_paca()->kexec_state = KEXEC_STATE_IRQS_OFF;
    234
    235	kexec_prepare_cpus_wait(KEXEC_STATE_IRQS_OFF);
    236	/* we are sure every CPU has IRQs off at this point */
    237	kexec_all_irq_disabled = 1;
    238
    239	/*
    240	 * Before removing MMU mappings make sure all CPUs have entered real
    241	 * mode:
    242	 */
    243	kexec_prepare_cpus_wait(KEXEC_STATE_REAL_MODE);
    244
    245	/* after we tell the others to go down */
    246	if (ppc_md.kexec_cpu_down)
    247		ppc_md.kexec_cpu_down(0, 0);
    248
    249	put_cpu();
    250}
    251
    252#else /* ! SMP */
    253
    254static void kexec_prepare_cpus(void)
    255{
    256	/*
    257	 * move the secondarys to us so that we can copy
    258	 * the new kernel 0-0x100 safely
    259	 *
    260	 * do this if kexec in setup.c ?
    261	 *
    262	 * We need to release the cpus if we are ever going from an
    263	 * UP to an SMP kernel.
    264	 */
    265	smp_release_cpus();
    266	if (ppc_md.kexec_cpu_down)
    267		ppc_md.kexec_cpu_down(0, 0);
    268	local_irq_disable();
    269	hard_irq_disable();
    270}
    271
    272#endif /* SMP */
    273
    274/*
    275 * kexec thread structure and stack.
    276 *
    277 * We need to make sure that this is 16384-byte aligned due to the
    278 * way process stacks are handled.  It also must be statically allocated
    279 * or allocated as part of the kimage, because everything else may be
    280 * overwritten when we copy the kexec image.  We piggyback on the
    281 * "init_task" linker section here to statically allocate a stack.
    282 *
    283 * We could use a smaller stack if we don't care about anything using
    284 * current, but that audit has not been performed.
    285 */
    286static union thread_union kexec_stack __init_task_data =
    287	{ };
    288
    289/*
    290 * For similar reasons to the stack above, the kexecing CPU needs to be on a
    291 * static PACA; we switch to kexec_paca.
    292 */
    293static struct paca_struct kexec_paca;
    294
    295/* Our assembly helper, in misc_64.S */
    296extern void kexec_sequence(void *newstack, unsigned long start,
    297			   void *image, void *control,
    298			   void (*clear_all)(void),
    299			   bool copy_with_mmu_off) __noreturn;
    300
    301/* too late to fail here */
    302void default_machine_kexec(struct kimage *image)
    303{
    304	bool copy_with_mmu_off;
    305
    306	/* prepare control code if any */
    307
    308	/*
    309        * If the kexec boot is the normal one, need to shutdown other cpus
    310        * into our wait loop and quiesce interrupts.
    311        * Otherwise, in the case of crashed mode (crashing_cpu >= 0),
    312        * stopping other CPUs and collecting their pt_regs is done before
    313        * using debugger IPI.
    314        */
    315
    316	if (!kdump_in_progress())
    317		kexec_prepare_cpus();
    318
    319	printk("kexec: Starting switchover sequence.\n");
    320
    321	/* switch to a staticly allocated stack.  Based on irq stack code.
    322	 * We setup preempt_count to avoid using VMX in memcpy.
    323	 * XXX: the task struct will likely be invalid once we do the copy!
    324	 */
    325	current_thread_info()->flags = 0;
    326	current_thread_info()->preempt_count = HARDIRQ_OFFSET;
    327
    328	/* We need a static PACA, too; copy this CPU's PACA over and switch to
    329	 * it. Also poison per_cpu_offset and NULL lppaca to catch anyone using
    330	 * non-static data.
    331	 */
    332	memcpy(&kexec_paca, get_paca(), sizeof(struct paca_struct));
    333	kexec_paca.data_offset = 0xedeaddeadeeeeeeeUL;
    334#ifdef CONFIG_PPC_PSERIES
    335	kexec_paca.lppaca_ptr = NULL;
    336#endif
    337
    338	if (is_secure_guest() && !(image->preserve_context ||
    339				   image->type == KEXEC_TYPE_CRASH)) {
    340		uv_unshare_all_pages();
    341		printk("kexec: Unshared all shared pages.\n");
    342	}
    343
    344	paca_ptrs[kexec_paca.paca_index] = &kexec_paca;
    345
    346	setup_paca(&kexec_paca);
    347
    348	/*
    349	 * The lppaca should be unregistered at this point so the HV won't
    350	 * touch it. In the case of a crash, none of the lppacas are
    351	 * unregistered so there is not much we can do about it here.
    352	 */
    353
    354	/*
    355	 * On Book3S, the copy must happen with the MMU off if we are either
    356	 * using Radix page tables or we are not in an LPAR since we can
    357	 * overwrite the page tables while copying.
    358	 *
    359	 * In an LPAR, we keep the MMU on otherwise we can't access beyond
    360	 * the RMA. On BookE there is no real MMU off mode, so we have to
    361	 * keep it enabled as well (but then we have bolted TLB entries).
    362	 */
    363#ifdef CONFIG_PPC_BOOK3E
    364	copy_with_mmu_off = false;
    365#else
    366	copy_with_mmu_off = radix_enabled() ||
    367		!(firmware_has_feature(FW_FEATURE_LPAR) ||
    368		  firmware_has_feature(FW_FEATURE_PS3_LV1));
    369#endif
    370
    371	/* Some things are best done in assembly.  Finding globals with
    372	 * a toc is easier in C, so pass in what we can.
    373	 */
    374	kexec_sequence(&kexec_stack, image->start, image,
    375		       page_address(image->control_code_page),
    376		       mmu_cleanup_all, copy_with_mmu_off);
    377	/* NOTREACHED */
    378}
    379
    380#ifdef CONFIG_PPC_64S_HASH_MMU
    381/* Values we need to export to the second kernel via the device tree. */
    382static unsigned long htab_base;
    383static unsigned long htab_size;
    384
    385static struct property htab_base_prop = {
    386	.name = "linux,htab-base",
    387	.length = sizeof(unsigned long),
    388	.value = &htab_base,
    389};
    390
    391static struct property htab_size_prop = {
    392	.name = "linux,htab-size",
    393	.length = sizeof(unsigned long),
    394	.value = &htab_size,
    395};
    396
    397static int __init export_htab_values(void)
    398{
    399	struct device_node *node;
    400
    401	/* On machines with no htab htab_address is NULL */
    402	if (!htab_address)
    403		return -ENODEV;
    404
    405	node = of_find_node_by_path("/chosen");
    406	if (!node)
    407		return -ENODEV;
    408
    409	/* remove any stale properties so ours can be found */
    410	of_remove_property(node, of_find_property(node, htab_base_prop.name, NULL));
    411	of_remove_property(node, of_find_property(node, htab_size_prop.name, NULL));
    412
    413	htab_base = cpu_to_be64(__pa(htab_address));
    414	of_add_property(node, &htab_base_prop);
    415	htab_size = cpu_to_be64(htab_size_bytes);
    416	of_add_property(node, &htab_size_prop);
    417
    418	of_node_put(node);
    419	return 0;
    420}
    421late_initcall(export_htab_values);
    422#endif /* CONFIG_PPC_64S_HASH_MMU */