cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

file_load_64.c (33488B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * ppc64 code to implement the kexec_file_load syscall
      4 *
      5 * Copyright (C) 2004  Adam Litke (agl@us.ibm.com)
      6 * Copyright (C) 2004  IBM Corp.
      7 * Copyright (C) 2004,2005  Milton D Miller II, IBM Corporation
      8 * Copyright (C) 2005  R Sharada (sharada@in.ibm.com)
      9 * Copyright (C) 2006  Mohan Kumar M (mohan@in.ibm.com)
     10 * Copyright (C) 2020  IBM Corporation
     11 *
     12 * Based on kexec-tools' kexec-ppc64.c, kexec-elf-rel-ppc64.c, fs2dt.c.
     13 * Heavily modified for the kernel by
     14 * Hari Bathini, IBM Corporation.
     15 */
     16
     17#include <linux/kexec.h>
     18#include <linux/of_fdt.h>
     19#include <linux/libfdt.h>
     20#include <linux/of_device.h>
     21#include <linux/memblock.h>
     22#include <linux/slab.h>
     23#include <linux/vmalloc.h>
     24#include <asm/setup.h>
     25#include <asm/drmem.h>
     26#include <asm/kexec_ranges.h>
     27#include <asm/crashdump-ppc64.h>
     28
     29struct umem_info {
     30	u64 *buf;		/* data buffer for usable-memory property */
     31	u32 size;		/* size allocated for the data buffer */
     32	u32 max_entries;	/* maximum no. of entries */
     33	u32 idx;		/* index of current entry */
     34
     35	/* usable memory ranges to look up */
     36	unsigned int nr_ranges;
     37	const struct crash_mem_range *ranges;
     38};
     39
     40const struct kexec_file_ops * const kexec_file_loaders[] = {
     41	&kexec_elf64_ops,
     42	NULL
     43};
     44
     45/**
     46 * get_exclude_memory_ranges - Get exclude memory ranges. This list includes
     47 *                             regions like opal/rtas, tce-table, initrd,
     48 *                             kernel, htab which should be avoided while
     49 *                             setting up kexec load segments.
     50 * @mem_ranges:                Range list to add the memory ranges to.
     51 *
     52 * Returns 0 on success, negative errno on error.
     53 */
     54static int get_exclude_memory_ranges(struct crash_mem **mem_ranges)
     55{
     56	int ret;
     57
     58	ret = add_tce_mem_ranges(mem_ranges);
     59	if (ret)
     60		goto out;
     61
     62	ret = add_initrd_mem_range(mem_ranges);
     63	if (ret)
     64		goto out;
     65
     66	ret = add_htab_mem_range(mem_ranges);
     67	if (ret)
     68		goto out;
     69
     70	ret = add_kernel_mem_range(mem_ranges);
     71	if (ret)
     72		goto out;
     73
     74	ret = add_rtas_mem_range(mem_ranges);
     75	if (ret)
     76		goto out;
     77
     78	ret = add_opal_mem_range(mem_ranges);
     79	if (ret)
     80		goto out;
     81
     82	ret = add_reserved_mem_ranges(mem_ranges);
     83	if (ret)
     84		goto out;
     85
     86	/* exclude memory ranges should be sorted for easy lookup */
     87	sort_memory_ranges(*mem_ranges, true);
     88out:
     89	if (ret)
     90		pr_err("Failed to setup exclude memory ranges\n");
     91	return ret;
     92}
     93
     94/**
     95 * get_usable_memory_ranges - Get usable memory ranges. This list includes
     96 *                            regions like crashkernel, opal/rtas & tce-table,
     97 *                            that kdump kernel could use.
     98 * @mem_ranges:               Range list to add the memory ranges to.
     99 *
    100 * Returns 0 on success, negative errno on error.
    101 */
    102static int get_usable_memory_ranges(struct crash_mem **mem_ranges)
    103{
    104	int ret;
    105
    106	/*
    107	 * Early boot failure observed on guests when low memory (first memory
    108	 * block?) is not added to usable memory. So, add [0, crashk_res.end]
    109	 * instead of [crashk_res.start, crashk_res.end] to workaround it.
    110	 * Also, crashed kernel's memory must be added to reserve map to
    111	 * avoid kdump kernel from using it.
    112	 */
    113	ret = add_mem_range(mem_ranges, 0, crashk_res.end + 1);
    114	if (ret)
    115		goto out;
    116
    117	ret = add_rtas_mem_range(mem_ranges);
    118	if (ret)
    119		goto out;
    120
    121	ret = add_opal_mem_range(mem_ranges);
    122	if (ret)
    123		goto out;
    124
    125	ret = add_tce_mem_ranges(mem_ranges);
    126out:
    127	if (ret)
    128		pr_err("Failed to setup usable memory ranges\n");
    129	return ret;
    130}
    131
    132/**
    133 * get_crash_memory_ranges - Get crash memory ranges. This list includes
    134 *                           first/crashing kernel's memory regions that
    135 *                           would be exported via an elfcore.
    136 * @mem_ranges:              Range list to add the memory ranges to.
    137 *
    138 * Returns 0 on success, negative errno on error.
    139 */
    140static int get_crash_memory_ranges(struct crash_mem **mem_ranges)
    141{
    142	phys_addr_t base, end;
    143	struct crash_mem *tmem;
    144	u64 i;
    145	int ret;
    146
    147	for_each_mem_range(i, &base, &end) {
    148		u64 size = end - base;
    149
    150		/* Skip backup memory region, which needs a separate entry */
    151		if (base == BACKUP_SRC_START) {
    152			if (size > BACKUP_SRC_SIZE) {
    153				base = BACKUP_SRC_END + 1;
    154				size -= BACKUP_SRC_SIZE;
    155			} else
    156				continue;
    157		}
    158
    159		ret = add_mem_range(mem_ranges, base, size);
    160		if (ret)
    161			goto out;
    162
    163		/* Try merging adjacent ranges before reallocation attempt */
    164		if ((*mem_ranges)->nr_ranges == (*mem_ranges)->max_nr_ranges)
    165			sort_memory_ranges(*mem_ranges, true);
    166	}
    167
    168	/* Reallocate memory ranges if there is no space to split ranges */
    169	tmem = *mem_ranges;
    170	if (tmem && (tmem->nr_ranges == tmem->max_nr_ranges)) {
    171		tmem = realloc_mem_ranges(mem_ranges);
    172		if (!tmem)
    173			goto out;
    174	}
    175
    176	/* Exclude crashkernel region */
    177	ret = crash_exclude_mem_range(tmem, crashk_res.start, crashk_res.end);
    178	if (ret)
    179		goto out;
    180
    181	/*
    182	 * FIXME: For now, stay in parity with kexec-tools but if RTAS/OPAL
    183	 *        regions are exported to save their context at the time of
    184	 *        crash, they should actually be backed up just like the
    185	 *        first 64K bytes of memory.
    186	 */
    187	ret = add_rtas_mem_range(mem_ranges);
    188	if (ret)
    189		goto out;
    190
    191	ret = add_opal_mem_range(mem_ranges);
    192	if (ret)
    193		goto out;
    194
    195	/* create a separate program header for the backup region */
    196	ret = add_mem_range(mem_ranges, BACKUP_SRC_START, BACKUP_SRC_SIZE);
    197	if (ret)
    198		goto out;
    199
    200	sort_memory_ranges(*mem_ranges, false);
    201out:
    202	if (ret)
    203		pr_err("Failed to setup crash memory ranges\n");
    204	return ret;
    205}
    206
    207/**
    208 * get_reserved_memory_ranges - Get reserve memory ranges. This list includes
    209 *                              memory regions that should be added to the
    210 *                              memory reserve map to ensure the region is
    211 *                              protected from any mischief.
    212 * @mem_ranges:                 Range list to add the memory ranges to.
    213 *
    214 * Returns 0 on success, negative errno on error.
    215 */
    216static int get_reserved_memory_ranges(struct crash_mem **mem_ranges)
    217{
    218	int ret;
    219
    220	ret = add_rtas_mem_range(mem_ranges);
    221	if (ret)
    222		goto out;
    223
    224	ret = add_tce_mem_ranges(mem_ranges);
    225	if (ret)
    226		goto out;
    227
    228	ret = add_reserved_mem_ranges(mem_ranges);
    229out:
    230	if (ret)
    231		pr_err("Failed to setup reserved memory ranges\n");
    232	return ret;
    233}
    234
    235/**
    236 * __locate_mem_hole_top_down - Looks top down for a large enough memory hole
    237 *                              in the memory regions between buf_min & buf_max
    238 *                              for the buffer. If found, sets kbuf->mem.
    239 * @kbuf:                       Buffer contents and memory parameters.
    240 * @buf_min:                    Minimum address for the buffer.
    241 * @buf_max:                    Maximum address for the buffer.
    242 *
    243 * Returns 0 on success, negative errno on error.
    244 */
    245static int __locate_mem_hole_top_down(struct kexec_buf *kbuf,
    246				      u64 buf_min, u64 buf_max)
    247{
    248	int ret = -EADDRNOTAVAIL;
    249	phys_addr_t start, end;
    250	u64 i;
    251
    252	for_each_mem_range_rev(i, &start, &end) {
    253		/*
    254		 * memblock uses [start, end) convention while it is
    255		 * [start, end] here. Fix the off-by-one to have the
    256		 * same convention.
    257		 */
    258		end -= 1;
    259
    260		if (start > buf_max)
    261			continue;
    262
    263		/* Memory hole not found */
    264		if (end < buf_min)
    265			break;
    266
    267		/* Adjust memory region based on the given range */
    268		if (start < buf_min)
    269			start = buf_min;
    270		if (end > buf_max)
    271			end = buf_max;
    272
    273		start = ALIGN(start, kbuf->buf_align);
    274		if (start < end && (end - start + 1) >= kbuf->memsz) {
    275			/* Suitable memory range found. Set kbuf->mem */
    276			kbuf->mem = ALIGN_DOWN(end - kbuf->memsz + 1,
    277					       kbuf->buf_align);
    278			ret = 0;
    279			break;
    280		}
    281	}
    282
    283	return ret;
    284}
    285
    286/**
    287 * locate_mem_hole_top_down_ppc64 - Skip special memory regions to find a
    288 *                                  suitable buffer with top down approach.
    289 * @kbuf:                           Buffer contents and memory parameters.
    290 * @buf_min:                        Minimum address for the buffer.
    291 * @buf_max:                        Maximum address for the buffer.
    292 * @emem:                           Exclude memory ranges.
    293 *
    294 * Returns 0 on success, negative errno on error.
    295 */
    296static int locate_mem_hole_top_down_ppc64(struct kexec_buf *kbuf,
    297					  u64 buf_min, u64 buf_max,
    298					  const struct crash_mem *emem)
    299{
    300	int i, ret = 0, err = -EADDRNOTAVAIL;
    301	u64 start, end, tmin, tmax;
    302
    303	tmax = buf_max;
    304	for (i = (emem->nr_ranges - 1); i >= 0; i--) {
    305		start = emem->ranges[i].start;
    306		end = emem->ranges[i].end;
    307
    308		if (start > tmax)
    309			continue;
    310
    311		if (end < tmax) {
    312			tmin = (end < buf_min ? buf_min : end + 1);
    313			ret = __locate_mem_hole_top_down(kbuf, tmin, tmax);
    314			if (!ret)
    315				return 0;
    316		}
    317
    318		tmax = start - 1;
    319
    320		if (tmax < buf_min) {
    321			ret = err;
    322			break;
    323		}
    324		ret = 0;
    325	}
    326
    327	if (!ret) {
    328		tmin = buf_min;
    329		ret = __locate_mem_hole_top_down(kbuf, tmin, tmax);
    330	}
    331	return ret;
    332}
    333
    334/**
    335 * __locate_mem_hole_bottom_up - Looks bottom up for a large enough memory hole
    336 *                               in the memory regions between buf_min & buf_max
    337 *                               for the buffer. If found, sets kbuf->mem.
    338 * @kbuf:                        Buffer contents and memory parameters.
    339 * @buf_min:                     Minimum address for the buffer.
    340 * @buf_max:                     Maximum address for the buffer.
    341 *
    342 * Returns 0 on success, negative errno on error.
    343 */
    344static int __locate_mem_hole_bottom_up(struct kexec_buf *kbuf,
    345				       u64 buf_min, u64 buf_max)
    346{
    347	int ret = -EADDRNOTAVAIL;
    348	phys_addr_t start, end;
    349	u64 i;
    350
    351	for_each_mem_range(i, &start, &end) {
    352		/*
    353		 * memblock uses [start, end) convention while it is
    354		 * [start, end] here. Fix the off-by-one to have the
    355		 * same convention.
    356		 */
    357		end -= 1;
    358
    359		if (end < buf_min)
    360			continue;
    361
    362		/* Memory hole not found */
    363		if (start > buf_max)
    364			break;
    365
    366		/* Adjust memory region based on the given range */
    367		if (start < buf_min)
    368			start = buf_min;
    369		if (end > buf_max)
    370			end = buf_max;
    371
    372		start = ALIGN(start, kbuf->buf_align);
    373		if (start < end && (end - start + 1) >= kbuf->memsz) {
    374			/* Suitable memory range found. Set kbuf->mem */
    375			kbuf->mem = start;
    376			ret = 0;
    377			break;
    378		}
    379	}
    380
    381	return ret;
    382}
    383
    384/**
    385 * locate_mem_hole_bottom_up_ppc64 - Skip special memory regions to find a
    386 *                                   suitable buffer with bottom up approach.
    387 * @kbuf:                            Buffer contents and memory parameters.
    388 * @buf_min:                         Minimum address for the buffer.
    389 * @buf_max:                         Maximum address for the buffer.
    390 * @emem:                            Exclude memory ranges.
    391 *
    392 * Returns 0 on success, negative errno on error.
    393 */
    394static int locate_mem_hole_bottom_up_ppc64(struct kexec_buf *kbuf,
    395					   u64 buf_min, u64 buf_max,
    396					   const struct crash_mem *emem)
    397{
    398	int i, ret = 0, err = -EADDRNOTAVAIL;
    399	u64 start, end, tmin, tmax;
    400
    401	tmin = buf_min;
    402	for (i = 0; i < emem->nr_ranges; i++) {
    403		start = emem->ranges[i].start;
    404		end = emem->ranges[i].end;
    405
    406		if (end < tmin)
    407			continue;
    408
    409		if (start > tmin) {
    410			tmax = (start > buf_max ? buf_max : start - 1);
    411			ret = __locate_mem_hole_bottom_up(kbuf, tmin, tmax);
    412			if (!ret)
    413				return 0;
    414		}
    415
    416		tmin = end + 1;
    417
    418		if (tmin > buf_max) {
    419			ret = err;
    420			break;
    421		}
    422		ret = 0;
    423	}
    424
    425	if (!ret) {
    426		tmax = buf_max;
    427		ret = __locate_mem_hole_bottom_up(kbuf, tmin, tmax);
    428	}
    429	return ret;
    430}
    431
    432/**
    433 * check_realloc_usable_mem - Reallocate buffer if it can't accommodate entries
    434 * @um_info:                  Usable memory buffer and ranges info.
    435 * @cnt:                      No. of entries to accommodate.
    436 *
    437 * Frees up the old buffer if memory reallocation fails.
    438 *
    439 * Returns buffer on success, NULL on error.
    440 */
    441static u64 *check_realloc_usable_mem(struct umem_info *um_info, int cnt)
    442{
    443	u32 new_size;
    444	u64 *tbuf;
    445
    446	if ((um_info->idx + cnt) <= um_info->max_entries)
    447		return um_info->buf;
    448
    449	new_size = um_info->size + MEM_RANGE_CHUNK_SZ;
    450	tbuf = krealloc(um_info->buf, new_size, GFP_KERNEL);
    451	if (tbuf) {
    452		um_info->buf = tbuf;
    453		um_info->size = new_size;
    454		um_info->max_entries = (um_info->size / sizeof(u64));
    455	}
    456
    457	return tbuf;
    458}
    459
    460/**
    461 * add_usable_mem - Add the usable memory ranges within the given memory range
    462 *                  to the buffer
    463 * @um_info:        Usable memory buffer and ranges info.
    464 * @base:           Base address of memory range to look for.
    465 * @end:            End address of memory range to look for.
    466 *
    467 * Returns 0 on success, negative errno on error.
    468 */
    469static int add_usable_mem(struct umem_info *um_info, u64 base, u64 end)
    470{
    471	u64 loc_base, loc_end;
    472	bool add;
    473	int i;
    474
    475	for (i = 0; i < um_info->nr_ranges; i++) {
    476		add = false;
    477		loc_base = um_info->ranges[i].start;
    478		loc_end = um_info->ranges[i].end;
    479		if (loc_base >= base && loc_end <= end)
    480			add = true;
    481		else if (base < loc_end && end > loc_base) {
    482			if (loc_base < base)
    483				loc_base = base;
    484			if (loc_end > end)
    485				loc_end = end;
    486			add = true;
    487		}
    488
    489		if (add) {
    490			if (!check_realloc_usable_mem(um_info, 2))
    491				return -ENOMEM;
    492
    493			um_info->buf[um_info->idx++] = cpu_to_be64(loc_base);
    494			um_info->buf[um_info->idx++] =
    495					cpu_to_be64(loc_end - loc_base + 1);
    496		}
    497	}
    498
    499	return 0;
    500}
    501
    502/**
    503 * kdump_setup_usable_lmb - This is a callback function that gets called by
    504 *                          walk_drmem_lmbs for every LMB to set its
    505 *                          usable memory ranges.
    506 * @lmb:                    LMB info.
    507 * @usm:                    linux,drconf-usable-memory property value.
    508 * @data:                   Pointer to usable memory buffer and ranges info.
    509 *
    510 * Returns 0 on success, negative errno on error.
    511 */
    512static int kdump_setup_usable_lmb(struct drmem_lmb *lmb, const __be32 **usm,
    513				  void *data)
    514{
    515	struct umem_info *um_info;
    516	int tmp_idx, ret;
    517	u64 base, end;
    518
    519	/*
    520	 * kdump load isn't supported on kernels already booted with
    521	 * linux,drconf-usable-memory property.
    522	 */
    523	if (*usm) {
    524		pr_err("linux,drconf-usable-memory property already exists!");
    525		return -EINVAL;
    526	}
    527
    528	um_info = data;
    529	tmp_idx = um_info->idx;
    530	if (!check_realloc_usable_mem(um_info, 1))
    531		return -ENOMEM;
    532
    533	um_info->idx++;
    534	base = lmb->base_addr;
    535	end = base + drmem_lmb_size() - 1;
    536	ret = add_usable_mem(um_info, base, end);
    537	if (!ret) {
    538		/*
    539		 * Update the no. of ranges added. Two entries (base & size)
    540		 * for every range added.
    541		 */
    542		um_info->buf[tmp_idx] =
    543				cpu_to_be64((um_info->idx - tmp_idx - 1) / 2);
    544	}
    545
    546	return ret;
    547}
    548
    549#define NODE_PATH_LEN		256
    550/**
    551 * add_usable_mem_property - Add usable memory property for the given
    552 *                           memory node.
    553 * @fdt:                     Flattened device tree for the kdump kernel.
    554 * @dn:                      Memory node.
    555 * @um_info:                 Usable memory buffer and ranges info.
    556 *
    557 * Returns 0 on success, negative errno on error.
    558 */
    559static int add_usable_mem_property(void *fdt, struct device_node *dn,
    560				   struct umem_info *um_info)
    561{
    562	int n_mem_addr_cells, n_mem_size_cells, node;
    563	char path[NODE_PATH_LEN];
    564	int i, len, ranges, ret;
    565	const __be32 *prop;
    566	u64 base, end;
    567
    568	of_node_get(dn);
    569
    570	if (snprintf(path, NODE_PATH_LEN, "%pOF", dn) > (NODE_PATH_LEN - 1)) {
    571		pr_err("Buffer (%d) too small for memory node: %pOF\n",
    572		       NODE_PATH_LEN, dn);
    573		return -EOVERFLOW;
    574	}
    575	pr_debug("Memory node path: %s\n", path);
    576
    577	/* Now that we know the path, find its offset in kdump kernel's fdt */
    578	node = fdt_path_offset(fdt, path);
    579	if (node < 0) {
    580		pr_err("Malformed device tree: error reading %s\n", path);
    581		ret = -EINVAL;
    582		goto out;
    583	}
    584
    585	/* Get the address & size cells */
    586	n_mem_addr_cells = of_n_addr_cells(dn);
    587	n_mem_size_cells = of_n_size_cells(dn);
    588	pr_debug("address cells: %d, size cells: %d\n", n_mem_addr_cells,
    589		 n_mem_size_cells);
    590
    591	um_info->idx  = 0;
    592	if (!check_realloc_usable_mem(um_info, 2)) {
    593		ret = -ENOMEM;
    594		goto out;
    595	}
    596
    597	prop = of_get_property(dn, "reg", &len);
    598	if (!prop || len <= 0) {
    599		ret = 0;
    600		goto out;
    601	}
    602
    603	/*
    604	 * "reg" property represents sequence of (addr,size) tuples
    605	 * each representing a memory range.
    606	 */
    607	ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
    608
    609	for (i = 0; i < ranges; i++) {
    610		base = of_read_number(prop, n_mem_addr_cells);
    611		prop += n_mem_addr_cells;
    612		end = base + of_read_number(prop, n_mem_size_cells) - 1;
    613		prop += n_mem_size_cells;
    614
    615		ret = add_usable_mem(um_info, base, end);
    616		if (ret)
    617			goto out;
    618	}
    619
    620	/*
    621	 * No kdump kernel usable memory found in this memory node.
    622	 * Write (0,0) tuple in linux,usable-memory property for
    623	 * this region to be ignored.
    624	 */
    625	if (um_info->idx == 0) {
    626		um_info->buf[0] = 0;
    627		um_info->buf[1] = 0;
    628		um_info->idx = 2;
    629	}
    630
    631	ret = fdt_setprop(fdt, node, "linux,usable-memory", um_info->buf,
    632			  (um_info->idx * sizeof(u64)));
    633
    634out:
    635	of_node_put(dn);
    636	return ret;
    637}
    638
    639
    640/**
    641 * update_usable_mem_fdt - Updates kdump kernel's fdt with linux,usable-memory
    642 *                         and linux,drconf-usable-memory DT properties as
    643 *                         appropriate to restrict its memory usage.
    644 * @fdt:                   Flattened device tree for the kdump kernel.
    645 * @usable_mem:            Usable memory ranges for kdump kernel.
    646 *
    647 * Returns 0 on success, negative errno on error.
    648 */
    649static int update_usable_mem_fdt(void *fdt, struct crash_mem *usable_mem)
    650{
    651	struct umem_info um_info;
    652	struct device_node *dn;
    653	int node, ret = 0;
    654
    655	if (!usable_mem) {
    656		pr_err("Usable memory ranges for kdump kernel not found\n");
    657		return -ENOENT;
    658	}
    659
    660	node = fdt_path_offset(fdt, "/ibm,dynamic-reconfiguration-memory");
    661	if (node == -FDT_ERR_NOTFOUND)
    662		pr_debug("No dynamic reconfiguration memory found\n");
    663	else if (node < 0) {
    664		pr_err("Malformed device tree: error reading /ibm,dynamic-reconfiguration-memory.\n");
    665		return -EINVAL;
    666	}
    667
    668	um_info.buf  = NULL;
    669	um_info.size = 0;
    670	um_info.max_entries = 0;
    671	um_info.idx  = 0;
    672	/* Memory ranges to look up */
    673	um_info.ranges = &(usable_mem->ranges[0]);
    674	um_info.nr_ranges = usable_mem->nr_ranges;
    675
    676	dn = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
    677	if (dn) {
    678		ret = walk_drmem_lmbs(dn, &um_info, kdump_setup_usable_lmb);
    679		of_node_put(dn);
    680
    681		if (ret) {
    682			pr_err("Could not setup linux,drconf-usable-memory property for kdump\n");
    683			goto out;
    684		}
    685
    686		ret = fdt_setprop(fdt, node, "linux,drconf-usable-memory",
    687				  um_info.buf, (um_info.idx * sizeof(u64)));
    688		if (ret) {
    689			pr_err("Failed to update fdt with linux,drconf-usable-memory property");
    690			goto out;
    691		}
    692	}
    693
    694	/*
    695	 * Walk through each memory node and set linux,usable-memory property
    696	 * for the corresponding node in kdump kernel's fdt.
    697	 */
    698	for_each_node_by_type(dn, "memory") {
    699		ret = add_usable_mem_property(fdt, dn, &um_info);
    700		if (ret) {
    701			pr_err("Failed to set linux,usable-memory property for %s node",
    702			       dn->full_name);
    703			of_node_put(dn);
    704			goto out;
    705		}
    706	}
    707
    708out:
    709	kfree(um_info.buf);
    710	return ret;
    711}
    712
    713/**
    714 * load_backup_segment - Locate a memory hole to place the backup region.
    715 * @image:               Kexec image.
    716 * @kbuf:                Buffer contents and memory parameters.
    717 *
    718 * Returns 0 on success, negative errno on error.
    719 */
    720static int load_backup_segment(struct kimage *image, struct kexec_buf *kbuf)
    721{
    722	void *buf;
    723	int ret;
    724
    725	/*
    726	 * Setup a source buffer for backup segment.
    727	 *
    728	 * A source buffer has no meaning for backup region as data will
    729	 * be copied from backup source, after crash, in the purgatory.
    730	 * But as load segment code doesn't recognize such segments,
    731	 * setup a dummy source buffer to keep it happy for now.
    732	 */
    733	buf = vzalloc(BACKUP_SRC_SIZE);
    734	if (!buf)
    735		return -ENOMEM;
    736
    737	kbuf->buffer = buf;
    738	kbuf->mem = KEXEC_BUF_MEM_UNKNOWN;
    739	kbuf->bufsz = kbuf->memsz = BACKUP_SRC_SIZE;
    740	kbuf->top_down = false;
    741
    742	ret = kexec_add_buffer(kbuf);
    743	if (ret) {
    744		vfree(buf);
    745		return ret;
    746	}
    747
    748	image->arch.backup_buf = buf;
    749	image->arch.backup_start = kbuf->mem;
    750	return 0;
    751}
    752
    753/**
    754 * update_backup_region_phdr - Update backup region's offset for the core to
    755 *                             export the region appropriately.
    756 * @image:                     Kexec image.
    757 * @ehdr:                      ELF core header.
    758 *
    759 * Assumes an exclusive program header is setup for the backup region
    760 * in the ELF headers
    761 *
    762 * Returns nothing.
    763 */
    764static void update_backup_region_phdr(struct kimage *image, Elf64_Ehdr *ehdr)
    765{
    766	Elf64_Phdr *phdr;
    767	unsigned int i;
    768
    769	phdr = (Elf64_Phdr *)(ehdr + 1);
    770	for (i = 0; i < ehdr->e_phnum; i++) {
    771		if (phdr->p_paddr == BACKUP_SRC_START) {
    772			phdr->p_offset = image->arch.backup_start;
    773			pr_debug("Backup region offset updated to 0x%lx\n",
    774				 image->arch.backup_start);
    775			return;
    776		}
    777	}
    778}
    779
    780/**
    781 * load_elfcorehdr_segment - Setup crash memory ranges and initialize elfcorehdr
    782 *                           segment needed to load kdump kernel.
    783 * @image:                   Kexec image.
    784 * @kbuf:                    Buffer contents and memory parameters.
    785 *
    786 * Returns 0 on success, negative errno on error.
    787 */
    788static int load_elfcorehdr_segment(struct kimage *image, struct kexec_buf *kbuf)
    789{
    790	struct crash_mem *cmem = NULL;
    791	unsigned long headers_sz;
    792	void *headers = NULL;
    793	int ret;
    794
    795	ret = get_crash_memory_ranges(&cmem);
    796	if (ret)
    797		goto out;
    798
    799	/* Setup elfcorehdr segment */
    800	ret = crash_prepare_elf64_headers(cmem, false, &headers, &headers_sz);
    801	if (ret) {
    802		pr_err("Failed to prepare elf headers for the core\n");
    803		goto out;
    804	}
    805
    806	/* Fix the offset for backup region in the ELF header */
    807	update_backup_region_phdr(image, headers);
    808
    809	kbuf->buffer = headers;
    810	kbuf->mem = KEXEC_BUF_MEM_UNKNOWN;
    811	kbuf->bufsz = kbuf->memsz = headers_sz;
    812	kbuf->top_down = false;
    813
    814	ret = kexec_add_buffer(kbuf);
    815	if (ret) {
    816		vfree(headers);
    817		goto out;
    818	}
    819
    820	image->elf_load_addr = kbuf->mem;
    821	image->elf_headers_sz = headers_sz;
    822	image->elf_headers = headers;
    823out:
    824	kfree(cmem);
    825	return ret;
    826}
    827
    828/**
    829 * load_crashdump_segments_ppc64 - Initialize the additional segements needed
    830 *                                 to load kdump kernel.
    831 * @image:                         Kexec image.
    832 * @kbuf:                          Buffer contents and memory parameters.
    833 *
    834 * Returns 0 on success, negative errno on error.
    835 */
    836int load_crashdump_segments_ppc64(struct kimage *image,
    837				  struct kexec_buf *kbuf)
    838{
    839	int ret;
    840
    841	/* Load backup segment - first 64K bytes of the crashing kernel */
    842	ret = load_backup_segment(image, kbuf);
    843	if (ret) {
    844		pr_err("Failed to load backup segment\n");
    845		return ret;
    846	}
    847	pr_debug("Loaded the backup region at 0x%lx\n", kbuf->mem);
    848
    849	/* Load elfcorehdr segment - to export crashing kernel's vmcore */
    850	ret = load_elfcorehdr_segment(image, kbuf);
    851	if (ret) {
    852		pr_err("Failed to load elfcorehdr segment\n");
    853		return ret;
    854	}
    855	pr_debug("Loaded elf core header at 0x%lx, bufsz=0x%lx memsz=0x%lx\n",
    856		 image->elf_load_addr, kbuf->bufsz, kbuf->memsz);
    857
    858	return 0;
    859}
    860
    861/**
    862 * setup_purgatory_ppc64 - initialize PPC64 specific purgatory's global
    863 *                         variables and call setup_purgatory() to initialize
    864 *                         common global variable.
    865 * @image:                 kexec image.
    866 * @slave_code:            Slave code for the purgatory.
    867 * @fdt:                   Flattened device tree for the next kernel.
    868 * @kernel_load_addr:      Address where the kernel is loaded.
    869 * @fdt_load_addr:         Address where the flattened device tree is loaded.
    870 *
    871 * Returns 0 on success, negative errno on error.
    872 */
    873int setup_purgatory_ppc64(struct kimage *image, const void *slave_code,
    874			  const void *fdt, unsigned long kernel_load_addr,
    875			  unsigned long fdt_load_addr)
    876{
    877	struct device_node *dn = NULL;
    878	int ret;
    879
    880	ret = setup_purgatory(image, slave_code, fdt, kernel_load_addr,
    881			      fdt_load_addr);
    882	if (ret)
    883		goto out;
    884
    885	if (image->type == KEXEC_TYPE_CRASH) {
    886		u32 my_run_at_load = 1;
    887
    888		/*
    889		 * Tell relocatable kernel to run at load address
    890		 * via the word meant for that at 0x5c.
    891		 */
    892		ret = kexec_purgatory_get_set_symbol(image, "run_at_load",
    893						     &my_run_at_load,
    894						     sizeof(my_run_at_load),
    895						     false);
    896		if (ret)
    897			goto out;
    898	}
    899
    900	/* Tell purgatory where to look for backup region */
    901	ret = kexec_purgatory_get_set_symbol(image, "backup_start",
    902					     &image->arch.backup_start,
    903					     sizeof(image->arch.backup_start),
    904					     false);
    905	if (ret)
    906		goto out;
    907
    908	/* Setup OPAL base & entry values */
    909	dn = of_find_node_by_path("/ibm,opal");
    910	if (dn) {
    911		u64 val;
    912
    913		of_property_read_u64(dn, "opal-base-address", &val);
    914		ret = kexec_purgatory_get_set_symbol(image, "opal_base", &val,
    915						     sizeof(val), false);
    916		if (ret)
    917			goto out;
    918
    919		of_property_read_u64(dn, "opal-entry-address", &val);
    920		ret = kexec_purgatory_get_set_symbol(image, "opal_entry", &val,
    921						     sizeof(val), false);
    922	}
    923out:
    924	if (ret)
    925		pr_err("Failed to setup purgatory symbols");
    926	of_node_put(dn);
    927	return ret;
    928}
    929
    930/**
    931 * kexec_extra_fdt_size_ppc64 - Return the estimated additional size needed to
    932 *                              setup FDT for kexec/kdump kernel.
    933 * @image:                      kexec image being loaded.
    934 *
    935 * Returns the estimated extra size needed for kexec/kdump kernel FDT.
    936 */
    937unsigned int kexec_extra_fdt_size_ppc64(struct kimage *image)
    938{
    939	u64 usm_entries;
    940
    941	if (image->type != KEXEC_TYPE_CRASH)
    942		return 0;
    943
    944	/*
    945	 * For kdump kernel, account for linux,usable-memory and
    946	 * linux,drconf-usable-memory properties. Get an approximate on the
    947	 * number of usable memory entries and use for FDT size estimation.
    948	 */
    949	usm_entries = ((memblock_end_of_DRAM() / drmem_lmb_size()) +
    950		       (2 * (resource_size(&crashk_res) / drmem_lmb_size())));
    951	return (unsigned int)(usm_entries * sizeof(u64));
    952}
    953
    954/**
    955 * add_node_props - Reads node properties from device node structure and add
    956 *                  them to fdt.
    957 * @fdt:            Flattened device tree of the kernel
    958 * @node_offset:    offset of the node to add a property at
    959 * @dn:             device node pointer
    960 *
    961 * Returns 0 on success, negative errno on error.
    962 */
    963static int add_node_props(void *fdt, int node_offset, const struct device_node *dn)
    964{
    965	int ret = 0;
    966	struct property *pp;
    967
    968	if (!dn)
    969		return -EINVAL;
    970
    971	for_each_property_of_node(dn, pp) {
    972		ret = fdt_setprop(fdt, node_offset, pp->name, pp->value, pp->length);
    973		if (ret < 0) {
    974			pr_err("Unable to add %s property: %s\n", pp->name, fdt_strerror(ret));
    975			return ret;
    976		}
    977	}
    978	return ret;
    979}
    980
    981/**
    982 * update_cpus_node - Update cpus node of flattened device tree using of_root
    983 *                    device node.
    984 * @fdt:              Flattened device tree of the kernel.
    985 *
    986 * Returns 0 on success, negative errno on error.
    987 */
    988static int update_cpus_node(void *fdt)
    989{
    990	struct device_node *cpus_node, *dn;
    991	int cpus_offset, cpus_subnode_offset, ret = 0;
    992
    993	cpus_offset = fdt_path_offset(fdt, "/cpus");
    994	if (cpus_offset < 0 && cpus_offset != -FDT_ERR_NOTFOUND) {
    995		pr_err("Malformed device tree: error reading /cpus node: %s\n",
    996		       fdt_strerror(cpus_offset));
    997		return cpus_offset;
    998	}
    999
   1000	if (cpus_offset > 0) {
   1001		ret = fdt_del_node(fdt, cpus_offset);
   1002		if (ret < 0) {
   1003			pr_err("Error deleting /cpus node: %s\n", fdt_strerror(ret));
   1004			return -EINVAL;
   1005		}
   1006	}
   1007
   1008	/* Add cpus node to fdt */
   1009	cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"), "cpus");
   1010	if (cpus_offset < 0) {
   1011		pr_err("Error creating /cpus node: %s\n", fdt_strerror(cpus_offset));
   1012		return -EINVAL;
   1013	}
   1014
   1015	/* Add cpus node properties */
   1016	cpus_node = of_find_node_by_path("/cpus");
   1017	ret = add_node_props(fdt, cpus_offset, cpus_node);
   1018	of_node_put(cpus_node);
   1019	if (ret < 0)
   1020		return ret;
   1021
   1022	/* Loop through all subnodes of cpus and add them to fdt */
   1023	for_each_node_by_type(dn, "cpu") {
   1024		cpus_subnode_offset = fdt_add_subnode(fdt, cpus_offset, dn->full_name);
   1025		if (cpus_subnode_offset < 0) {
   1026			pr_err("Unable to add %s subnode: %s\n", dn->full_name,
   1027			       fdt_strerror(cpus_subnode_offset));
   1028			ret = cpus_subnode_offset;
   1029			goto out;
   1030		}
   1031
   1032		ret = add_node_props(fdt, cpus_subnode_offset, dn);
   1033		if (ret < 0)
   1034			goto out;
   1035	}
   1036out:
   1037	of_node_put(dn);
   1038	return ret;
   1039}
   1040
   1041/**
   1042 * setup_new_fdt_ppc64 - Update the flattend device-tree of the kernel
   1043 *                       being loaded.
   1044 * @image:               kexec image being loaded.
   1045 * @fdt:                 Flattened device tree for the next kernel.
   1046 * @initrd_load_addr:    Address where the next initrd will be loaded.
   1047 * @initrd_len:          Size of the next initrd, or 0 if there will be none.
   1048 * @cmdline:             Command line for the next kernel, or NULL if there will
   1049 *                       be none.
   1050 *
   1051 * Returns 0 on success, negative errno on error.
   1052 */
   1053int setup_new_fdt_ppc64(const struct kimage *image, void *fdt,
   1054			unsigned long initrd_load_addr,
   1055			unsigned long initrd_len, const char *cmdline)
   1056{
   1057	struct crash_mem *umem = NULL, *rmem = NULL;
   1058	int i, nr_ranges, ret;
   1059
   1060	/*
   1061	 * Restrict memory usage for kdump kernel by setting up
   1062	 * usable memory ranges and memory reserve map.
   1063	 */
   1064	if (image->type == KEXEC_TYPE_CRASH) {
   1065		ret = get_usable_memory_ranges(&umem);
   1066		if (ret)
   1067			goto out;
   1068
   1069		ret = update_usable_mem_fdt(fdt, umem);
   1070		if (ret) {
   1071			pr_err("Error setting up usable-memory property for kdump kernel\n");
   1072			goto out;
   1073		}
   1074
   1075		/*
   1076		 * Ensure we don't touch crashed kernel's memory except the
   1077		 * first 64K of RAM, which will be backed up.
   1078		 */
   1079		ret = fdt_add_mem_rsv(fdt, BACKUP_SRC_END + 1,
   1080				      crashk_res.start - BACKUP_SRC_SIZE);
   1081		if (ret) {
   1082			pr_err("Error reserving crash memory: %s\n",
   1083			       fdt_strerror(ret));
   1084			goto out;
   1085		}
   1086
   1087		/* Ensure backup region is not used by kdump/capture kernel */
   1088		ret = fdt_add_mem_rsv(fdt, image->arch.backup_start,
   1089				      BACKUP_SRC_SIZE);
   1090		if (ret) {
   1091			pr_err("Error reserving memory for backup: %s\n",
   1092			       fdt_strerror(ret));
   1093			goto out;
   1094		}
   1095	}
   1096
   1097	/* Update cpus nodes information to account hotplug CPUs. */
   1098	ret =  update_cpus_node(fdt);
   1099	if (ret < 0)
   1100		goto out;
   1101
   1102	/* Update memory reserve map */
   1103	ret = get_reserved_memory_ranges(&rmem);
   1104	if (ret)
   1105		goto out;
   1106
   1107	nr_ranges = rmem ? rmem->nr_ranges : 0;
   1108	for (i = 0; i < nr_ranges; i++) {
   1109		u64 base, size;
   1110
   1111		base = rmem->ranges[i].start;
   1112		size = rmem->ranges[i].end - base + 1;
   1113		ret = fdt_add_mem_rsv(fdt, base, size);
   1114		if (ret) {
   1115			pr_err("Error updating memory reserve map: %s\n",
   1116			       fdt_strerror(ret));
   1117			goto out;
   1118		}
   1119	}
   1120
   1121out:
   1122	kfree(rmem);
   1123	kfree(umem);
   1124	return ret;
   1125}
   1126
   1127/**
   1128 * arch_kexec_locate_mem_hole - Skip special memory regions like rtas, opal,
   1129 *                              tce-table, reserved-ranges & such (exclude
   1130 *                              memory ranges) as they can't be used for kexec
   1131 *                              segment buffer. Sets kbuf->mem when a suitable
   1132 *                              memory hole is found.
   1133 * @kbuf:                       Buffer contents and memory parameters.
   1134 *
   1135 * Assumes minimum of PAGE_SIZE alignment for kbuf->memsz & kbuf->buf_align.
   1136 *
   1137 * Returns 0 on success, negative errno on error.
   1138 */
   1139int arch_kexec_locate_mem_hole(struct kexec_buf *kbuf)
   1140{
   1141	struct crash_mem **emem;
   1142	u64 buf_min, buf_max;
   1143	int ret;
   1144
   1145	/* Look up the exclude ranges list while locating the memory hole */
   1146	emem = &(kbuf->image->arch.exclude_ranges);
   1147	if (!(*emem) || ((*emem)->nr_ranges == 0)) {
   1148		pr_warn("No exclude range list. Using the default locate mem hole method\n");
   1149		return kexec_locate_mem_hole(kbuf);
   1150	}
   1151
   1152	buf_min = kbuf->buf_min;
   1153	buf_max = kbuf->buf_max;
   1154	/* Segments for kdump kernel should be within crashkernel region */
   1155	if (kbuf->image->type == KEXEC_TYPE_CRASH) {
   1156		buf_min = (buf_min < crashk_res.start ?
   1157			   crashk_res.start : buf_min);
   1158		buf_max = (buf_max > crashk_res.end ?
   1159			   crashk_res.end : buf_max);
   1160	}
   1161
   1162	if (buf_min > buf_max) {
   1163		pr_err("Invalid buffer min and/or max values\n");
   1164		return -EINVAL;
   1165	}
   1166
   1167	if (kbuf->top_down)
   1168		ret = locate_mem_hole_top_down_ppc64(kbuf, buf_min, buf_max,
   1169						     *emem);
   1170	else
   1171		ret = locate_mem_hole_bottom_up_ppc64(kbuf, buf_min, buf_max,
   1172						      *emem);
   1173
   1174	/* Add the buffer allocated to the exclude list for the next lookup */
   1175	if (!ret) {
   1176		add_mem_range(emem, kbuf->mem, kbuf->memsz);
   1177		sort_memory_ranges(*emem, true);
   1178	} else {
   1179		pr_err("Failed to locate memory buffer of size %lu\n",
   1180		       kbuf->memsz);
   1181	}
   1182	return ret;
   1183}
   1184
   1185/**
   1186 * arch_kexec_kernel_image_probe - Does additional handling needed to setup
   1187 *                                 kexec segments.
   1188 * @image:                         kexec image being loaded.
   1189 * @buf:                           Buffer pointing to elf data.
   1190 * @buf_len:                       Length of the buffer.
   1191 *
   1192 * Returns 0 on success, negative errno on error.
   1193 */
   1194int arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
   1195				  unsigned long buf_len)
   1196{
   1197	int ret;
   1198
   1199	/* Get exclude memory ranges needed for setting up kexec segments */
   1200	ret = get_exclude_memory_ranges(&(image->arch.exclude_ranges));
   1201	if (ret) {
   1202		pr_err("Failed to setup exclude memory ranges for buffer lookup\n");
   1203		return ret;
   1204	}
   1205
   1206	return kexec_image_probe_default(image, buf, buf_len);
   1207}
   1208
   1209/**
   1210 * arch_kimage_file_post_load_cleanup - Frees up all the allocations done
   1211 *                                      while loading the image.
   1212 * @image:                              kexec image being loaded.
   1213 *
   1214 * Returns 0 on success, negative errno on error.
   1215 */
   1216int arch_kimage_file_post_load_cleanup(struct kimage *image)
   1217{
   1218	kfree(image->arch.exclude_ranges);
   1219	image->arch.exclude_ranges = NULL;
   1220
   1221	vfree(image->arch.backup_buf);
   1222	image->arch.backup_buf = NULL;
   1223
   1224	vfree(image->elf_headers);
   1225	image->elf_headers = NULL;
   1226	image->elf_headers_sz = 0;
   1227
   1228	kvfree(image->arch.fdt);
   1229	image->arch.fdt = NULL;
   1230
   1231	return kexec_image_post_load_cleanup_default(image);
   1232}