cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

book3s_hv_ras.c (11876B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 *
      4 * Copyright 2012 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
      5 */
      6
      7#include <linux/types.h>
      8#include <linux/string.h>
      9#include <linux/kvm.h>
     10#include <linux/kvm_host.h>
     11#include <linux/kernel.h>
     12#include <asm/opal.h>
     13#include <asm/mce.h>
     14#include <asm/machdep.h>
     15#include <asm/cputhreads.h>
     16#include <asm/hmi.h>
     17#include <asm/kvm_ppc.h>
     18
     19/* SRR1 bits for machine check on POWER7 */
     20#define SRR1_MC_LDSTERR		(1ul << (63-42))
     21#define SRR1_MC_IFETCH_SH	(63-45)
     22#define SRR1_MC_IFETCH_MASK	0x7
     23#define SRR1_MC_IFETCH_SLBPAR		2	/* SLB parity error */
     24#define SRR1_MC_IFETCH_SLBMULTI		3	/* SLB multi-hit */
     25#define SRR1_MC_IFETCH_SLBPARMULTI	4	/* SLB parity + multi-hit */
     26#define SRR1_MC_IFETCH_TLBMULTI		5	/* I-TLB multi-hit */
     27
     28/* DSISR bits for machine check on POWER7 */
     29#define DSISR_MC_DERAT_MULTI	0x800		/* D-ERAT multi-hit */
     30#define DSISR_MC_TLB_MULTI	0x400		/* D-TLB multi-hit */
     31#define DSISR_MC_SLB_PARITY	0x100		/* SLB parity error */
     32#define DSISR_MC_SLB_MULTI	0x080		/* SLB multi-hit */
     33#define DSISR_MC_SLB_PARMULTI	0x040		/* SLB parity + multi-hit */
     34
     35/* POWER7 SLB flush and reload */
     36static void reload_slb(struct kvm_vcpu *vcpu)
     37{
     38	struct slb_shadow *slb;
     39	unsigned long i, n;
     40
     41	/* First clear out SLB */
     42	asm volatile("slbmte %0,%0; slbia" : : "r" (0));
     43
     44	/* Do they have an SLB shadow buffer registered? */
     45	slb = vcpu->arch.slb_shadow.pinned_addr;
     46	if (!slb)
     47		return;
     48
     49	/* Sanity check */
     50	n = min_t(u32, be32_to_cpu(slb->persistent), SLB_MIN_SIZE);
     51	if ((void *) &slb->save_area[n] > vcpu->arch.slb_shadow.pinned_end)
     52		return;
     53
     54	/* Load up the SLB from that */
     55	for (i = 0; i < n; ++i) {
     56		unsigned long rb = be64_to_cpu(slb->save_area[i].esid);
     57		unsigned long rs = be64_to_cpu(slb->save_area[i].vsid);
     58
     59		rb = (rb & ~0xFFFul) | i;	/* insert entry number */
     60		asm volatile("slbmte %0,%1" : : "r" (rs), "r" (rb));
     61	}
     62}
     63
     64/*
     65 * On POWER7, see if we can handle a machine check that occurred inside
     66 * the guest in real mode, without switching to the host partition.
     67 */
     68static long kvmppc_realmode_mc_power7(struct kvm_vcpu *vcpu)
     69{
     70	unsigned long srr1 = vcpu->arch.shregs.msr;
     71	long handled = 1;
     72
     73	if (srr1 & SRR1_MC_LDSTERR) {
     74		/* error on load/store */
     75		unsigned long dsisr = vcpu->arch.shregs.dsisr;
     76
     77		if (dsisr & (DSISR_MC_SLB_PARMULTI | DSISR_MC_SLB_MULTI |
     78			     DSISR_MC_SLB_PARITY | DSISR_MC_DERAT_MULTI)) {
     79			/* flush and reload SLB; flushes D-ERAT too */
     80			reload_slb(vcpu);
     81			dsisr &= ~(DSISR_MC_SLB_PARMULTI | DSISR_MC_SLB_MULTI |
     82				   DSISR_MC_SLB_PARITY | DSISR_MC_DERAT_MULTI);
     83		}
     84		if (dsisr & DSISR_MC_TLB_MULTI) {
     85			tlbiel_all_lpid(vcpu->kvm->arch.radix);
     86			dsisr &= ~DSISR_MC_TLB_MULTI;
     87		}
     88		/* Any other errors we don't understand? */
     89		if (dsisr & 0xffffffffUL)
     90			handled = 0;
     91	}
     92
     93	switch ((srr1 >> SRR1_MC_IFETCH_SH) & SRR1_MC_IFETCH_MASK) {
     94	case 0:
     95		break;
     96	case SRR1_MC_IFETCH_SLBPAR:
     97	case SRR1_MC_IFETCH_SLBMULTI:
     98	case SRR1_MC_IFETCH_SLBPARMULTI:
     99		reload_slb(vcpu);
    100		break;
    101	case SRR1_MC_IFETCH_TLBMULTI:
    102		tlbiel_all_lpid(vcpu->kvm->arch.radix);
    103		break;
    104	default:
    105		handled = 0;
    106	}
    107
    108	return handled;
    109}
    110
    111void kvmppc_realmode_machine_check(struct kvm_vcpu *vcpu)
    112{
    113	struct machine_check_event mce_evt;
    114	long handled;
    115
    116	if (vcpu->kvm->arch.fwnmi_enabled) {
    117		/* FWNMI guests handle their own recovery */
    118		handled = 0;
    119	} else {
    120		handled = kvmppc_realmode_mc_power7(vcpu);
    121	}
    122
    123	/*
    124	 * Now get the event and stash it in the vcpu struct so it can
    125	 * be handled by the primary thread in virtual mode.  We can't
    126	 * call machine_check_queue_event() here if we are running on
    127	 * an offline secondary thread.
    128	 */
    129	if (get_mce_event(&mce_evt, MCE_EVENT_RELEASE)) {
    130		if (handled && mce_evt.version == MCE_V1)
    131			mce_evt.disposition = MCE_DISPOSITION_RECOVERED;
    132	} else {
    133		memset(&mce_evt, 0, sizeof(mce_evt));
    134	}
    135
    136	vcpu->arch.mce_evt = mce_evt;
    137}
    138
    139
    140long kvmppc_p9_realmode_hmi_handler(struct kvm_vcpu *vcpu)
    141{
    142	struct kvmppc_vcore *vc = vcpu->arch.vcore;
    143	long ret = 0;
    144
    145	/*
    146	 * Unapply and clear the offset first. That way, if the TB was not
    147	 * resynced then it will remain in host-offset, and if it was resynced
    148	 * then it is brought into host-offset. Then the tb offset is
    149	 * re-applied before continuing with the KVM exit.
    150	 *
    151	 * This way, we don't need to actually know whether not OPAL resynced
    152	 * the timebase or do any of the complicated dance that the P7/8
    153	 * path requires.
    154	 */
    155	if (vc->tb_offset_applied) {
    156		u64 new_tb = mftb() - vc->tb_offset_applied;
    157		mtspr(SPRN_TBU40, new_tb);
    158		if ((mftb() & 0xffffff) < (new_tb & 0xffffff)) {
    159			new_tb += 0x1000000;
    160			mtspr(SPRN_TBU40, new_tb);
    161		}
    162		vc->tb_offset_applied = 0;
    163	}
    164
    165	local_paca->hmi_irqs++;
    166
    167	if (hmi_handle_debugtrig(NULL) >= 0) {
    168		ret = 1;
    169		goto out;
    170	}
    171
    172	if (ppc_md.hmi_exception_early)
    173		ppc_md.hmi_exception_early(NULL);
    174
    175out:
    176	if (vc->tb_offset) {
    177		u64 new_tb = mftb() + vc->tb_offset;
    178		mtspr(SPRN_TBU40, new_tb);
    179		if ((mftb() & 0xffffff) < (new_tb & 0xffffff)) {
    180			new_tb += 0x1000000;
    181			mtspr(SPRN_TBU40, new_tb);
    182		}
    183		vc->tb_offset_applied = vc->tb_offset;
    184	}
    185
    186	return ret;
    187}
    188
    189/*
    190 * The following subcore HMI handling is all only for pre-POWER9 CPUs.
    191 */
    192
    193/* Check if dynamic split is in force and return subcore size accordingly. */
    194static inline int kvmppc_cur_subcore_size(void)
    195{
    196	if (local_paca->kvm_hstate.kvm_split_mode)
    197		return local_paca->kvm_hstate.kvm_split_mode->subcore_size;
    198
    199	return threads_per_subcore;
    200}
    201
    202void kvmppc_subcore_enter_guest(void)
    203{
    204	int thread_id, subcore_id;
    205
    206	thread_id = cpu_thread_in_core(local_paca->paca_index);
    207	subcore_id = thread_id / kvmppc_cur_subcore_size();
    208
    209	local_paca->sibling_subcore_state->in_guest[subcore_id] = 1;
    210}
    211EXPORT_SYMBOL_GPL(kvmppc_subcore_enter_guest);
    212
    213void kvmppc_subcore_exit_guest(void)
    214{
    215	int thread_id, subcore_id;
    216
    217	thread_id = cpu_thread_in_core(local_paca->paca_index);
    218	subcore_id = thread_id / kvmppc_cur_subcore_size();
    219
    220	local_paca->sibling_subcore_state->in_guest[subcore_id] = 0;
    221}
    222EXPORT_SYMBOL_GPL(kvmppc_subcore_exit_guest);
    223
    224static bool kvmppc_tb_resync_required(void)
    225{
    226	if (test_and_set_bit(CORE_TB_RESYNC_REQ_BIT,
    227				&local_paca->sibling_subcore_state->flags))
    228		return false;
    229
    230	return true;
    231}
    232
    233static void kvmppc_tb_resync_done(void)
    234{
    235	clear_bit(CORE_TB_RESYNC_REQ_BIT,
    236			&local_paca->sibling_subcore_state->flags);
    237}
    238
    239/*
    240 * kvmppc_realmode_hmi_handler() is called only by primary thread during
    241 * guest exit path.
    242 *
    243 * There are multiple reasons why HMI could occur, one of them is
    244 * Timebase (TB) error. If this HMI is due to TB error, then TB would
    245 * have been in stopped state. The opal hmi handler Will fix it and
    246 * restore the TB value with host timebase value. For HMI caused due
    247 * to non-TB errors, opal hmi handler will not touch/restore TB register
    248 * and hence there won't be any change in TB value.
    249 *
    250 * Since we are not sure about the cause of this HMI, we can't be sure
    251 * about the content of TB register whether it holds guest or host timebase
    252 * value. Hence the idea is to resync the TB on every HMI, so that we
    253 * know about the exact state of the TB value. Resync TB call will
    254 * restore TB to host timebase.
    255 *
    256 * Things to consider:
    257 * - On TB error, HMI interrupt is reported on all the threads of the core
    258 *   that has encountered TB error irrespective of split-core mode.
    259 * - The very first thread on the core that get chance to fix TB error
    260 *   would rsync the TB with local chipTOD value.
    261 * - The resync TB is a core level action i.e. it will sync all the TBs
    262 *   in that core independent of split-core mode. This means if we trigger
    263 *   TB sync from a thread from one subcore, it would affect TB values of
    264 *   sibling subcores of the same core.
    265 *
    266 * All threads need to co-ordinate before making opal hmi handler.
    267 * All threads will use sibling_subcore_state->in_guest[] (shared by all
    268 * threads in the core) in paca which holds information about whether
    269 * sibling subcores are in Guest mode or host mode. The in_guest[] array
    270 * is of size MAX_SUBCORE_PER_CORE=4, indexed using subcore id to set/unset
    271 * subcore status. Only primary threads from each subcore is responsible
    272 * to set/unset its designated array element while entering/exiting the
    273 * guset.
    274 *
    275 * After invoking opal hmi handler call, one of the thread (of entire core)
    276 * will need to resync the TB. Bit 63 from subcore state bitmap flags
    277 * (sibling_subcore_state->flags) will be used to co-ordinate between
    278 * primary threads to decide who takes up the responsibility.
    279 *
    280 * This is what we do:
    281 * - Primary thread from each subcore tries to set resync required bit[63]
    282 *   of paca->sibling_subcore_state->flags.
    283 * - The first primary thread that is able to set the flag takes the
    284 *   responsibility of TB resync. (Let us call it as thread leader)
    285 * - All other threads which are in host will call
    286 *   wait_for_subcore_guest_exit() and wait for in_guest[0-3] from
    287 *   paca->sibling_subcore_state to get cleared.
    288 * - All the primary thread will clear its subcore status from subcore
    289 *   state in_guest[] array respectively.
    290 * - Once all primary threads clear in_guest[0-3], all of them will invoke
    291 *   opal hmi handler.
    292 * - Now all threads will wait for TB resync to complete by invoking
    293 *   wait_for_tb_resync() except the thread leader.
    294 * - Thread leader will do a TB resync by invoking opal_resync_timebase()
    295 *   call and the it will clear the resync required bit.
    296 * - All other threads will now come out of resync wait loop and proceed
    297 *   with individual execution.
    298 * - On return of this function, primary thread will signal all
    299 *   secondary threads to proceed.
    300 * - All secondary threads will eventually call opal hmi handler on
    301 *   their exit path.
    302 *
    303 * Returns 1 if the timebase offset should be applied, 0 if not.
    304 */
    305
    306long kvmppc_realmode_hmi_handler(void)
    307{
    308	bool resync_req;
    309
    310	local_paca->hmi_irqs++;
    311
    312	if (hmi_handle_debugtrig(NULL) >= 0)
    313		return 1;
    314
    315	/*
    316	 * By now primary thread has already completed guest->host
    317	 * partition switch but haven't signaled secondaries yet.
    318	 * All the secondary threads on this subcore is waiting
    319	 * for primary thread to signal them to go ahead.
    320	 *
    321	 * For threads from subcore which isn't in guest, they all will
    322	 * wait until all other subcores on this core exit the guest.
    323	 *
    324	 * Now set the resync required bit. If you are the first to
    325	 * set this bit then kvmppc_tb_resync_required() function will
    326	 * return true. For rest all other subcores
    327	 * kvmppc_tb_resync_required() will return false.
    328	 *
    329	 * If resync_req == true, then this thread is responsible to
    330	 * initiate TB resync after hmi handler has completed.
    331	 * All other threads on this core will wait until this thread
    332	 * clears the resync required bit flag.
    333	 */
    334	resync_req = kvmppc_tb_resync_required();
    335
    336	/* Reset the subcore status to indicate it has exited guest */
    337	kvmppc_subcore_exit_guest();
    338
    339	/*
    340	 * Wait for other subcores on this core to exit the guest.
    341	 * All the primary threads and threads from subcore that are
    342	 * not in guest will wait here until all subcores are out
    343	 * of guest context.
    344	 */
    345	wait_for_subcore_guest_exit();
    346
    347	/*
    348	 * At this point we are sure that primary threads from each
    349	 * subcore on this core have completed guest->host partition
    350	 * switch. Now it is safe to call HMI handler.
    351	 */
    352	if (ppc_md.hmi_exception_early)
    353		ppc_md.hmi_exception_early(NULL);
    354
    355	/*
    356	 * Check if this thread is responsible to resync TB.
    357	 * All other threads will wait until this thread completes the
    358	 * TB resync.
    359	 */
    360	if (resync_req) {
    361		opal_resync_timebase();
    362		/* Reset TB resync req bit */
    363		kvmppc_tb_resync_done();
    364	} else {
    365		wait_for_tb_resync();
    366	}
    367
    368	/*
    369	 * Reset tb_offset_applied so the guest exit code won't try
    370	 * to subtract the previous timebase offset from the timebase.
    371	 */
    372	if (local_paca->kvm_hstate.kvm_vcore)
    373		local_paca->kvm_hstate.kvm_vcore->tb_offset_applied = 0;
    374
    375	return 0;
    376}