book3s_pr.c (55238B)
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. 4 * 5 * Authors: 6 * Alexander Graf <agraf@suse.de> 7 * Kevin Wolf <mail@kevin-wolf.de> 8 * Paul Mackerras <paulus@samba.org> 9 * 10 * Description: 11 * Functions relating to running KVM on Book 3S processors where 12 * we don't have access to hypervisor mode, and we run the guest 13 * in problem state (user mode). 14 * 15 * This file is derived from arch/powerpc/kvm/44x.c, 16 * by Hollis Blanchard <hollisb@us.ibm.com>. 17 */ 18 19#include <linux/kvm_host.h> 20#include <linux/export.h> 21#include <linux/err.h> 22#include <linux/slab.h> 23 24#include <asm/reg.h> 25#include <asm/cputable.h> 26#include <asm/cacheflush.h> 27#include <linux/uaccess.h> 28#include <asm/interrupt.h> 29#include <asm/io.h> 30#include <asm/kvm_ppc.h> 31#include <asm/kvm_book3s.h> 32#include <asm/mmu_context.h> 33#include <asm/switch_to.h> 34#include <asm/firmware.h> 35#include <asm/setup.h> 36#include <linux/gfp.h> 37#include <linux/sched.h> 38#include <linux/vmalloc.h> 39#include <linux/highmem.h> 40#include <linux/module.h> 41#include <linux/miscdevice.h> 42#include <asm/asm-prototypes.h> 43#include <asm/tm.h> 44 45#include "book3s.h" 46 47#define CREATE_TRACE_POINTS 48#include "trace_pr.h" 49 50/* #define EXIT_DEBUG */ 51/* #define DEBUG_EXT */ 52 53static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr, 54 ulong msr); 55#ifdef CONFIG_PPC_BOOK3S_64 56static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac); 57#endif 58 59/* Some compatibility defines */ 60#ifdef CONFIG_PPC_BOOK3S_32 61#define MSR_USER32 MSR_USER 62#define MSR_USER64 MSR_USER 63#define HW_PAGE_SIZE PAGE_SIZE 64#define HPTE_R_M _PAGE_COHERENT 65#endif 66 67static bool kvmppc_is_split_real(struct kvm_vcpu *vcpu) 68{ 69 ulong msr = kvmppc_get_msr(vcpu); 70 return (msr & (MSR_IR|MSR_DR)) == MSR_DR; 71} 72 73static void kvmppc_fixup_split_real(struct kvm_vcpu *vcpu) 74{ 75 ulong msr = kvmppc_get_msr(vcpu); 76 ulong pc = kvmppc_get_pc(vcpu); 77 78 /* We are in DR only split real mode */ 79 if ((msr & (MSR_IR|MSR_DR)) != MSR_DR) 80 return; 81 82 /* We have not fixed up the guest already */ 83 if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) 84 return; 85 86 /* The code is in fixupable address space */ 87 if (pc & SPLIT_HACK_MASK) 88 return; 89 90 vcpu->arch.hflags |= BOOK3S_HFLAG_SPLIT_HACK; 91 kvmppc_set_pc(vcpu, pc | SPLIT_HACK_OFFS); 92} 93 94static void kvmppc_unfixup_split_real(struct kvm_vcpu *vcpu) 95{ 96 if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) { 97 ulong pc = kvmppc_get_pc(vcpu); 98 ulong lr = kvmppc_get_lr(vcpu); 99 if ((pc & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS) 100 kvmppc_set_pc(vcpu, pc & ~SPLIT_HACK_MASK); 101 if ((lr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS) 102 kvmppc_set_lr(vcpu, lr & ~SPLIT_HACK_MASK); 103 vcpu->arch.hflags &= ~BOOK3S_HFLAG_SPLIT_HACK; 104 } 105} 106 107static void kvmppc_inject_interrupt_pr(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags) 108{ 109 unsigned long msr, pc, new_msr, new_pc; 110 111 kvmppc_unfixup_split_real(vcpu); 112 113 msr = kvmppc_get_msr(vcpu); 114 pc = kvmppc_get_pc(vcpu); 115 new_msr = vcpu->arch.intr_msr; 116 new_pc = to_book3s(vcpu)->hior + vec; 117 118#ifdef CONFIG_PPC_BOOK3S_64 119 /* If transactional, change to suspend mode on IRQ delivery */ 120 if (MSR_TM_TRANSACTIONAL(msr)) 121 new_msr |= MSR_TS_S; 122 else 123 new_msr |= msr & MSR_TS_MASK; 124#endif 125 126 kvmppc_set_srr0(vcpu, pc); 127 kvmppc_set_srr1(vcpu, (msr & SRR1_MSR_BITS) | srr1_flags); 128 kvmppc_set_pc(vcpu, new_pc); 129 kvmppc_set_msr(vcpu, new_msr); 130} 131 132static void kvmppc_core_vcpu_load_pr(struct kvm_vcpu *vcpu, int cpu) 133{ 134#ifdef CONFIG_PPC_BOOK3S_64 135 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); 136 memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb)); 137 svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max; 138 svcpu->in_use = 0; 139 svcpu_put(svcpu); 140 141 /* Disable AIL if supported */ 142 if (cpu_has_feature(CPU_FTR_HVMODE)) { 143 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 144 mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) & ~LPCR_AIL); 145 if (cpu_has_feature(CPU_FTR_ARCH_300) && (current->thread.fscr & FSCR_SCV)) 146 mtspr(SPRN_FSCR, mfspr(SPRN_FSCR) & ~FSCR_SCV); 147 } 148#endif 149 150 vcpu->cpu = smp_processor_id(); 151#ifdef CONFIG_PPC_BOOK3S_32 152 current->thread.kvm_shadow_vcpu = vcpu->arch.shadow_vcpu; 153#endif 154 155 if (kvmppc_is_split_real(vcpu)) 156 kvmppc_fixup_split_real(vcpu); 157 158 kvmppc_restore_tm_pr(vcpu); 159} 160 161static void kvmppc_core_vcpu_put_pr(struct kvm_vcpu *vcpu) 162{ 163#ifdef CONFIG_PPC_BOOK3S_64 164 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); 165 if (svcpu->in_use) { 166 kvmppc_copy_from_svcpu(vcpu); 167 } 168 memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb)); 169 to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max; 170 svcpu_put(svcpu); 171 172 /* Enable AIL if supported */ 173 if (cpu_has_feature(CPU_FTR_HVMODE)) { 174 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 175 mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_AIL_3); 176 if (cpu_has_feature(CPU_FTR_ARCH_300) && (current->thread.fscr & FSCR_SCV)) 177 mtspr(SPRN_FSCR, mfspr(SPRN_FSCR) | FSCR_SCV); 178 } 179#endif 180 181 if (kvmppc_is_split_real(vcpu)) 182 kvmppc_unfixup_split_real(vcpu); 183 184 kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX); 185 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG); 186 kvmppc_save_tm_pr(vcpu); 187 188 vcpu->cpu = -1; 189} 190 191/* Copy data needed by real-mode code from vcpu to shadow vcpu */ 192void kvmppc_copy_to_svcpu(struct kvm_vcpu *vcpu) 193{ 194 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); 195 196 svcpu->gpr[0] = vcpu->arch.regs.gpr[0]; 197 svcpu->gpr[1] = vcpu->arch.regs.gpr[1]; 198 svcpu->gpr[2] = vcpu->arch.regs.gpr[2]; 199 svcpu->gpr[3] = vcpu->arch.regs.gpr[3]; 200 svcpu->gpr[4] = vcpu->arch.regs.gpr[4]; 201 svcpu->gpr[5] = vcpu->arch.regs.gpr[5]; 202 svcpu->gpr[6] = vcpu->arch.regs.gpr[6]; 203 svcpu->gpr[7] = vcpu->arch.regs.gpr[7]; 204 svcpu->gpr[8] = vcpu->arch.regs.gpr[8]; 205 svcpu->gpr[9] = vcpu->arch.regs.gpr[9]; 206 svcpu->gpr[10] = vcpu->arch.regs.gpr[10]; 207 svcpu->gpr[11] = vcpu->arch.regs.gpr[11]; 208 svcpu->gpr[12] = vcpu->arch.regs.gpr[12]; 209 svcpu->gpr[13] = vcpu->arch.regs.gpr[13]; 210 svcpu->cr = vcpu->arch.regs.ccr; 211 svcpu->xer = vcpu->arch.regs.xer; 212 svcpu->ctr = vcpu->arch.regs.ctr; 213 svcpu->lr = vcpu->arch.regs.link; 214 svcpu->pc = vcpu->arch.regs.nip; 215#ifdef CONFIG_PPC_BOOK3S_64 216 svcpu->shadow_fscr = vcpu->arch.shadow_fscr; 217#endif 218 /* 219 * Now also save the current time base value. We use this 220 * to find the guest purr and spurr value. 221 */ 222 vcpu->arch.entry_tb = get_tb(); 223 vcpu->arch.entry_vtb = get_vtb(); 224 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 225 vcpu->arch.entry_ic = mfspr(SPRN_IC); 226 svcpu->in_use = true; 227 228 svcpu_put(svcpu); 229} 230 231static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu) 232{ 233 ulong guest_msr = kvmppc_get_msr(vcpu); 234 ulong smsr = guest_msr; 235 236 /* Guest MSR values */ 237#ifdef CONFIG_PPC_TRANSACTIONAL_MEM 238 smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE | 239 MSR_TM | MSR_TS_MASK; 240#else 241 smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE; 242#endif 243 /* Process MSR values */ 244 smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE; 245 /* External providers the guest reserved */ 246 smsr |= (guest_msr & vcpu->arch.guest_owned_ext); 247 /* 64-bit Process MSR values */ 248#ifdef CONFIG_PPC_BOOK3S_64 249 smsr |= MSR_HV; 250#endif 251#ifdef CONFIG_PPC_TRANSACTIONAL_MEM 252 /* 253 * in guest privileged state, we want to fail all TM transactions. 254 * So disable MSR TM bit so that all tbegin. will be able to be 255 * trapped into host. 256 */ 257 if (!(guest_msr & MSR_PR)) 258 smsr &= ~MSR_TM; 259#endif 260 vcpu->arch.shadow_msr = smsr; 261} 262 263/* Copy data touched by real-mode code from shadow vcpu back to vcpu */ 264void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu) 265{ 266 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); 267#ifdef CONFIG_PPC_TRANSACTIONAL_MEM 268 ulong old_msr; 269#endif 270 271 /* 272 * Maybe we were already preempted and synced the svcpu from 273 * our preempt notifiers. Don't bother touching this svcpu then. 274 */ 275 if (!svcpu->in_use) 276 goto out; 277 278 vcpu->arch.regs.gpr[0] = svcpu->gpr[0]; 279 vcpu->arch.regs.gpr[1] = svcpu->gpr[1]; 280 vcpu->arch.regs.gpr[2] = svcpu->gpr[2]; 281 vcpu->arch.regs.gpr[3] = svcpu->gpr[3]; 282 vcpu->arch.regs.gpr[4] = svcpu->gpr[4]; 283 vcpu->arch.regs.gpr[5] = svcpu->gpr[5]; 284 vcpu->arch.regs.gpr[6] = svcpu->gpr[6]; 285 vcpu->arch.regs.gpr[7] = svcpu->gpr[7]; 286 vcpu->arch.regs.gpr[8] = svcpu->gpr[8]; 287 vcpu->arch.regs.gpr[9] = svcpu->gpr[9]; 288 vcpu->arch.regs.gpr[10] = svcpu->gpr[10]; 289 vcpu->arch.regs.gpr[11] = svcpu->gpr[11]; 290 vcpu->arch.regs.gpr[12] = svcpu->gpr[12]; 291 vcpu->arch.regs.gpr[13] = svcpu->gpr[13]; 292 vcpu->arch.regs.ccr = svcpu->cr; 293 vcpu->arch.regs.xer = svcpu->xer; 294 vcpu->arch.regs.ctr = svcpu->ctr; 295 vcpu->arch.regs.link = svcpu->lr; 296 vcpu->arch.regs.nip = svcpu->pc; 297 vcpu->arch.shadow_srr1 = svcpu->shadow_srr1; 298 vcpu->arch.fault_dar = svcpu->fault_dar; 299 vcpu->arch.fault_dsisr = svcpu->fault_dsisr; 300 vcpu->arch.last_inst = svcpu->last_inst; 301#ifdef CONFIG_PPC_BOOK3S_64 302 vcpu->arch.shadow_fscr = svcpu->shadow_fscr; 303#endif 304 /* 305 * Update purr and spurr using time base on exit. 306 */ 307 vcpu->arch.purr += get_tb() - vcpu->arch.entry_tb; 308 vcpu->arch.spurr += get_tb() - vcpu->arch.entry_tb; 309 to_book3s(vcpu)->vtb += get_vtb() - vcpu->arch.entry_vtb; 310 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 311 vcpu->arch.ic += mfspr(SPRN_IC) - vcpu->arch.entry_ic; 312 313#ifdef CONFIG_PPC_TRANSACTIONAL_MEM 314 /* 315 * Unlike other MSR bits, MSR[TS]bits can be changed at guest without 316 * notifying host: 317 * modified by unprivileged instructions like "tbegin"/"tend"/ 318 * "tresume"/"tsuspend" in PR KVM guest. 319 * 320 * It is necessary to sync here to calculate a correct shadow_msr. 321 * 322 * privileged guest's tbegin will be failed at present. So we 323 * only take care of problem state guest. 324 */ 325 old_msr = kvmppc_get_msr(vcpu); 326 if (unlikely((old_msr & MSR_PR) && 327 (vcpu->arch.shadow_srr1 & (MSR_TS_MASK)) != 328 (old_msr & (MSR_TS_MASK)))) { 329 old_msr &= ~(MSR_TS_MASK); 330 old_msr |= (vcpu->arch.shadow_srr1 & (MSR_TS_MASK)); 331 kvmppc_set_msr_fast(vcpu, old_msr); 332 kvmppc_recalc_shadow_msr(vcpu); 333 } 334#endif 335 336 svcpu->in_use = false; 337 338out: 339 svcpu_put(svcpu); 340} 341 342#ifdef CONFIG_PPC_TRANSACTIONAL_MEM 343void kvmppc_save_tm_sprs(struct kvm_vcpu *vcpu) 344{ 345 tm_enable(); 346 vcpu->arch.tfhar = mfspr(SPRN_TFHAR); 347 vcpu->arch.texasr = mfspr(SPRN_TEXASR); 348 vcpu->arch.tfiar = mfspr(SPRN_TFIAR); 349 tm_disable(); 350} 351 352void kvmppc_restore_tm_sprs(struct kvm_vcpu *vcpu) 353{ 354 tm_enable(); 355 mtspr(SPRN_TFHAR, vcpu->arch.tfhar); 356 mtspr(SPRN_TEXASR, vcpu->arch.texasr); 357 mtspr(SPRN_TFIAR, vcpu->arch.tfiar); 358 tm_disable(); 359} 360 361/* loadup math bits which is enabled at kvmppc_get_msr() but not enabled at 362 * hardware. 363 */ 364static void kvmppc_handle_lost_math_exts(struct kvm_vcpu *vcpu) 365{ 366 ulong exit_nr; 367 ulong ext_diff = (kvmppc_get_msr(vcpu) & ~vcpu->arch.guest_owned_ext) & 368 (MSR_FP | MSR_VEC | MSR_VSX); 369 370 if (!ext_diff) 371 return; 372 373 if (ext_diff == MSR_FP) 374 exit_nr = BOOK3S_INTERRUPT_FP_UNAVAIL; 375 else if (ext_diff == MSR_VEC) 376 exit_nr = BOOK3S_INTERRUPT_ALTIVEC; 377 else 378 exit_nr = BOOK3S_INTERRUPT_VSX; 379 380 kvmppc_handle_ext(vcpu, exit_nr, ext_diff); 381} 382 383void kvmppc_save_tm_pr(struct kvm_vcpu *vcpu) 384{ 385 if (!(MSR_TM_ACTIVE(kvmppc_get_msr(vcpu)))) { 386 kvmppc_save_tm_sprs(vcpu); 387 return; 388 } 389 390 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG); 391 kvmppc_giveup_ext(vcpu, MSR_VSX); 392 393 preempt_disable(); 394 _kvmppc_save_tm_pr(vcpu, mfmsr()); 395 preempt_enable(); 396} 397 398void kvmppc_restore_tm_pr(struct kvm_vcpu *vcpu) 399{ 400 if (!MSR_TM_ACTIVE(kvmppc_get_msr(vcpu))) { 401 kvmppc_restore_tm_sprs(vcpu); 402 if (kvmppc_get_msr(vcpu) & MSR_TM) { 403 kvmppc_handle_lost_math_exts(vcpu); 404 if (vcpu->arch.fscr & FSCR_TAR) 405 kvmppc_handle_fac(vcpu, FSCR_TAR_LG); 406 } 407 return; 408 } 409 410 preempt_disable(); 411 _kvmppc_restore_tm_pr(vcpu, kvmppc_get_msr(vcpu)); 412 preempt_enable(); 413 414 if (kvmppc_get_msr(vcpu) & MSR_TM) { 415 kvmppc_handle_lost_math_exts(vcpu); 416 if (vcpu->arch.fscr & FSCR_TAR) 417 kvmppc_handle_fac(vcpu, FSCR_TAR_LG); 418 } 419} 420#endif 421 422static int kvmppc_core_check_requests_pr(struct kvm_vcpu *vcpu) 423{ 424 int r = 1; /* Indicate we want to get back into the guest */ 425 426 /* We misuse TLB_FLUSH to indicate that we want to clear 427 all shadow cache entries */ 428 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 429 kvmppc_mmu_pte_flush(vcpu, 0, 0); 430 431 return r; 432} 433 434/************* MMU Notifiers *************/ 435static bool do_kvm_unmap_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 436{ 437 unsigned long i; 438 struct kvm_vcpu *vcpu; 439 440 kvm_for_each_vcpu(i, vcpu, kvm) 441 kvmppc_mmu_pte_pflush(vcpu, range->start << PAGE_SHIFT, 442 range->end << PAGE_SHIFT); 443 444 return false; 445} 446 447static bool kvm_unmap_gfn_range_pr(struct kvm *kvm, struct kvm_gfn_range *range) 448{ 449 return do_kvm_unmap_gfn(kvm, range); 450} 451 452static bool kvm_age_gfn_pr(struct kvm *kvm, struct kvm_gfn_range *range) 453{ 454 /* XXX could be more clever ;) */ 455 return false; 456} 457 458static bool kvm_test_age_gfn_pr(struct kvm *kvm, struct kvm_gfn_range *range) 459{ 460 /* XXX could be more clever ;) */ 461 return false; 462} 463 464static bool kvm_set_spte_gfn_pr(struct kvm *kvm, struct kvm_gfn_range *range) 465{ 466 /* The page will get remapped properly on its next fault */ 467 return do_kvm_unmap_gfn(kvm, range); 468} 469 470/*****************************************/ 471 472static void kvmppc_set_msr_pr(struct kvm_vcpu *vcpu, u64 msr) 473{ 474 ulong old_msr; 475 476 /* For PAPR guest, make sure MSR reflects guest mode */ 477 if (vcpu->arch.papr_enabled) 478 msr = (msr & ~MSR_HV) | MSR_ME; 479 480#ifdef EXIT_DEBUG 481 printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr); 482#endif 483 484#ifdef CONFIG_PPC_TRANSACTIONAL_MEM 485 /* We should never target guest MSR to TS=10 && PR=0, 486 * since we always fail transaction for guest privilege 487 * state. 488 */ 489 if (!(msr & MSR_PR) && MSR_TM_TRANSACTIONAL(msr)) 490 kvmppc_emulate_tabort(vcpu, 491 TM_CAUSE_KVM_FAC_UNAV | TM_CAUSE_PERSISTENT); 492#endif 493 494 old_msr = kvmppc_get_msr(vcpu); 495 msr &= to_book3s(vcpu)->msr_mask; 496 kvmppc_set_msr_fast(vcpu, msr); 497 kvmppc_recalc_shadow_msr(vcpu); 498 499 if (msr & MSR_POW) { 500 if (!vcpu->arch.pending_exceptions) { 501 kvm_vcpu_halt(vcpu); 502 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 503 vcpu->stat.generic.halt_wakeup++; 504 505 /* Unset POW bit after we woke up */ 506 msr &= ~MSR_POW; 507 kvmppc_set_msr_fast(vcpu, msr); 508 } 509 } 510 511 if (kvmppc_is_split_real(vcpu)) 512 kvmppc_fixup_split_real(vcpu); 513 else 514 kvmppc_unfixup_split_real(vcpu); 515 516 if ((kvmppc_get_msr(vcpu) & (MSR_PR|MSR_IR|MSR_DR)) != 517 (old_msr & (MSR_PR|MSR_IR|MSR_DR))) { 518 kvmppc_mmu_flush_segments(vcpu); 519 kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)); 520 521 /* Preload magic page segment when in kernel mode */ 522 if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) { 523 struct kvm_vcpu_arch *a = &vcpu->arch; 524 525 if (msr & MSR_DR) 526 kvmppc_mmu_map_segment(vcpu, a->magic_page_ea); 527 else 528 kvmppc_mmu_map_segment(vcpu, a->magic_page_pa); 529 } 530 } 531 532 /* 533 * When switching from 32 to 64-bit, we may have a stale 32-bit 534 * magic page around, we need to flush it. Typically 32-bit magic 535 * page will be instantiated when calling into RTAS. Note: We 536 * assume that such transition only happens while in kernel mode, 537 * ie, we never transition from user 32-bit to kernel 64-bit with 538 * a 32-bit magic page around. 539 */ 540 if (vcpu->arch.magic_page_pa && 541 !(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) { 542 /* going from RTAS to normal kernel code */ 543 kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa, 544 ~0xFFFUL); 545 } 546 547 /* Preload FPU if it's enabled */ 548 if (kvmppc_get_msr(vcpu) & MSR_FP) 549 kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP); 550 551#ifdef CONFIG_PPC_TRANSACTIONAL_MEM 552 if (kvmppc_get_msr(vcpu) & MSR_TM) 553 kvmppc_handle_lost_math_exts(vcpu); 554#endif 555} 556 557static void kvmppc_set_pvr_pr(struct kvm_vcpu *vcpu, u32 pvr) 558{ 559 u32 host_pvr; 560 561 vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB; 562 vcpu->arch.pvr = pvr; 563#ifdef CONFIG_PPC_BOOK3S_64 564 if ((pvr >= 0x330000) && (pvr < 0x70330000)) { 565 kvmppc_mmu_book3s_64_init(vcpu); 566 if (!to_book3s(vcpu)->hior_explicit) 567 to_book3s(vcpu)->hior = 0xfff00000; 568 to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL; 569 vcpu->arch.cpu_type = KVM_CPU_3S_64; 570 } else 571#endif 572 { 573 kvmppc_mmu_book3s_32_init(vcpu); 574 if (!to_book3s(vcpu)->hior_explicit) 575 to_book3s(vcpu)->hior = 0; 576 to_book3s(vcpu)->msr_mask = 0xffffffffULL; 577 vcpu->arch.cpu_type = KVM_CPU_3S_32; 578 } 579 580 kvmppc_sanity_check(vcpu); 581 582 /* If we are in hypervisor level on 970, we can tell the CPU to 583 * treat DCBZ as 32 bytes store */ 584 vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32; 585 if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) && 586 !strcmp(cur_cpu_spec->platform, "ppc970")) 587 vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32; 588 589 /* Cell performs badly if MSR_FEx are set. So let's hope nobody 590 really needs them in a VM on Cell and force disable them. */ 591 if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be")) 592 to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1); 593 594 /* 595 * If they're asking for POWER6 or later, set the flag 596 * indicating that we can do multiple large page sizes 597 * and 1TB segments. 598 * Also set the flag that indicates that tlbie has the large 599 * page bit in the RB operand instead of the instruction. 600 */ 601 switch (PVR_VER(pvr)) { 602 case PVR_POWER6: 603 case PVR_POWER7: 604 case PVR_POWER7p: 605 case PVR_POWER8: 606 case PVR_POWER8E: 607 case PVR_POWER8NVL: 608 case PVR_POWER9: 609 vcpu->arch.hflags |= BOOK3S_HFLAG_MULTI_PGSIZE | 610 BOOK3S_HFLAG_NEW_TLBIE; 611 break; 612 } 613 614#ifdef CONFIG_PPC_BOOK3S_32 615 /* 32 bit Book3S always has 32 byte dcbz */ 616 vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32; 617#endif 618 619 /* On some CPUs we can execute paired single operations natively */ 620 asm ( "mfpvr %0" : "=r"(host_pvr)); 621 switch (host_pvr) { 622 case 0x00080200: /* lonestar 2.0 */ 623 case 0x00088202: /* lonestar 2.2 */ 624 case 0x70000100: /* gekko 1.0 */ 625 case 0x00080100: /* gekko 2.0 */ 626 case 0x00083203: /* gekko 2.3a */ 627 case 0x00083213: /* gekko 2.3b */ 628 case 0x00083204: /* gekko 2.4 */ 629 case 0x00083214: /* gekko 2.4e (8SE) - retail HW2 */ 630 case 0x00087200: /* broadway */ 631 vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS; 632 /* Enable HID2.PSE - in case we need it later */ 633 mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29)); 634 } 635} 636 637/* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To 638 * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to 639 * emulate 32 bytes dcbz length. 640 * 641 * The Book3s_64 inventors also realized this case and implemented a special bit 642 * in the HID5 register, which is a hypervisor ressource. Thus we can't use it. 643 * 644 * My approach here is to patch the dcbz instruction on executing pages. 645 */ 646static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte) 647{ 648 struct page *hpage; 649 u64 hpage_offset; 650 u32 *page; 651 int i; 652 653 hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT); 654 if (is_error_page(hpage)) 655 return; 656 657 hpage_offset = pte->raddr & ~PAGE_MASK; 658 hpage_offset &= ~0xFFFULL; 659 hpage_offset /= 4; 660 661 get_page(hpage); 662 page = kmap_atomic(hpage); 663 664 /* patch dcbz into reserved instruction, so we trap */ 665 for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++) 666 if ((be32_to_cpu(page[i]) & 0xff0007ff) == INS_DCBZ) 667 page[i] &= cpu_to_be32(0xfffffff7); 668 669 kunmap_atomic(page); 670 put_page(hpage); 671} 672 673static bool kvmppc_visible_gpa(struct kvm_vcpu *vcpu, gpa_t gpa) 674{ 675 ulong mp_pa = vcpu->arch.magic_page_pa; 676 677 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) 678 mp_pa = (uint32_t)mp_pa; 679 680 gpa &= ~0xFFFULL; 681 if (unlikely(mp_pa) && unlikely((mp_pa & KVM_PAM) == (gpa & KVM_PAM))) { 682 return true; 683 } 684 685 return kvm_is_visible_gfn(vcpu->kvm, gpa >> PAGE_SHIFT); 686} 687 688static int kvmppc_handle_pagefault(struct kvm_vcpu *vcpu, 689 ulong eaddr, int vec) 690{ 691 bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE); 692 bool iswrite = false; 693 int r = RESUME_GUEST; 694 int relocated; 695 int page_found = 0; 696 struct kvmppc_pte pte = { 0 }; 697 bool dr = (kvmppc_get_msr(vcpu) & MSR_DR) ? true : false; 698 bool ir = (kvmppc_get_msr(vcpu) & MSR_IR) ? true : false; 699 u64 vsid; 700 701 relocated = data ? dr : ir; 702 if (data && (vcpu->arch.fault_dsisr & DSISR_ISSTORE)) 703 iswrite = true; 704 705 /* Resolve real address if translation turned on */ 706 if (relocated) { 707 page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data, iswrite); 708 } else { 709 pte.may_execute = true; 710 pte.may_read = true; 711 pte.may_write = true; 712 pte.raddr = eaddr & KVM_PAM; 713 pte.eaddr = eaddr; 714 pte.vpage = eaddr >> 12; 715 pte.page_size = MMU_PAGE_64K; 716 pte.wimg = HPTE_R_M; 717 } 718 719 switch (kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) { 720 case 0: 721 pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12)); 722 break; 723 case MSR_DR: 724 if (!data && 725 (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) && 726 ((pte.raddr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS)) 727 pte.raddr &= ~SPLIT_HACK_MASK; 728 fallthrough; 729 case MSR_IR: 730 vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid); 731 732 if ((kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) == MSR_DR) 733 pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12)); 734 else 735 pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12)); 736 pte.vpage |= vsid; 737 738 if (vsid == -1) 739 page_found = -EINVAL; 740 break; 741 } 742 743 if (vcpu->arch.mmu.is_dcbz32(vcpu) && 744 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) { 745 /* 746 * If we do the dcbz hack, we have to NX on every execution, 747 * so we can patch the executing code. This renders our guest 748 * NX-less. 749 */ 750 pte.may_execute = !data; 751 } 752 753 if (page_found == -ENOENT || page_found == -EPERM) { 754 /* Page not found in guest PTE entries, or protection fault */ 755 u64 flags; 756 757 if (page_found == -EPERM) 758 flags = DSISR_PROTFAULT; 759 else 760 flags = DSISR_NOHPTE; 761 if (data) { 762 flags |= vcpu->arch.fault_dsisr & DSISR_ISSTORE; 763 kvmppc_core_queue_data_storage(vcpu, eaddr, flags); 764 } else { 765 kvmppc_core_queue_inst_storage(vcpu, flags); 766 } 767 } else if (page_found == -EINVAL) { 768 /* Page not found in guest SLB */ 769 kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu)); 770 kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80); 771 } else if (kvmppc_visible_gpa(vcpu, pte.raddr)) { 772 if (data && !(vcpu->arch.fault_dsisr & DSISR_NOHPTE)) { 773 /* 774 * There is already a host HPTE there, presumably 775 * a read-only one for a page the guest thinks 776 * is writable, so get rid of it first. 777 */ 778 kvmppc_mmu_unmap_page(vcpu, &pte); 779 } 780 /* The guest's PTE is not mapped yet. Map on the host */ 781 if (kvmppc_mmu_map_page(vcpu, &pte, iswrite) == -EIO) { 782 /* Exit KVM if mapping failed */ 783 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 784 return RESUME_HOST; 785 } 786 if (data) 787 vcpu->stat.sp_storage++; 788 else if (vcpu->arch.mmu.is_dcbz32(vcpu) && 789 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) 790 kvmppc_patch_dcbz(vcpu, &pte); 791 } else { 792 /* MMIO */ 793 vcpu->stat.mmio_exits++; 794 vcpu->arch.paddr_accessed = pte.raddr; 795 vcpu->arch.vaddr_accessed = pte.eaddr; 796 r = kvmppc_emulate_mmio(vcpu); 797 if ( r == RESUME_HOST_NV ) 798 r = RESUME_HOST; 799 } 800 801 return r; 802} 803 804/* Give up external provider (FPU, Altivec, VSX) */ 805void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr) 806{ 807 struct thread_struct *t = ¤t->thread; 808 809 /* 810 * VSX instructions can access FP and vector registers, so if 811 * we are giving up VSX, make sure we give up FP and VMX as well. 812 */ 813 if (msr & MSR_VSX) 814 msr |= MSR_FP | MSR_VEC; 815 816 msr &= vcpu->arch.guest_owned_ext; 817 if (!msr) 818 return; 819 820#ifdef DEBUG_EXT 821 printk(KERN_INFO "Giving up ext 0x%lx\n", msr); 822#endif 823 824 if (msr & MSR_FP) { 825 /* 826 * Note that on CPUs with VSX, giveup_fpu stores 827 * both the traditional FP registers and the added VSX 828 * registers into thread.fp_state.fpr[]. 829 */ 830 if (t->regs->msr & MSR_FP) 831 giveup_fpu(current); 832 t->fp_save_area = NULL; 833 } 834 835#ifdef CONFIG_ALTIVEC 836 if (msr & MSR_VEC) { 837 if (current->thread.regs->msr & MSR_VEC) 838 giveup_altivec(current); 839 t->vr_save_area = NULL; 840 } 841#endif 842 843 vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX); 844 kvmppc_recalc_shadow_msr(vcpu); 845} 846 847/* Give up facility (TAR / EBB / DSCR) */ 848void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac) 849{ 850#ifdef CONFIG_PPC_BOOK3S_64 851 if (!(vcpu->arch.shadow_fscr & (1ULL << fac))) { 852 /* Facility not available to the guest, ignore giveup request*/ 853 return; 854 } 855 856 switch (fac) { 857 case FSCR_TAR_LG: 858 vcpu->arch.tar = mfspr(SPRN_TAR); 859 mtspr(SPRN_TAR, current->thread.tar); 860 vcpu->arch.shadow_fscr &= ~FSCR_TAR; 861 break; 862 } 863#endif 864} 865 866/* Handle external providers (FPU, Altivec, VSX) */ 867static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr, 868 ulong msr) 869{ 870 struct thread_struct *t = ¤t->thread; 871 872 /* When we have paired singles, we emulate in software */ 873 if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) 874 return RESUME_GUEST; 875 876 if (!(kvmppc_get_msr(vcpu) & msr)) { 877 kvmppc_book3s_queue_irqprio(vcpu, exit_nr); 878 return RESUME_GUEST; 879 } 880 881 if (msr == MSR_VSX) { 882 /* No VSX? Give an illegal instruction interrupt */ 883#ifdef CONFIG_VSX 884 if (!cpu_has_feature(CPU_FTR_VSX)) 885#endif 886 { 887 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 888 return RESUME_GUEST; 889 } 890 891 /* 892 * We have to load up all the FP and VMX registers before 893 * we can let the guest use VSX instructions. 894 */ 895 msr = MSR_FP | MSR_VEC | MSR_VSX; 896 } 897 898 /* See if we already own all the ext(s) needed */ 899 msr &= ~vcpu->arch.guest_owned_ext; 900 if (!msr) 901 return RESUME_GUEST; 902 903#ifdef DEBUG_EXT 904 printk(KERN_INFO "Loading up ext 0x%lx\n", msr); 905#endif 906 907 if (msr & MSR_FP) { 908 preempt_disable(); 909 enable_kernel_fp(); 910 load_fp_state(&vcpu->arch.fp); 911 disable_kernel_fp(); 912 t->fp_save_area = &vcpu->arch.fp; 913 preempt_enable(); 914 } 915 916 if (msr & MSR_VEC) { 917#ifdef CONFIG_ALTIVEC 918 preempt_disable(); 919 enable_kernel_altivec(); 920 load_vr_state(&vcpu->arch.vr); 921 disable_kernel_altivec(); 922 t->vr_save_area = &vcpu->arch.vr; 923 preempt_enable(); 924#endif 925 } 926 927 t->regs->msr |= msr; 928 vcpu->arch.guest_owned_ext |= msr; 929 kvmppc_recalc_shadow_msr(vcpu); 930 931 return RESUME_GUEST; 932} 933 934/* 935 * Kernel code using FP or VMX could have flushed guest state to 936 * the thread_struct; if so, get it back now. 937 */ 938static void kvmppc_handle_lost_ext(struct kvm_vcpu *vcpu) 939{ 940 unsigned long lost_ext; 941 942 lost_ext = vcpu->arch.guest_owned_ext & ~current->thread.regs->msr; 943 if (!lost_ext) 944 return; 945 946 if (lost_ext & MSR_FP) { 947 preempt_disable(); 948 enable_kernel_fp(); 949 load_fp_state(&vcpu->arch.fp); 950 disable_kernel_fp(); 951 preempt_enable(); 952 } 953#ifdef CONFIG_ALTIVEC 954 if (lost_ext & MSR_VEC) { 955 preempt_disable(); 956 enable_kernel_altivec(); 957 load_vr_state(&vcpu->arch.vr); 958 disable_kernel_altivec(); 959 preempt_enable(); 960 } 961#endif 962 current->thread.regs->msr |= lost_ext; 963} 964 965#ifdef CONFIG_PPC_BOOK3S_64 966 967void kvmppc_trigger_fac_interrupt(struct kvm_vcpu *vcpu, ulong fac) 968{ 969 /* Inject the Interrupt Cause field and trigger a guest interrupt */ 970 vcpu->arch.fscr &= ~(0xffULL << 56); 971 vcpu->arch.fscr |= (fac << 56); 972 kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FAC_UNAVAIL); 973} 974 975static void kvmppc_emulate_fac(struct kvm_vcpu *vcpu, ulong fac) 976{ 977 enum emulation_result er = EMULATE_FAIL; 978 979 if (!(kvmppc_get_msr(vcpu) & MSR_PR)) 980 er = kvmppc_emulate_instruction(vcpu); 981 982 if ((er != EMULATE_DONE) && (er != EMULATE_AGAIN)) { 983 /* Couldn't emulate, trigger interrupt in guest */ 984 kvmppc_trigger_fac_interrupt(vcpu, fac); 985 } 986} 987 988/* Enable facilities (TAR, EBB, DSCR) for the guest */ 989static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac) 990{ 991 bool guest_fac_enabled; 992 BUG_ON(!cpu_has_feature(CPU_FTR_ARCH_207S)); 993 994 /* 995 * Not every facility is enabled by FSCR bits, check whether the 996 * guest has this facility enabled at all. 997 */ 998 switch (fac) { 999 case FSCR_TAR_LG: 1000 case FSCR_EBB_LG: 1001 guest_fac_enabled = (vcpu->arch.fscr & (1ULL << fac)); 1002 break; 1003 case FSCR_TM_LG: 1004 guest_fac_enabled = kvmppc_get_msr(vcpu) & MSR_TM; 1005 break; 1006 default: 1007 guest_fac_enabled = false; 1008 break; 1009 } 1010 1011 if (!guest_fac_enabled) { 1012 /* Facility not enabled by the guest */ 1013 kvmppc_trigger_fac_interrupt(vcpu, fac); 1014 return RESUME_GUEST; 1015 } 1016 1017 switch (fac) { 1018 case FSCR_TAR_LG: 1019 /* TAR switching isn't lazy in Linux yet */ 1020 current->thread.tar = mfspr(SPRN_TAR); 1021 mtspr(SPRN_TAR, vcpu->arch.tar); 1022 vcpu->arch.shadow_fscr |= FSCR_TAR; 1023 break; 1024 default: 1025 kvmppc_emulate_fac(vcpu, fac); 1026 break; 1027 } 1028 1029#ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1030 /* Since we disabled MSR_TM at privilege state, the mfspr instruction 1031 * for TM spr can trigger TM fac unavailable. In this case, the 1032 * emulation is handled by kvmppc_emulate_fac(), which invokes 1033 * kvmppc_emulate_mfspr() finally. But note the mfspr can include 1034 * RT for NV registers. So it need to restore those NV reg to reflect 1035 * the update. 1036 */ 1037 if ((fac == FSCR_TM_LG) && !(kvmppc_get_msr(vcpu) & MSR_PR)) 1038 return RESUME_GUEST_NV; 1039#endif 1040 1041 return RESUME_GUEST; 1042} 1043 1044void kvmppc_set_fscr(struct kvm_vcpu *vcpu, u64 fscr) 1045{ 1046 if (fscr & FSCR_SCV) 1047 fscr &= ~FSCR_SCV; /* SCV must not be enabled */ 1048 if ((vcpu->arch.fscr & FSCR_TAR) && !(fscr & FSCR_TAR)) { 1049 /* TAR got dropped, drop it in shadow too */ 1050 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG); 1051 } else if (!(vcpu->arch.fscr & FSCR_TAR) && (fscr & FSCR_TAR)) { 1052 vcpu->arch.fscr = fscr; 1053 kvmppc_handle_fac(vcpu, FSCR_TAR_LG); 1054 return; 1055 } 1056 1057 vcpu->arch.fscr = fscr; 1058} 1059#endif 1060 1061static void kvmppc_setup_debug(struct kvm_vcpu *vcpu) 1062{ 1063 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 1064 u64 msr = kvmppc_get_msr(vcpu); 1065 1066 kvmppc_set_msr(vcpu, msr | MSR_SE); 1067 } 1068} 1069 1070static void kvmppc_clear_debug(struct kvm_vcpu *vcpu) 1071{ 1072 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 1073 u64 msr = kvmppc_get_msr(vcpu); 1074 1075 kvmppc_set_msr(vcpu, msr & ~MSR_SE); 1076 } 1077} 1078 1079static int kvmppc_exit_pr_progint(struct kvm_vcpu *vcpu, unsigned int exit_nr) 1080{ 1081 enum emulation_result er; 1082 ulong flags; 1083 u32 last_inst; 1084 int emul, r; 1085 1086 /* 1087 * shadow_srr1 only contains valid flags if we came here via a program 1088 * exception. The other exceptions (emulation assist, FP unavailable, 1089 * etc.) do not provide flags in SRR1, so use an illegal-instruction 1090 * exception when injecting a program interrupt into the guest. 1091 */ 1092 if (exit_nr == BOOK3S_INTERRUPT_PROGRAM) 1093 flags = vcpu->arch.shadow_srr1 & 0x1f0000ull; 1094 else 1095 flags = SRR1_PROGILL; 1096 1097 emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst); 1098 if (emul != EMULATE_DONE) 1099 return RESUME_GUEST; 1100 1101 if (kvmppc_get_msr(vcpu) & MSR_PR) { 1102#ifdef EXIT_DEBUG 1103 pr_info("Userspace triggered 0x700 exception at\n 0x%lx (0x%x)\n", 1104 kvmppc_get_pc(vcpu), last_inst); 1105#endif 1106 if ((last_inst & 0xff0007ff) != (INS_DCBZ & 0xfffffff7)) { 1107 kvmppc_core_queue_program(vcpu, flags); 1108 return RESUME_GUEST; 1109 } 1110 } 1111 1112 vcpu->stat.emulated_inst_exits++; 1113 er = kvmppc_emulate_instruction(vcpu); 1114 switch (er) { 1115 case EMULATE_DONE: 1116 r = RESUME_GUEST_NV; 1117 break; 1118 case EMULATE_AGAIN: 1119 r = RESUME_GUEST; 1120 break; 1121 case EMULATE_FAIL: 1122 pr_crit("%s: emulation at %lx failed (%08x)\n", 1123 __func__, kvmppc_get_pc(vcpu), last_inst); 1124 kvmppc_core_queue_program(vcpu, flags); 1125 r = RESUME_GUEST; 1126 break; 1127 case EMULATE_DO_MMIO: 1128 vcpu->run->exit_reason = KVM_EXIT_MMIO; 1129 r = RESUME_HOST_NV; 1130 break; 1131 case EMULATE_EXIT_USER: 1132 r = RESUME_HOST_NV; 1133 break; 1134 default: 1135 BUG(); 1136 } 1137 1138 return r; 1139} 1140 1141int kvmppc_handle_exit_pr(struct kvm_vcpu *vcpu, unsigned int exit_nr) 1142{ 1143 struct kvm_run *run = vcpu->run; 1144 int r = RESUME_HOST; 1145 int s; 1146 1147 vcpu->stat.sum_exits++; 1148 1149 run->exit_reason = KVM_EXIT_UNKNOWN; 1150 run->ready_for_interrupt_injection = 1; 1151 1152 /* We get here with MSR.EE=1 */ 1153 1154 trace_kvm_exit(exit_nr, vcpu); 1155 guest_exit(); 1156 1157 switch (exit_nr) { 1158 case BOOK3S_INTERRUPT_INST_STORAGE: 1159 { 1160 ulong shadow_srr1 = vcpu->arch.shadow_srr1; 1161 vcpu->stat.pf_instruc++; 1162 1163 if (kvmppc_is_split_real(vcpu)) 1164 kvmppc_fixup_split_real(vcpu); 1165 1166#ifdef CONFIG_PPC_BOOK3S_32 1167 /* We set segments as unused segments when invalidating them. So 1168 * treat the respective fault as segment fault. */ 1169 { 1170 struct kvmppc_book3s_shadow_vcpu *svcpu; 1171 u32 sr; 1172 1173 svcpu = svcpu_get(vcpu); 1174 sr = svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT]; 1175 svcpu_put(svcpu); 1176 if (sr == SR_INVALID) { 1177 kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)); 1178 r = RESUME_GUEST; 1179 break; 1180 } 1181 } 1182#endif 1183 1184 /* only care about PTEG not found errors, but leave NX alone */ 1185 if (shadow_srr1 & 0x40000000) { 1186 int idx = srcu_read_lock(&vcpu->kvm->srcu); 1187 r = kvmppc_handle_pagefault(vcpu, kvmppc_get_pc(vcpu), exit_nr); 1188 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1189 vcpu->stat.sp_instruc++; 1190 } else if (vcpu->arch.mmu.is_dcbz32(vcpu) && 1191 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) { 1192 /* 1193 * XXX If we do the dcbz hack we use the NX bit to flush&patch the page, 1194 * so we can't use the NX bit inside the guest. Let's cross our fingers, 1195 * that no guest that needs the dcbz hack does NX. 1196 */ 1197 kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL); 1198 r = RESUME_GUEST; 1199 } else { 1200 kvmppc_core_queue_inst_storage(vcpu, 1201 shadow_srr1 & 0x58000000); 1202 r = RESUME_GUEST; 1203 } 1204 break; 1205 } 1206 case BOOK3S_INTERRUPT_DATA_STORAGE: 1207 { 1208 ulong dar = kvmppc_get_fault_dar(vcpu); 1209 u32 fault_dsisr = vcpu->arch.fault_dsisr; 1210 vcpu->stat.pf_storage++; 1211 1212#ifdef CONFIG_PPC_BOOK3S_32 1213 /* We set segments as unused segments when invalidating them. So 1214 * treat the respective fault as segment fault. */ 1215 { 1216 struct kvmppc_book3s_shadow_vcpu *svcpu; 1217 u32 sr; 1218 1219 svcpu = svcpu_get(vcpu); 1220 sr = svcpu->sr[dar >> SID_SHIFT]; 1221 svcpu_put(svcpu); 1222 if (sr == SR_INVALID) { 1223 kvmppc_mmu_map_segment(vcpu, dar); 1224 r = RESUME_GUEST; 1225 break; 1226 } 1227 } 1228#endif 1229 1230 /* 1231 * We need to handle missing shadow PTEs, and 1232 * protection faults due to us mapping a page read-only 1233 * when the guest thinks it is writable. 1234 */ 1235 if (fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT)) { 1236 int idx = srcu_read_lock(&vcpu->kvm->srcu); 1237 r = kvmppc_handle_pagefault(vcpu, dar, exit_nr); 1238 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1239 } else { 1240 kvmppc_core_queue_data_storage(vcpu, dar, fault_dsisr); 1241 r = RESUME_GUEST; 1242 } 1243 break; 1244 } 1245 case BOOK3S_INTERRUPT_DATA_SEGMENT: 1246 if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) { 1247 kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu)); 1248 kvmppc_book3s_queue_irqprio(vcpu, 1249 BOOK3S_INTERRUPT_DATA_SEGMENT); 1250 } 1251 r = RESUME_GUEST; 1252 break; 1253 case BOOK3S_INTERRUPT_INST_SEGMENT: 1254 if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) { 1255 kvmppc_book3s_queue_irqprio(vcpu, 1256 BOOK3S_INTERRUPT_INST_SEGMENT); 1257 } 1258 r = RESUME_GUEST; 1259 break; 1260 /* We're good on these - the host merely wanted to get our attention */ 1261 case BOOK3S_INTERRUPT_DECREMENTER: 1262 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1263 case BOOK3S_INTERRUPT_DOORBELL: 1264 case BOOK3S_INTERRUPT_H_DOORBELL: 1265 vcpu->stat.dec_exits++; 1266 r = RESUME_GUEST; 1267 break; 1268 case BOOK3S_INTERRUPT_EXTERNAL: 1269 case BOOK3S_INTERRUPT_EXTERNAL_HV: 1270 case BOOK3S_INTERRUPT_H_VIRT: 1271 vcpu->stat.ext_intr_exits++; 1272 r = RESUME_GUEST; 1273 break; 1274 case BOOK3S_INTERRUPT_HMI: 1275 case BOOK3S_INTERRUPT_PERFMON: 1276 case BOOK3S_INTERRUPT_SYSTEM_RESET: 1277 r = RESUME_GUEST; 1278 break; 1279 case BOOK3S_INTERRUPT_PROGRAM: 1280 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 1281 r = kvmppc_exit_pr_progint(vcpu, exit_nr); 1282 break; 1283 case BOOK3S_INTERRUPT_SYSCALL: 1284 { 1285 u32 last_sc; 1286 int emul; 1287 1288 /* Get last sc for papr */ 1289 if (vcpu->arch.papr_enabled) { 1290 /* The sc instruction points SRR0 to the next inst */ 1291 emul = kvmppc_get_last_inst(vcpu, INST_SC, &last_sc); 1292 if (emul != EMULATE_DONE) { 1293 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) - 4); 1294 r = RESUME_GUEST; 1295 break; 1296 } 1297 } 1298 1299 if (vcpu->arch.papr_enabled && 1300 (last_sc == 0x44000022) && 1301 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 1302 /* SC 1 papr hypercalls */ 1303 ulong cmd = kvmppc_get_gpr(vcpu, 3); 1304 int i; 1305 1306#ifdef CONFIG_PPC_BOOK3S_64 1307 if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) { 1308 r = RESUME_GUEST; 1309 break; 1310 } 1311#endif 1312 1313 run->papr_hcall.nr = cmd; 1314 for (i = 0; i < 9; ++i) { 1315 ulong gpr = kvmppc_get_gpr(vcpu, 4 + i); 1316 run->papr_hcall.args[i] = gpr; 1317 } 1318 run->exit_reason = KVM_EXIT_PAPR_HCALL; 1319 vcpu->arch.hcall_needed = 1; 1320 r = RESUME_HOST; 1321 } else if (vcpu->arch.osi_enabled && 1322 (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) && 1323 (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) { 1324 /* MOL hypercalls */ 1325 u64 *gprs = run->osi.gprs; 1326 int i; 1327 1328 run->exit_reason = KVM_EXIT_OSI; 1329 for (i = 0; i < 32; i++) 1330 gprs[i] = kvmppc_get_gpr(vcpu, i); 1331 vcpu->arch.osi_needed = 1; 1332 r = RESUME_HOST_NV; 1333 } else if (!(kvmppc_get_msr(vcpu) & MSR_PR) && 1334 (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) { 1335 /* KVM PV hypercalls */ 1336 kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu)); 1337 r = RESUME_GUEST; 1338 } else { 1339 /* Guest syscalls */ 1340 vcpu->stat.syscall_exits++; 1341 kvmppc_book3s_queue_irqprio(vcpu, exit_nr); 1342 r = RESUME_GUEST; 1343 } 1344 break; 1345 } 1346 case BOOK3S_INTERRUPT_FP_UNAVAIL: 1347 case BOOK3S_INTERRUPT_ALTIVEC: 1348 case BOOK3S_INTERRUPT_VSX: 1349 { 1350 int ext_msr = 0; 1351 int emul; 1352 u32 last_inst; 1353 1354 if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) { 1355 /* Do paired single instruction emulation */ 1356 emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, 1357 &last_inst); 1358 if (emul == EMULATE_DONE) 1359 r = kvmppc_exit_pr_progint(vcpu, exit_nr); 1360 else 1361 r = RESUME_GUEST; 1362 1363 break; 1364 } 1365 1366 /* Enable external provider */ 1367 switch (exit_nr) { 1368 case BOOK3S_INTERRUPT_FP_UNAVAIL: 1369 ext_msr = MSR_FP; 1370 break; 1371 1372 case BOOK3S_INTERRUPT_ALTIVEC: 1373 ext_msr = MSR_VEC; 1374 break; 1375 1376 case BOOK3S_INTERRUPT_VSX: 1377 ext_msr = MSR_VSX; 1378 break; 1379 } 1380 1381 r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr); 1382 break; 1383 } 1384 case BOOK3S_INTERRUPT_ALIGNMENT: 1385 { 1386 u32 last_inst; 1387 int emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst); 1388 1389 if (emul == EMULATE_DONE) { 1390 u32 dsisr; 1391 u64 dar; 1392 1393 dsisr = kvmppc_alignment_dsisr(vcpu, last_inst); 1394 dar = kvmppc_alignment_dar(vcpu, last_inst); 1395 1396 kvmppc_set_dsisr(vcpu, dsisr); 1397 kvmppc_set_dar(vcpu, dar); 1398 1399 kvmppc_book3s_queue_irqprio(vcpu, exit_nr); 1400 } 1401 r = RESUME_GUEST; 1402 break; 1403 } 1404#ifdef CONFIG_PPC_BOOK3S_64 1405 case BOOK3S_INTERRUPT_FAC_UNAVAIL: 1406 r = kvmppc_handle_fac(vcpu, vcpu->arch.shadow_fscr >> 56); 1407 break; 1408#endif 1409 case BOOK3S_INTERRUPT_MACHINE_CHECK: 1410 kvmppc_book3s_queue_irqprio(vcpu, exit_nr); 1411 r = RESUME_GUEST; 1412 break; 1413 case BOOK3S_INTERRUPT_TRACE: 1414 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 1415 run->exit_reason = KVM_EXIT_DEBUG; 1416 r = RESUME_HOST; 1417 } else { 1418 kvmppc_book3s_queue_irqprio(vcpu, exit_nr); 1419 r = RESUME_GUEST; 1420 } 1421 break; 1422 default: 1423 { 1424 ulong shadow_srr1 = vcpu->arch.shadow_srr1; 1425 /* Ugh - bork here! What did we get? */ 1426 printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n", 1427 exit_nr, kvmppc_get_pc(vcpu), shadow_srr1); 1428 r = RESUME_HOST; 1429 BUG(); 1430 break; 1431 } 1432 } 1433 1434 if (!(r & RESUME_HOST)) { 1435 /* To avoid clobbering exit_reason, only check for signals if 1436 * we aren't already exiting to userspace for some other 1437 * reason. */ 1438 1439 /* 1440 * Interrupts could be timers for the guest which we have to 1441 * inject again, so let's postpone them until we're in the guest 1442 * and if we really did time things so badly, then we just exit 1443 * again due to a host external interrupt. 1444 */ 1445 s = kvmppc_prepare_to_enter(vcpu); 1446 if (s <= 0) 1447 r = s; 1448 else { 1449 /* interrupts now hard-disabled */ 1450 kvmppc_fix_ee_before_entry(); 1451 } 1452 1453 kvmppc_handle_lost_ext(vcpu); 1454 } 1455 1456 trace_kvm_book3s_reenter(r, vcpu); 1457 1458 return r; 1459} 1460 1461static int kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu *vcpu, 1462 struct kvm_sregs *sregs) 1463{ 1464 struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu); 1465 int i; 1466 1467 sregs->pvr = vcpu->arch.pvr; 1468 1469 sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1; 1470 if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) { 1471 for (i = 0; i < 64; i++) { 1472 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i; 1473 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; 1474 } 1475 } else { 1476 for (i = 0; i < 16; i++) 1477 sregs->u.s.ppc32.sr[i] = kvmppc_get_sr(vcpu, i); 1478 1479 for (i = 0; i < 8; i++) { 1480 sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw; 1481 sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw; 1482 } 1483 } 1484 1485 return 0; 1486} 1487 1488static int kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu *vcpu, 1489 struct kvm_sregs *sregs) 1490{ 1491 struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu); 1492 int i; 1493 1494 kvmppc_set_pvr_pr(vcpu, sregs->pvr); 1495 1496 vcpu3s->sdr1 = sregs->u.s.sdr1; 1497#ifdef CONFIG_PPC_BOOK3S_64 1498 if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) { 1499 /* Flush all SLB entries */ 1500 vcpu->arch.mmu.slbmte(vcpu, 0, 0); 1501 vcpu->arch.mmu.slbia(vcpu); 1502 1503 for (i = 0; i < 64; i++) { 1504 u64 rb = sregs->u.s.ppc64.slb[i].slbe; 1505 u64 rs = sregs->u.s.ppc64.slb[i].slbv; 1506 1507 if (rb & SLB_ESID_V) 1508 vcpu->arch.mmu.slbmte(vcpu, rs, rb); 1509 } 1510 } else 1511#endif 1512 { 1513 for (i = 0; i < 16; i++) { 1514 vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]); 1515 } 1516 for (i = 0; i < 8; i++) { 1517 kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false, 1518 (u32)sregs->u.s.ppc32.ibat[i]); 1519 kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true, 1520 (u32)(sregs->u.s.ppc32.ibat[i] >> 32)); 1521 kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false, 1522 (u32)sregs->u.s.ppc32.dbat[i]); 1523 kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true, 1524 (u32)(sregs->u.s.ppc32.dbat[i] >> 32)); 1525 } 1526 } 1527 1528 /* Flush the MMU after messing with the segments */ 1529 kvmppc_mmu_pte_flush(vcpu, 0, 0); 1530 1531 return 0; 1532} 1533 1534static int kvmppc_get_one_reg_pr(struct kvm_vcpu *vcpu, u64 id, 1535 union kvmppc_one_reg *val) 1536{ 1537 int r = 0; 1538 1539 switch (id) { 1540 case KVM_REG_PPC_DEBUG_INST: 1541 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT); 1542 break; 1543 case KVM_REG_PPC_HIOR: 1544 *val = get_reg_val(id, to_book3s(vcpu)->hior); 1545 break; 1546 case KVM_REG_PPC_VTB: 1547 *val = get_reg_val(id, to_book3s(vcpu)->vtb); 1548 break; 1549 case KVM_REG_PPC_LPCR: 1550 case KVM_REG_PPC_LPCR_64: 1551 /* 1552 * We are only interested in the LPCR_ILE bit 1553 */ 1554 if (vcpu->arch.intr_msr & MSR_LE) 1555 *val = get_reg_val(id, LPCR_ILE); 1556 else 1557 *val = get_reg_val(id, 0); 1558 break; 1559#ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1560 case KVM_REG_PPC_TFHAR: 1561 *val = get_reg_val(id, vcpu->arch.tfhar); 1562 break; 1563 case KVM_REG_PPC_TFIAR: 1564 *val = get_reg_val(id, vcpu->arch.tfiar); 1565 break; 1566 case KVM_REG_PPC_TEXASR: 1567 *val = get_reg_val(id, vcpu->arch.texasr); 1568 break; 1569 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1570 *val = get_reg_val(id, 1571 vcpu->arch.gpr_tm[id-KVM_REG_PPC_TM_GPR0]); 1572 break; 1573 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1574 { 1575 int i, j; 1576 1577 i = id - KVM_REG_PPC_TM_VSR0; 1578 if (i < 32) 1579 for (j = 0; j < TS_FPRWIDTH; j++) 1580 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j]; 1581 else { 1582 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1583 val->vval = vcpu->arch.vr_tm.vr[i-32]; 1584 else 1585 r = -ENXIO; 1586 } 1587 break; 1588 } 1589 case KVM_REG_PPC_TM_CR: 1590 *val = get_reg_val(id, vcpu->arch.cr_tm); 1591 break; 1592 case KVM_REG_PPC_TM_XER: 1593 *val = get_reg_val(id, vcpu->arch.xer_tm); 1594 break; 1595 case KVM_REG_PPC_TM_LR: 1596 *val = get_reg_val(id, vcpu->arch.lr_tm); 1597 break; 1598 case KVM_REG_PPC_TM_CTR: 1599 *val = get_reg_val(id, vcpu->arch.ctr_tm); 1600 break; 1601 case KVM_REG_PPC_TM_FPSCR: 1602 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr); 1603 break; 1604 case KVM_REG_PPC_TM_AMR: 1605 *val = get_reg_val(id, vcpu->arch.amr_tm); 1606 break; 1607 case KVM_REG_PPC_TM_PPR: 1608 *val = get_reg_val(id, vcpu->arch.ppr_tm); 1609 break; 1610 case KVM_REG_PPC_TM_VRSAVE: 1611 *val = get_reg_val(id, vcpu->arch.vrsave_tm); 1612 break; 1613 case KVM_REG_PPC_TM_VSCR: 1614 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1615 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]); 1616 else 1617 r = -ENXIO; 1618 break; 1619 case KVM_REG_PPC_TM_DSCR: 1620 *val = get_reg_val(id, vcpu->arch.dscr_tm); 1621 break; 1622 case KVM_REG_PPC_TM_TAR: 1623 *val = get_reg_val(id, vcpu->arch.tar_tm); 1624 break; 1625#endif 1626 default: 1627 r = -EINVAL; 1628 break; 1629 } 1630 1631 return r; 1632} 1633 1634static void kvmppc_set_lpcr_pr(struct kvm_vcpu *vcpu, u64 new_lpcr) 1635{ 1636 if (new_lpcr & LPCR_ILE) 1637 vcpu->arch.intr_msr |= MSR_LE; 1638 else 1639 vcpu->arch.intr_msr &= ~MSR_LE; 1640} 1641 1642static int kvmppc_set_one_reg_pr(struct kvm_vcpu *vcpu, u64 id, 1643 union kvmppc_one_reg *val) 1644{ 1645 int r = 0; 1646 1647 switch (id) { 1648 case KVM_REG_PPC_HIOR: 1649 to_book3s(vcpu)->hior = set_reg_val(id, *val); 1650 to_book3s(vcpu)->hior_explicit = true; 1651 break; 1652 case KVM_REG_PPC_VTB: 1653 to_book3s(vcpu)->vtb = set_reg_val(id, *val); 1654 break; 1655 case KVM_REG_PPC_LPCR: 1656 case KVM_REG_PPC_LPCR_64: 1657 kvmppc_set_lpcr_pr(vcpu, set_reg_val(id, *val)); 1658 break; 1659#ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1660 case KVM_REG_PPC_TFHAR: 1661 vcpu->arch.tfhar = set_reg_val(id, *val); 1662 break; 1663 case KVM_REG_PPC_TFIAR: 1664 vcpu->arch.tfiar = set_reg_val(id, *val); 1665 break; 1666 case KVM_REG_PPC_TEXASR: 1667 vcpu->arch.texasr = set_reg_val(id, *val); 1668 break; 1669 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1670 vcpu->arch.gpr_tm[id - KVM_REG_PPC_TM_GPR0] = 1671 set_reg_val(id, *val); 1672 break; 1673 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1674 { 1675 int i, j; 1676 1677 i = id - KVM_REG_PPC_TM_VSR0; 1678 if (i < 32) 1679 for (j = 0; j < TS_FPRWIDTH; j++) 1680 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j]; 1681 else 1682 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1683 vcpu->arch.vr_tm.vr[i-32] = val->vval; 1684 else 1685 r = -ENXIO; 1686 break; 1687 } 1688 case KVM_REG_PPC_TM_CR: 1689 vcpu->arch.cr_tm = set_reg_val(id, *val); 1690 break; 1691 case KVM_REG_PPC_TM_XER: 1692 vcpu->arch.xer_tm = set_reg_val(id, *val); 1693 break; 1694 case KVM_REG_PPC_TM_LR: 1695 vcpu->arch.lr_tm = set_reg_val(id, *val); 1696 break; 1697 case KVM_REG_PPC_TM_CTR: 1698 vcpu->arch.ctr_tm = set_reg_val(id, *val); 1699 break; 1700 case KVM_REG_PPC_TM_FPSCR: 1701 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val); 1702 break; 1703 case KVM_REG_PPC_TM_AMR: 1704 vcpu->arch.amr_tm = set_reg_val(id, *val); 1705 break; 1706 case KVM_REG_PPC_TM_PPR: 1707 vcpu->arch.ppr_tm = set_reg_val(id, *val); 1708 break; 1709 case KVM_REG_PPC_TM_VRSAVE: 1710 vcpu->arch.vrsave_tm = set_reg_val(id, *val); 1711 break; 1712 case KVM_REG_PPC_TM_VSCR: 1713 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1714 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val); 1715 else 1716 r = -ENXIO; 1717 break; 1718 case KVM_REG_PPC_TM_DSCR: 1719 vcpu->arch.dscr_tm = set_reg_val(id, *val); 1720 break; 1721 case KVM_REG_PPC_TM_TAR: 1722 vcpu->arch.tar_tm = set_reg_val(id, *val); 1723 break; 1724#endif 1725 default: 1726 r = -EINVAL; 1727 break; 1728 } 1729 1730 return r; 1731} 1732 1733static int kvmppc_core_vcpu_create_pr(struct kvm_vcpu *vcpu) 1734{ 1735 struct kvmppc_vcpu_book3s *vcpu_book3s; 1736 unsigned long p; 1737 int err; 1738 1739 err = -ENOMEM; 1740 1741 vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s)); 1742 if (!vcpu_book3s) 1743 goto out; 1744 vcpu->arch.book3s = vcpu_book3s; 1745 1746#ifdef CONFIG_KVM_BOOK3S_32_HANDLER 1747 vcpu->arch.shadow_vcpu = 1748 kzalloc(sizeof(*vcpu->arch.shadow_vcpu), GFP_KERNEL); 1749 if (!vcpu->arch.shadow_vcpu) 1750 goto free_vcpu3s; 1751#endif 1752 1753 p = __get_free_page(GFP_KERNEL|__GFP_ZERO); 1754 if (!p) 1755 goto free_shadow_vcpu; 1756 vcpu->arch.shared = (void *)p; 1757#ifdef CONFIG_PPC_BOOK3S_64 1758 /* Always start the shared struct in native endian mode */ 1759#ifdef __BIG_ENDIAN__ 1760 vcpu->arch.shared_big_endian = true; 1761#else 1762 vcpu->arch.shared_big_endian = false; 1763#endif 1764 1765 /* 1766 * Default to the same as the host if we're on sufficiently 1767 * recent machine that we have 1TB segments; 1768 * otherwise default to PPC970FX. 1769 */ 1770 vcpu->arch.pvr = 0x3C0301; 1771 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 1772 vcpu->arch.pvr = mfspr(SPRN_PVR); 1773 vcpu->arch.intr_msr = MSR_SF; 1774#else 1775 /* default to book3s_32 (750) */ 1776 vcpu->arch.pvr = 0x84202; 1777 vcpu->arch.intr_msr = 0; 1778#endif 1779 kvmppc_set_pvr_pr(vcpu, vcpu->arch.pvr); 1780 vcpu->arch.slb_nr = 64; 1781 1782 vcpu->arch.shadow_msr = MSR_USER64 & ~MSR_LE; 1783 1784 err = kvmppc_mmu_init_pr(vcpu); 1785 if (err < 0) 1786 goto free_shared_page; 1787 1788 return 0; 1789 1790free_shared_page: 1791 free_page((unsigned long)vcpu->arch.shared); 1792free_shadow_vcpu: 1793#ifdef CONFIG_KVM_BOOK3S_32_HANDLER 1794 kfree(vcpu->arch.shadow_vcpu); 1795free_vcpu3s: 1796#endif 1797 vfree(vcpu_book3s); 1798out: 1799 return err; 1800} 1801 1802static void kvmppc_core_vcpu_free_pr(struct kvm_vcpu *vcpu) 1803{ 1804 struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu); 1805 1806 kvmppc_mmu_destroy_pr(vcpu); 1807 free_page((unsigned long)vcpu->arch.shared & PAGE_MASK); 1808#ifdef CONFIG_KVM_BOOK3S_32_HANDLER 1809 kfree(vcpu->arch.shadow_vcpu); 1810#endif 1811 vfree(vcpu_book3s); 1812} 1813 1814static int kvmppc_vcpu_run_pr(struct kvm_vcpu *vcpu) 1815{ 1816 int ret; 1817 1818 /* Check if we can run the vcpu at all */ 1819 if (!vcpu->arch.sane) { 1820 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1821 ret = -EINVAL; 1822 goto out; 1823 } 1824 1825 kvmppc_setup_debug(vcpu); 1826 1827 /* 1828 * Interrupts could be timers for the guest which we have to inject 1829 * again, so let's postpone them until we're in the guest and if we 1830 * really did time things so badly, then we just exit again due to 1831 * a host external interrupt. 1832 */ 1833 ret = kvmppc_prepare_to_enter(vcpu); 1834 if (ret <= 0) 1835 goto out; 1836 /* interrupts now hard-disabled */ 1837 1838 /* Save FPU, Altivec and VSX state */ 1839 giveup_all(current); 1840 1841 /* Preload FPU if it's enabled */ 1842 if (kvmppc_get_msr(vcpu) & MSR_FP) 1843 kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP); 1844 1845 kvmppc_fix_ee_before_entry(); 1846 1847 ret = __kvmppc_vcpu_run(vcpu); 1848 1849 kvmppc_clear_debug(vcpu); 1850 1851 /* No need for guest_exit. It's done in handle_exit. 1852 We also get here with interrupts enabled. */ 1853 1854 /* Make sure we save the guest FPU/Altivec/VSX state */ 1855 kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX); 1856 1857 /* Make sure we save the guest TAR/EBB/DSCR state */ 1858 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG); 1859 1860 srr_regs_clobbered(); 1861out: 1862 vcpu->mode = OUTSIDE_GUEST_MODE; 1863 return ret; 1864} 1865 1866/* 1867 * Get (and clear) the dirty memory log for a memory slot. 1868 */ 1869static int kvm_vm_ioctl_get_dirty_log_pr(struct kvm *kvm, 1870 struct kvm_dirty_log *log) 1871{ 1872 struct kvm_memory_slot *memslot; 1873 struct kvm_vcpu *vcpu; 1874 ulong ga, ga_end; 1875 int is_dirty = 0; 1876 int r; 1877 unsigned long n; 1878 1879 mutex_lock(&kvm->slots_lock); 1880 1881 r = kvm_get_dirty_log(kvm, log, &is_dirty, &memslot); 1882 if (r) 1883 goto out; 1884 1885 /* If nothing is dirty, don't bother messing with page tables. */ 1886 if (is_dirty) { 1887 ga = memslot->base_gfn << PAGE_SHIFT; 1888 ga_end = ga + (memslot->npages << PAGE_SHIFT); 1889 1890 kvm_for_each_vcpu(n, vcpu, kvm) 1891 kvmppc_mmu_pte_pflush(vcpu, ga, ga_end); 1892 1893 n = kvm_dirty_bitmap_bytes(memslot); 1894 memset(memslot->dirty_bitmap, 0, n); 1895 } 1896 1897 r = 0; 1898out: 1899 mutex_unlock(&kvm->slots_lock); 1900 return r; 1901} 1902 1903static void kvmppc_core_flush_memslot_pr(struct kvm *kvm, 1904 struct kvm_memory_slot *memslot) 1905{ 1906 return; 1907} 1908 1909static int kvmppc_core_prepare_memory_region_pr(struct kvm *kvm, 1910 const struct kvm_memory_slot *old, 1911 struct kvm_memory_slot *new, 1912 enum kvm_mr_change change) 1913{ 1914 return 0; 1915} 1916 1917static void kvmppc_core_commit_memory_region_pr(struct kvm *kvm, 1918 struct kvm_memory_slot *old, 1919 const struct kvm_memory_slot *new, 1920 enum kvm_mr_change change) 1921{ 1922 return; 1923} 1924 1925static void kvmppc_core_free_memslot_pr(struct kvm_memory_slot *slot) 1926{ 1927 return; 1928} 1929 1930#ifdef CONFIG_PPC64 1931static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm, 1932 struct kvm_ppc_smmu_info *info) 1933{ 1934 long int i; 1935 struct kvm_vcpu *vcpu; 1936 1937 info->flags = 0; 1938 1939 /* SLB is always 64 entries */ 1940 info->slb_size = 64; 1941 1942 /* Standard 4k base page size segment */ 1943 info->sps[0].page_shift = 12; 1944 info->sps[0].slb_enc = 0; 1945 info->sps[0].enc[0].page_shift = 12; 1946 info->sps[0].enc[0].pte_enc = 0; 1947 1948 /* 1949 * 64k large page size. 1950 * We only want to put this in if the CPUs we're emulating 1951 * support it, but unfortunately we don't have a vcpu easily 1952 * to hand here to test. Just pick the first vcpu, and if 1953 * that doesn't exist yet, report the minimum capability, 1954 * i.e., no 64k pages. 1955 * 1T segment support goes along with 64k pages. 1956 */ 1957 i = 1; 1958 vcpu = kvm_get_vcpu(kvm, 0); 1959 if (vcpu && (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) { 1960 info->flags = KVM_PPC_1T_SEGMENTS; 1961 info->sps[i].page_shift = 16; 1962 info->sps[i].slb_enc = SLB_VSID_L | SLB_VSID_LP_01; 1963 info->sps[i].enc[0].page_shift = 16; 1964 info->sps[i].enc[0].pte_enc = 1; 1965 ++i; 1966 } 1967 1968 /* Standard 16M large page size segment */ 1969 info->sps[i].page_shift = 24; 1970 info->sps[i].slb_enc = SLB_VSID_L; 1971 info->sps[i].enc[0].page_shift = 24; 1972 info->sps[i].enc[0].pte_enc = 0; 1973 1974 return 0; 1975} 1976 1977static int kvm_configure_mmu_pr(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg) 1978{ 1979 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1980 return -ENODEV; 1981 /* Require flags and process table base and size to all be zero. */ 1982 if (cfg->flags || cfg->process_table) 1983 return -EINVAL; 1984 return 0; 1985} 1986 1987#else 1988static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm, 1989 struct kvm_ppc_smmu_info *info) 1990{ 1991 /* We should not get called */ 1992 BUG(); 1993 return 0; 1994} 1995#endif /* CONFIG_PPC64 */ 1996 1997static unsigned int kvm_global_user_count = 0; 1998static DEFINE_SPINLOCK(kvm_global_user_count_lock); 1999 2000static int kvmppc_core_init_vm_pr(struct kvm *kvm) 2001{ 2002 mutex_init(&kvm->arch.hpt_mutex); 2003 2004#ifdef CONFIG_PPC_BOOK3S_64 2005 /* Start out with the default set of hcalls enabled */ 2006 kvmppc_pr_init_default_hcalls(kvm); 2007#endif 2008 2009 if (firmware_has_feature(FW_FEATURE_SET_MODE)) { 2010 spin_lock(&kvm_global_user_count_lock); 2011 if (++kvm_global_user_count == 1) 2012 pseries_disable_reloc_on_exc(); 2013 spin_unlock(&kvm_global_user_count_lock); 2014 } 2015 return 0; 2016} 2017 2018static void kvmppc_core_destroy_vm_pr(struct kvm *kvm) 2019{ 2020#ifdef CONFIG_PPC64 2021 WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables)); 2022#endif 2023 2024 if (firmware_has_feature(FW_FEATURE_SET_MODE)) { 2025 spin_lock(&kvm_global_user_count_lock); 2026 BUG_ON(kvm_global_user_count == 0); 2027 if (--kvm_global_user_count == 0) 2028 pseries_enable_reloc_on_exc(); 2029 spin_unlock(&kvm_global_user_count_lock); 2030 } 2031} 2032 2033static int kvmppc_core_check_processor_compat_pr(void) 2034{ 2035 /* 2036 * PR KVM can work on POWER9 inside a guest partition 2037 * running in HPT mode. It can't work if we are using 2038 * radix translation (because radix provides no way for 2039 * a process to have unique translations in quadrant 3). 2040 */ 2041 if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled()) 2042 return -EIO; 2043 return 0; 2044} 2045 2046static long kvm_arch_vm_ioctl_pr(struct file *filp, 2047 unsigned int ioctl, unsigned long arg) 2048{ 2049 return -ENOTTY; 2050} 2051 2052static struct kvmppc_ops kvm_ops_pr = { 2053 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_pr, 2054 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_pr, 2055 .get_one_reg = kvmppc_get_one_reg_pr, 2056 .set_one_reg = kvmppc_set_one_reg_pr, 2057 .vcpu_load = kvmppc_core_vcpu_load_pr, 2058 .vcpu_put = kvmppc_core_vcpu_put_pr, 2059 .inject_interrupt = kvmppc_inject_interrupt_pr, 2060 .set_msr = kvmppc_set_msr_pr, 2061 .vcpu_run = kvmppc_vcpu_run_pr, 2062 .vcpu_create = kvmppc_core_vcpu_create_pr, 2063 .vcpu_free = kvmppc_core_vcpu_free_pr, 2064 .check_requests = kvmppc_core_check_requests_pr, 2065 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_pr, 2066 .flush_memslot = kvmppc_core_flush_memslot_pr, 2067 .prepare_memory_region = kvmppc_core_prepare_memory_region_pr, 2068 .commit_memory_region = kvmppc_core_commit_memory_region_pr, 2069 .unmap_gfn_range = kvm_unmap_gfn_range_pr, 2070 .age_gfn = kvm_age_gfn_pr, 2071 .test_age_gfn = kvm_test_age_gfn_pr, 2072 .set_spte_gfn = kvm_set_spte_gfn_pr, 2073 .free_memslot = kvmppc_core_free_memslot_pr, 2074 .init_vm = kvmppc_core_init_vm_pr, 2075 .destroy_vm = kvmppc_core_destroy_vm_pr, 2076 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_pr, 2077 .emulate_op = kvmppc_core_emulate_op_pr, 2078 .emulate_mtspr = kvmppc_core_emulate_mtspr_pr, 2079 .emulate_mfspr = kvmppc_core_emulate_mfspr_pr, 2080 .fast_vcpu_kick = kvm_vcpu_kick, 2081 .arch_vm_ioctl = kvm_arch_vm_ioctl_pr, 2082#ifdef CONFIG_PPC_BOOK3S_64 2083 .hcall_implemented = kvmppc_hcall_impl_pr, 2084 .configure_mmu = kvm_configure_mmu_pr, 2085#endif 2086 .giveup_ext = kvmppc_giveup_ext, 2087}; 2088 2089 2090int kvmppc_book3s_init_pr(void) 2091{ 2092 int r; 2093 2094 r = kvmppc_core_check_processor_compat_pr(); 2095 if (r < 0) 2096 return r; 2097 2098 kvm_ops_pr.owner = THIS_MODULE; 2099 kvmppc_pr_ops = &kvm_ops_pr; 2100 2101 r = kvmppc_mmu_hpte_sysinit(); 2102 return r; 2103} 2104 2105void kvmppc_book3s_exit_pr(void) 2106{ 2107 kvmppc_pr_ops = NULL; 2108 kvmppc_mmu_hpte_sysexit(); 2109} 2110 2111/* 2112 * We only support separate modules for book3s 64 2113 */ 2114#ifdef CONFIG_PPC_BOOK3S_64 2115 2116module_init(kvmppc_book3s_init_pr); 2117module_exit(kvmppc_book3s_exit_pr); 2118 2119MODULE_LICENSE("GPL"); 2120MODULE_ALIAS_MISCDEV(KVM_MINOR); 2121MODULE_ALIAS("devname:kvm"); 2122#endif