sstep.c (83677B)
1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * Single-step support. 4 * 5 * Copyright (C) 2004 Paul Mackerras <paulus@au.ibm.com>, IBM 6 */ 7#include <linux/kernel.h> 8#include <linux/kprobes.h> 9#include <linux/ptrace.h> 10#include <linux/prefetch.h> 11#include <asm/sstep.h> 12#include <asm/processor.h> 13#include <linux/uaccess.h> 14#include <asm/cpu_has_feature.h> 15#include <asm/cputable.h> 16#include <asm/disassemble.h> 17 18#ifdef CONFIG_PPC64 19/* Bits in SRR1 that are copied from MSR */ 20#define MSR_MASK 0xffffffff87c0ffffUL 21#else 22#define MSR_MASK 0x87c0ffff 23#endif 24 25/* Bits in XER */ 26#define XER_SO 0x80000000U 27#define XER_OV 0x40000000U 28#define XER_CA 0x20000000U 29#define XER_OV32 0x00080000U 30#define XER_CA32 0x00040000U 31 32#ifdef CONFIG_VSX 33#define VSX_REGISTER_XTP(rd) ((((rd) & 1) << 5) | ((rd) & 0xfe)) 34#endif 35 36#ifdef CONFIG_PPC_FPU 37/* 38 * Functions in ldstfp.S 39 */ 40extern void get_fpr(int rn, double *p); 41extern void put_fpr(int rn, const double *p); 42extern void get_vr(int rn, __vector128 *p); 43extern void put_vr(int rn, __vector128 *p); 44extern void load_vsrn(int vsr, const void *p); 45extern void store_vsrn(int vsr, void *p); 46extern void conv_sp_to_dp(const float *sp, double *dp); 47extern void conv_dp_to_sp(const double *dp, float *sp); 48#endif 49 50#ifdef __powerpc64__ 51/* 52 * Functions in quad.S 53 */ 54extern int do_lq(unsigned long ea, unsigned long *regs); 55extern int do_stq(unsigned long ea, unsigned long val0, unsigned long val1); 56extern int do_lqarx(unsigned long ea, unsigned long *regs); 57extern int do_stqcx(unsigned long ea, unsigned long val0, unsigned long val1, 58 unsigned int *crp); 59#endif 60 61#ifdef __LITTLE_ENDIAN__ 62#define IS_LE 1 63#define IS_BE 0 64#else 65#define IS_LE 0 66#define IS_BE 1 67#endif 68 69/* 70 * Emulate the truncation of 64 bit values in 32-bit mode. 71 */ 72static nokprobe_inline unsigned long truncate_if_32bit(unsigned long msr, 73 unsigned long val) 74{ 75 if ((msr & MSR_64BIT) == 0) 76 val &= 0xffffffffUL; 77 return val; 78} 79 80/* 81 * Determine whether a conditional branch instruction would branch. 82 */ 83static nokprobe_inline int branch_taken(unsigned int instr, 84 const struct pt_regs *regs, 85 struct instruction_op *op) 86{ 87 unsigned int bo = (instr >> 21) & 0x1f; 88 unsigned int bi; 89 90 if ((bo & 4) == 0) { 91 /* decrement counter */ 92 op->type |= DECCTR; 93 if (((bo >> 1) & 1) ^ (regs->ctr == 1)) 94 return 0; 95 } 96 if ((bo & 0x10) == 0) { 97 /* check bit from CR */ 98 bi = (instr >> 16) & 0x1f; 99 if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1)) 100 return 0; 101 } 102 return 1; 103} 104 105static nokprobe_inline long address_ok(struct pt_regs *regs, 106 unsigned long ea, int nb) 107{ 108 if (!user_mode(regs)) 109 return 1; 110 if (access_ok((void __user *)ea, nb)) 111 return 1; 112 if (access_ok((void __user *)ea, 1)) 113 /* Access overlaps the end of the user region */ 114 regs->dar = TASK_SIZE_MAX - 1; 115 else 116 regs->dar = ea; 117 return 0; 118} 119 120/* 121 * Calculate effective address for a D-form instruction 122 */ 123static nokprobe_inline unsigned long dform_ea(unsigned int instr, 124 const struct pt_regs *regs) 125{ 126 int ra; 127 unsigned long ea; 128 129 ra = (instr >> 16) & 0x1f; 130 ea = (signed short) instr; /* sign-extend */ 131 if (ra) 132 ea += regs->gpr[ra]; 133 134 return ea; 135} 136 137#ifdef __powerpc64__ 138/* 139 * Calculate effective address for a DS-form instruction 140 */ 141static nokprobe_inline unsigned long dsform_ea(unsigned int instr, 142 const struct pt_regs *regs) 143{ 144 int ra; 145 unsigned long ea; 146 147 ra = (instr >> 16) & 0x1f; 148 ea = (signed short) (instr & ~3); /* sign-extend */ 149 if (ra) 150 ea += regs->gpr[ra]; 151 152 return ea; 153} 154 155/* 156 * Calculate effective address for a DQ-form instruction 157 */ 158static nokprobe_inline unsigned long dqform_ea(unsigned int instr, 159 const struct pt_regs *regs) 160{ 161 int ra; 162 unsigned long ea; 163 164 ra = (instr >> 16) & 0x1f; 165 ea = (signed short) (instr & ~0xf); /* sign-extend */ 166 if (ra) 167 ea += regs->gpr[ra]; 168 169 return ea; 170} 171#endif /* __powerpc64 */ 172 173/* 174 * Calculate effective address for an X-form instruction 175 */ 176static nokprobe_inline unsigned long xform_ea(unsigned int instr, 177 const struct pt_regs *regs) 178{ 179 int ra, rb; 180 unsigned long ea; 181 182 ra = (instr >> 16) & 0x1f; 183 rb = (instr >> 11) & 0x1f; 184 ea = regs->gpr[rb]; 185 if (ra) 186 ea += regs->gpr[ra]; 187 188 return ea; 189} 190 191/* 192 * Calculate effective address for a MLS:D-form / 8LS:D-form 193 * prefixed instruction 194 */ 195static nokprobe_inline unsigned long mlsd_8lsd_ea(unsigned int instr, 196 unsigned int suffix, 197 const struct pt_regs *regs) 198{ 199 int ra, prefix_r; 200 unsigned int dd; 201 unsigned long ea, d0, d1, d; 202 203 prefix_r = GET_PREFIX_R(instr); 204 ra = GET_PREFIX_RA(suffix); 205 206 d0 = instr & 0x3ffff; 207 d1 = suffix & 0xffff; 208 d = (d0 << 16) | d1; 209 210 /* 211 * sign extend a 34 bit number 212 */ 213 dd = (unsigned int)(d >> 2); 214 ea = (signed int)dd; 215 ea = (ea << 2) | (d & 0x3); 216 217 if (!prefix_r && ra) 218 ea += regs->gpr[ra]; 219 else if (!prefix_r && !ra) 220 ; /* Leave ea as is */ 221 else if (prefix_r) 222 ea += regs->nip; 223 224 /* 225 * (prefix_r && ra) is an invalid form. Should already be 226 * checked for by caller! 227 */ 228 229 return ea; 230} 231 232/* 233 * Return the largest power of 2, not greater than sizeof(unsigned long), 234 * such that x is a multiple of it. 235 */ 236static nokprobe_inline unsigned long max_align(unsigned long x) 237{ 238 x |= sizeof(unsigned long); 239 return x & -x; /* isolates rightmost bit */ 240} 241 242static nokprobe_inline unsigned long byterev_2(unsigned long x) 243{ 244 return ((x >> 8) & 0xff) | ((x & 0xff) << 8); 245} 246 247static nokprobe_inline unsigned long byterev_4(unsigned long x) 248{ 249 return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) | 250 ((x & 0xff00) << 8) | ((x & 0xff) << 24); 251} 252 253#ifdef __powerpc64__ 254static nokprobe_inline unsigned long byterev_8(unsigned long x) 255{ 256 return (byterev_4(x) << 32) | byterev_4(x >> 32); 257} 258#endif 259 260static nokprobe_inline void do_byte_reverse(void *ptr, int nb) 261{ 262 switch (nb) { 263 case 2: 264 *(u16 *)ptr = byterev_2(*(u16 *)ptr); 265 break; 266 case 4: 267 *(u32 *)ptr = byterev_4(*(u32 *)ptr); 268 break; 269#ifdef __powerpc64__ 270 case 8: 271 *(unsigned long *)ptr = byterev_8(*(unsigned long *)ptr); 272 break; 273 case 16: { 274 unsigned long *up = (unsigned long *)ptr; 275 unsigned long tmp; 276 tmp = byterev_8(up[0]); 277 up[0] = byterev_8(up[1]); 278 up[1] = tmp; 279 break; 280 } 281 case 32: { 282 unsigned long *up = (unsigned long *)ptr; 283 unsigned long tmp; 284 285 tmp = byterev_8(up[0]); 286 up[0] = byterev_8(up[3]); 287 up[3] = tmp; 288 tmp = byterev_8(up[2]); 289 up[2] = byterev_8(up[1]); 290 up[1] = tmp; 291 break; 292 } 293 294#endif 295 default: 296 WARN_ON_ONCE(1); 297 } 298} 299 300static __always_inline int 301__read_mem_aligned(unsigned long *dest, unsigned long ea, int nb, struct pt_regs *regs) 302{ 303 unsigned long x = 0; 304 305 switch (nb) { 306 case 1: 307 unsafe_get_user(x, (unsigned char __user *)ea, Efault); 308 break; 309 case 2: 310 unsafe_get_user(x, (unsigned short __user *)ea, Efault); 311 break; 312 case 4: 313 unsafe_get_user(x, (unsigned int __user *)ea, Efault); 314 break; 315#ifdef __powerpc64__ 316 case 8: 317 unsafe_get_user(x, (unsigned long __user *)ea, Efault); 318 break; 319#endif 320 } 321 *dest = x; 322 return 0; 323 324Efault: 325 regs->dar = ea; 326 return -EFAULT; 327} 328 329static nokprobe_inline int 330read_mem_aligned(unsigned long *dest, unsigned long ea, int nb, struct pt_regs *regs) 331{ 332 int err; 333 334 if (is_kernel_addr(ea)) 335 return __read_mem_aligned(dest, ea, nb, regs); 336 337 if (user_read_access_begin((void __user *)ea, nb)) { 338 err = __read_mem_aligned(dest, ea, nb, regs); 339 user_read_access_end(); 340 } else { 341 err = -EFAULT; 342 regs->dar = ea; 343 } 344 345 return err; 346} 347 348/* 349 * Copy from userspace to a buffer, using the largest possible 350 * aligned accesses, up to sizeof(long). 351 */ 352static __always_inline int __copy_mem_in(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs) 353{ 354 int c; 355 356 for (; nb > 0; nb -= c) { 357 c = max_align(ea); 358 if (c > nb) 359 c = max_align(nb); 360 switch (c) { 361 case 1: 362 unsafe_get_user(*dest, (u8 __user *)ea, Efault); 363 break; 364 case 2: 365 unsafe_get_user(*(u16 *)dest, (u16 __user *)ea, Efault); 366 break; 367 case 4: 368 unsafe_get_user(*(u32 *)dest, (u32 __user *)ea, Efault); 369 break; 370#ifdef __powerpc64__ 371 case 8: 372 unsafe_get_user(*(u64 *)dest, (u64 __user *)ea, Efault); 373 break; 374#endif 375 } 376 dest += c; 377 ea += c; 378 } 379 return 0; 380 381Efault: 382 regs->dar = ea; 383 return -EFAULT; 384} 385 386static nokprobe_inline int copy_mem_in(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs) 387{ 388 int err; 389 390 if (is_kernel_addr(ea)) 391 return __copy_mem_in(dest, ea, nb, regs); 392 393 if (user_read_access_begin((void __user *)ea, nb)) { 394 err = __copy_mem_in(dest, ea, nb, regs); 395 user_read_access_end(); 396 } else { 397 err = -EFAULT; 398 regs->dar = ea; 399 } 400 401 return err; 402} 403 404static nokprobe_inline int read_mem_unaligned(unsigned long *dest, 405 unsigned long ea, int nb, 406 struct pt_regs *regs) 407{ 408 union { 409 unsigned long ul; 410 u8 b[sizeof(unsigned long)]; 411 } u; 412 int i; 413 int err; 414 415 u.ul = 0; 416 i = IS_BE ? sizeof(unsigned long) - nb : 0; 417 err = copy_mem_in(&u.b[i], ea, nb, regs); 418 if (!err) 419 *dest = u.ul; 420 return err; 421} 422 423/* 424 * Read memory at address ea for nb bytes, return 0 for success 425 * or -EFAULT if an error occurred. N.B. nb must be 1, 2, 4 or 8. 426 * If nb < sizeof(long), the result is right-justified on BE systems. 427 */ 428static int read_mem(unsigned long *dest, unsigned long ea, int nb, 429 struct pt_regs *regs) 430{ 431 if (!address_ok(regs, ea, nb)) 432 return -EFAULT; 433 if ((ea & (nb - 1)) == 0) 434 return read_mem_aligned(dest, ea, nb, regs); 435 return read_mem_unaligned(dest, ea, nb, regs); 436} 437NOKPROBE_SYMBOL(read_mem); 438 439static __always_inline int 440__write_mem_aligned(unsigned long val, unsigned long ea, int nb, struct pt_regs *regs) 441{ 442 switch (nb) { 443 case 1: 444 unsafe_put_user(val, (unsigned char __user *)ea, Efault); 445 break; 446 case 2: 447 unsafe_put_user(val, (unsigned short __user *)ea, Efault); 448 break; 449 case 4: 450 unsafe_put_user(val, (unsigned int __user *)ea, Efault); 451 break; 452#ifdef __powerpc64__ 453 case 8: 454 unsafe_put_user(val, (unsigned long __user *)ea, Efault); 455 break; 456#endif 457 } 458 return 0; 459 460Efault: 461 regs->dar = ea; 462 return -EFAULT; 463} 464 465static nokprobe_inline int 466write_mem_aligned(unsigned long val, unsigned long ea, int nb, struct pt_regs *regs) 467{ 468 int err; 469 470 if (is_kernel_addr(ea)) 471 return __write_mem_aligned(val, ea, nb, regs); 472 473 if (user_write_access_begin((void __user *)ea, nb)) { 474 err = __write_mem_aligned(val, ea, nb, regs); 475 user_write_access_end(); 476 } else { 477 err = -EFAULT; 478 regs->dar = ea; 479 } 480 481 return err; 482} 483 484/* 485 * Copy from a buffer to userspace, using the largest possible 486 * aligned accesses, up to sizeof(long). 487 */ 488static nokprobe_inline int __copy_mem_out(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs) 489{ 490 int c; 491 492 for (; nb > 0; nb -= c) { 493 c = max_align(ea); 494 if (c > nb) 495 c = max_align(nb); 496 switch (c) { 497 case 1: 498 unsafe_put_user(*dest, (u8 __user *)ea, Efault); 499 break; 500 case 2: 501 unsafe_put_user(*(u16 *)dest, (u16 __user *)ea, Efault); 502 break; 503 case 4: 504 unsafe_put_user(*(u32 *)dest, (u32 __user *)ea, Efault); 505 break; 506#ifdef __powerpc64__ 507 case 8: 508 unsafe_put_user(*(u64 *)dest, (u64 __user *)ea, Efault); 509 break; 510#endif 511 } 512 dest += c; 513 ea += c; 514 } 515 return 0; 516 517Efault: 518 regs->dar = ea; 519 return -EFAULT; 520} 521 522static nokprobe_inline int copy_mem_out(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs) 523{ 524 int err; 525 526 if (is_kernel_addr(ea)) 527 return __copy_mem_out(dest, ea, nb, regs); 528 529 if (user_write_access_begin((void __user *)ea, nb)) { 530 err = __copy_mem_out(dest, ea, nb, regs); 531 user_write_access_end(); 532 } else { 533 err = -EFAULT; 534 regs->dar = ea; 535 } 536 537 return err; 538} 539 540static nokprobe_inline int write_mem_unaligned(unsigned long val, 541 unsigned long ea, int nb, 542 struct pt_regs *regs) 543{ 544 union { 545 unsigned long ul; 546 u8 b[sizeof(unsigned long)]; 547 } u; 548 int i; 549 550 u.ul = val; 551 i = IS_BE ? sizeof(unsigned long) - nb : 0; 552 return copy_mem_out(&u.b[i], ea, nb, regs); 553} 554 555/* 556 * Write memory at address ea for nb bytes, return 0 for success 557 * or -EFAULT if an error occurred. N.B. nb must be 1, 2, 4 or 8. 558 */ 559static int write_mem(unsigned long val, unsigned long ea, int nb, 560 struct pt_regs *regs) 561{ 562 if (!address_ok(regs, ea, nb)) 563 return -EFAULT; 564 if ((ea & (nb - 1)) == 0) 565 return write_mem_aligned(val, ea, nb, regs); 566 return write_mem_unaligned(val, ea, nb, regs); 567} 568NOKPROBE_SYMBOL(write_mem); 569 570#ifdef CONFIG_PPC_FPU 571/* 572 * These access either the real FP register or the image in the 573 * thread_struct, depending on regs->msr & MSR_FP. 574 */ 575static int do_fp_load(struct instruction_op *op, unsigned long ea, 576 struct pt_regs *regs, bool cross_endian) 577{ 578 int err, rn, nb; 579 union { 580 int i; 581 unsigned int u; 582 float f; 583 double d[2]; 584 unsigned long l[2]; 585 u8 b[2 * sizeof(double)]; 586 } u; 587 588 nb = GETSIZE(op->type); 589 if (!address_ok(regs, ea, nb)) 590 return -EFAULT; 591 rn = op->reg; 592 err = copy_mem_in(u.b, ea, nb, regs); 593 if (err) 594 return err; 595 if (unlikely(cross_endian)) { 596 do_byte_reverse(u.b, min(nb, 8)); 597 if (nb == 16) 598 do_byte_reverse(&u.b[8], 8); 599 } 600 preempt_disable(); 601 if (nb == 4) { 602 if (op->type & FPCONV) 603 conv_sp_to_dp(&u.f, &u.d[0]); 604 else if (op->type & SIGNEXT) 605 u.l[0] = u.i; 606 else 607 u.l[0] = u.u; 608 } 609 if (regs->msr & MSR_FP) 610 put_fpr(rn, &u.d[0]); 611 else 612 current->thread.TS_FPR(rn) = u.l[0]; 613 if (nb == 16) { 614 /* lfdp */ 615 rn |= 1; 616 if (regs->msr & MSR_FP) 617 put_fpr(rn, &u.d[1]); 618 else 619 current->thread.TS_FPR(rn) = u.l[1]; 620 } 621 preempt_enable(); 622 return 0; 623} 624NOKPROBE_SYMBOL(do_fp_load); 625 626static int do_fp_store(struct instruction_op *op, unsigned long ea, 627 struct pt_regs *regs, bool cross_endian) 628{ 629 int rn, nb; 630 union { 631 unsigned int u; 632 float f; 633 double d[2]; 634 unsigned long l[2]; 635 u8 b[2 * sizeof(double)]; 636 } u; 637 638 nb = GETSIZE(op->type); 639 if (!address_ok(regs, ea, nb)) 640 return -EFAULT; 641 rn = op->reg; 642 preempt_disable(); 643 if (regs->msr & MSR_FP) 644 get_fpr(rn, &u.d[0]); 645 else 646 u.l[0] = current->thread.TS_FPR(rn); 647 if (nb == 4) { 648 if (op->type & FPCONV) 649 conv_dp_to_sp(&u.d[0], &u.f); 650 else 651 u.u = u.l[0]; 652 } 653 if (nb == 16) { 654 rn |= 1; 655 if (regs->msr & MSR_FP) 656 get_fpr(rn, &u.d[1]); 657 else 658 u.l[1] = current->thread.TS_FPR(rn); 659 } 660 preempt_enable(); 661 if (unlikely(cross_endian)) { 662 do_byte_reverse(u.b, min(nb, 8)); 663 if (nb == 16) 664 do_byte_reverse(&u.b[8], 8); 665 } 666 return copy_mem_out(u.b, ea, nb, regs); 667} 668NOKPROBE_SYMBOL(do_fp_store); 669#endif 670 671#ifdef CONFIG_ALTIVEC 672/* For Altivec/VMX, no need to worry about alignment */ 673static nokprobe_inline int do_vec_load(int rn, unsigned long ea, 674 int size, struct pt_regs *regs, 675 bool cross_endian) 676{ 677 int err; 678 union { 679 __vector128 v; 680 u8 b[sizeof(__vector128)]; 681 } u = {}; 682 683 if (!address_ok(regs, ea & ~0xfUL, 16)) 684 return -EFAULT; 685 /* align to multiple of size */ 686 ea &= ~(size - 1); 687 err = copy_mem_in(&u.b[ea & 0xf], ea, size, regs); 688 if (err) 689 return err; 690 if (unlikely(cross_endian)) 691 do_byte_reverse(&u.b[ea & 0xf], size); 692 preempt_disable(); 693 if (regs->msr & MSR_VEC) 694 put_vr(rn, &u.v); 695 else 696 current->thread.vr_state.vr[rn] = u.v; 697 preempt_enable(); 698 return 0; 699} 700 701static nokprobe_inline int do_vec_store(int rn, unsigned long ea, 702 int size, struct pt_regs *regs, 703 bool cross_endian) 704{ 705 union { 706 __vector128 v; 707 u8 b[sizeof(__vector128)]; 708 } u; 709 710 if (!address_ok(regs, ea & ~0xfUL, 16)) 711 return -EFAULT; 712 /* align to multiple of size */ 713 ea &= ~(size - 1); 714 715 preempt_disable(); 716 if (regs->msr & MSR_VEC) 717 get_vr(rn, &u.v); 718 else 719 u.v = current->thread.vr_state.vr[rn]; 720 preempt_enable(); 721 if (unlikely(cross_endian)) 722 do_byte_reverse(&u.b[ea & 0xf], size); 723 return copy_mem_out(&u.b[ea & 0xf], ea, size, regs); 724} 725#endif /* CONFIG_ALTIVEC */ 726 727#ifdef __powerpc64__ 728static nokprobe_inline int emulate_lq(struct pt_regs *regs, unsigned long ea, 729 int reg, bool cross_endian) 730{ 731 int err; 732 733 if (!address_ok(regs, ea, 16)) 734 return -EFAULT; 735 /* if aligned, should be atomic */ 736 if ((ea & 0xf) == 0) { 737 err = do_lq(ea, ®s->gpr[reg]); 738 } else { 739 err = read_mem(®s->gpr[reg + IS_LE], ea, 8, regs); 740 if (!err) 741 err = read_mem(®s->gpr[reg + IS_BE], ea + 8, 8, regs); 742 } 743 if (!err && unlikely(cross_endian)) 744 do_byte_reverse(®s->gpr[reg], 16); 745 return err; 746} 747 748static nokprobe_inline int emulate_stq(struct pt_regs *regs, unsigned long ea, 749 int reg, bool cross_endian) 750{ 751 int err; 752 unsigned long vals[2]; 753 754 if (!address_ok(regs, ea, 16)) 755 return -EFAULT; 756 vals[0] = regs->gpr[reg]; 757 vals[1] = regs->gpr[reg + 1]; 758 if (unlikely(cross_endian)) 759 do_byte_reverse(vals, 16); 760 761 /* if aligned, should be atomic */ 762 if ((ea & 0xf) == 0) 763 return do_stq(ea, vals[0], vals[1]); 764 765 err = write_mem(vals[IS_LE], ea, 8, regs); 766 if (!err) 767 err = write_mem(vals[IS_BE], ea + 8, 8, regs); 768 return err; 769} 770#endif /* __powerpc64 */ 771 772#ifdef CONFIG_VSX 773void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg, 774 const void *mem, bool rev) 775{ 776 int size, read_size; 777 int i, j; 778 const unsigned int *wp; 779 const unsigned short *hp; 780 const unsigned char *bp; 781 782 size = GETSIZE(op->type); 783 reg->d[0] = reg->d[1] = 0; 784 785 switch (op->element_size) { 786 case 32: 787 /* [p]lxvp[x] */ 788 case 16: 789 /* whole vector; lxv[x] or lxvl[l] */ 790 if (size == 0) 791 break; 792 memcpy(reg, mem, size); 793 if (IS_LE && (op->vsx_flags & VSX_LDLEFT)) 794 rev = !rev; 795 if (rev) 796 do_byte_reverse(reg, size); 797 break; 798 case 8: 799 /* scalar loads, lxvd2x, lxvdsx */ 800 read_size = (size >= 8) ? 8 : size; 801 i = IS_LE ? 8 : 8 - read_size; 802 memcpy(®->b[i], mem, read_size); 803 if (rev) 804 do_byte_reverse(®->b[i], 8); 805 if (size < 8) { 806 if (op->type & SIGNEXT) { 807 /* size == 4 is the only case here */ 808 reg->d[IS_LE] = (signed int) reg->d[IS_LE]; 809 } else if (op->vsx_flags & VSX_FPCONV) { 810 preempt_disable(); 811 conv_sp_to_dp(®->fp[1 + IS_LE], 812 ®->dp[IS_LE]); 813 preempt_enable(); 814 } 815 } else { 816 if (size == 16) { 817 unsigned long v = *(unsigned long *)(mem + 8); 818 reg->d[IS_BE] = !rev ? v : byterev_8(v); 819 } else if (op->vsx_flags & VSX_SPLAT) 820 reg->d[IS_BE] = reg->d[IS_LE]; 821 } 822 break; 823 case 4: 824 /* lxvw4x, lxvwsx */ 825 wp = mem; 826 for (j = 0; j < size / 4; ++j) { 827 i = IS_LE ? 3 - j : j; 828 reg->w[i] = !rev ? *wp++ : byterev_4(*wp++); 829 } 830 if (op->vsx_flags & VSX_SPLAT) { 831 u32 val = reg->w[IS_LE ? 3 : 0]; 832 for (; j < 4; ++j) { 833 i = IS_LE ? 3 - j : j; 834 reg->w[i] = val; 835 } 836 } 837 break; 838 case 2: 839 /* lxvh8x */ 840 hp = mem; 841 for (j = 0; j < size / 2; ++j) { 842 i = IS_LE ? 7 - j : j; 843 reg->h[i] = !rev ? *hp++ : byterev_2(*hp++); 844 } 845 break; 846 case 1: 847 /* lxvb16x */ 848 bp = mem; 849 for (j = 0; j < size; ++j) { 850 i = IS_LE ? 15 - j : j; 851 reg->b[i] = *bp++; 852 } 853 break; 854 } 855} 856EXPORT_SYMBOL_GPL(emulate_vsx_load); 857NOKPROBE_SYMBOL(emulate_vsx_load); 858 859void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg, 860 void *mem, bool rev) 861{ 862 int size, write_size; 863 int i, j; 864 union vsx_reg buf; 865 unsigned int *wp; 866 unsigned short *hp; 867 unsigned char *bp; 868 869 size = GETSIZE(op->type); 870 871 switch (op->element_size) { 872 case 32: 873 /* [p]stxvp[x] */ 874 if (size == 0) 875 break; 876 if (rev) { 877 /* reverse 32 bytes */ 878 union vsx_reg buf32[2]; 879 buf32[0].d[0] = byterev_8(reg[1].d[1]); 880 buf32[0].d[1] = byterev_8(reg[1].d[0]); 881 buf32[1].d[0] = byterev_8(reg[0].d[1]); 882 buf32[1].d[1] = byterev_8(reg[0].d[0]); 883 memcpy(mem, buf32, size); 884 } else { 885 memcpy(mem, reg, size); 886 } 887 break; 888 case 16: 889 /* stxv, stxvx, stxvl, stxvll */ 890 if (size == 0) 891 break; 892 if (IS_LE && (op->vsx_flags & VSX_LDLEFT)) 893 rev = !rev; 894 if (rev) { 895 /* reverse 16 bytes */ 896 buf.d[0] = byterev_8(reg->d[1]); 897 buf.d[1] = byterev_8(reg->d[0]); 898 reg = &buf; 899 } 900 memcpy(mem, reg, size); 901 break; 902 case 8: 903 /* scalar stores, stxvd2x */ 904 write_size = (size >= 8) ? 8 : size; 905 i = IS_LE ? 8 : 8 - write_size; 906 if (size < 8 && op->vsx_flags & VSX_FPCONV) { 907 buf.d[0] = buf.d[1] = 0; 908 preempt_disable(); 909 conv_dp_to_sp(®->dp[IS_LE], &buf.fp[1 + IS_LE]); 910 preempt_enable(); 911 reg = &buf; 912 } 913 memcpy(mem, ®->b[i], write_size); 914 if (size == 16) 915 memcpy(mem + 8, ®->d[IS_BE], 8); 916 if (unlikely(rev)) { 917 do_byte_reverse(mem, write_size); 918 if (size == 16) 919 do_byte_reverse(mem + 8, 8); 920 } 921 break; 922 case 4: 923 /* stxvw4x */ 924 wp = mem; 925 for (j = 0; j < size / 4; ++j) { 926 i = IS_LE ? 3 - j : j; 927 *wp++ = !rev ? reg->w[i] : byterev_4(reg->w[i]); 928 } 929 break; 930 case 2: 931 /* stxvh8x */ 932 hp = mem; 933 for (j = 0; j < size / 2; ++j) { 934 i = IS_LE ? 7 - j : j; 935 *hp++ = !rev ? reg->h[i] : byterev_2(reg->h[i]); 936 } 937 break; 938 case 1: 939 /* stvxb16x */ 940 bp = mem; 941 for (j = 0; j < size; ++j) { 942 i = IS_LE ? 15 - j : j; 943 *bp++ = reg->b[i]; 944 } 945 break; 946 } 947} 948EXPORT_SYMBOL_GPL(emulate_vsx_store); 949NOKPROBE_SYMBOL(emulate_vsx_store); 950 951static nokprobe_inline int do_vsx_load(struct instruction_op *op, 952 unsigned long ea, struct pt_regs *regs, 953 bool cross_endian) 954{ 955 int reg = op->reg; 956 int i, j, nr_vsx_regs; 957 u8 mem[32]; 958 union vsx_reg buf[2]; 959 int size = GETSIZE(op->type); 960 961 if (!address_ok(regs, ea, size) || copy_mem_in(mem, ea, size, regs)) 962 return -EFAULT; 963 964 nr_vsx_regs = max(1ul, size / sizeof(__vector128)); 965 emulate_vsx_load(op, buf, mem, cross_endian); 966 preempt_disable(); 967 if (reg < 32) { 968 /* FP regs + extensions */ 969 if (regs->msr & MSR_FP) { 970 for (i = 0; i < nr_vsx_regs; i++) { 971 j = IS_LE ? nr_vsx_regs - i - 1 : i; 972 load_vsrn(reg + i, &buf[j].v); 973 } 974 } else { 975 for (i = 0; i < nr_vsx_regs; i++) { 976 j = IS_LE ? nr_vsx_regs - i - 1 : i; 977 current->thread.fp_state.fpr[reg + i][0] = buf[j].d[0]; 978 current->thread.fp_state.fpr[reg + i][1] = buf[j].d[1]; 979 } 980 } 981 } else { 982 if (regs->msr & MSR_VEC) { 983 for (i = 0; i < nr_vsx_regs; i++) { 984 j = IS_LE ? nr_vsx_regs - i - 1 : i; 985 load_vsrn(reg + i, &buf[j].v); 986 } 987 } else { 988 for (i = 0; i < nr_vsx_regs; i++) { 989 j = IS_LE ? nr_vsx_regs - i - 1 : i; 990 current->thread.vr_state.vr[reg - 32 + i] = buf[j].v; 991 } 992 } 993 } 994 preempt_enable(); 995 return 0; 996} 997 998static nokprobe_inline int do_vsx_store(struct instruction_op *op, 999 unsigned long ea, struct pt_regs *regs, 1000 bool cross_endian) 1001{ 1002 int reg = op->reg; 1003 int i, j, nr_vsx_regs; 1004 u8 mem[32]; 1005 union vsx_reg buf[2]; 1006 int size = GETSIZE(op->type); 1007 1008 if (!address_ok(regs, ea, size)) 1009 return -EFAULT; 1010 1011 nr_vsx_regs = max(1ul, size / sizeof(__vector128)); 1012 preempt_disable(); 1013 if (reg < 32) { 1014 /* FP regs + extensions */ 1015 if (regs->msr & MSR_FP) { 1016 for (i = 0; i < nr_vsx_regs; i++) { 1017 j = IS_LE ? nr_vsx_regs - i - 1 : i; 1018 store_vsrn(reg + i, &buf[j].v); 1019 } 1020 } else { 1021 for (i = 0; i < nr_vsx_regs; i++) { 1022 j = IS_LE ? nr_vsx_regs - i - 1 : i; 1023 buf[j].d[0] = current->thread.fp_state.fpr[reg + i][0]; 1024 buf[j].d[1] = current->thread.fp_state.fpr[reg + i][1]; 1025 } 1026 } 1027 } else { 1028 if (regs->msr & MSR_VEC) { 1029 for (i = 0; i < nr_vsx_regs; i++) { 1030 j = IS_LE ? nr_vsx_regs - i - 1 : i; 1031 store_vsrn(reg + i, &buf[j].v); 1032 } 1033 } else { 1034 for (i = 0; i < nr_vsx_regs; i++) { 1035 j = IS_LE ? nr_vsx_regs - i - 1 : i; 1036 buf[j].v = current->thread.vr_state.vr[reg - 32 + i]; 1037 } 1038 } 1039 } 1040 preempt_enable(); 1041 emulate_vsx_store(op, buf, mem, cross_endian); 1042 return copy_mem_out(mem, ea, size, regs); 1043} 1044#endif /* CONFIG_VSX */ 1045 1046static int __emulate_dcbz(unsigned long ea) 1047{ 1048 unsigned long i; 1049 unsigned long size = l1_dcache_bytes(); 1050 1051 for (i = 0; i < size; i += sizeof(long)) 1052 unsafe_put_user(0, (unsigned long __user *)(ea + i), Efault); 1053 1054 return 0; 1055 1056Efault: 1057 return -EFAULT; 1058} 1059 1060int emulate_dcbz(unsigned long ea, struct pt_regs *regs) 1061{ 1062 int err; 1063 unsigned long size = l1_dcache_bytes(); 1064 1065 ea = truncate_if_32bit(regs->msr, ea); 1066 ea &= ~(size - 1); 1067 if (!address_ok(regs, ea, size)) 1068 return -EFAULT; 1069 1070 if (is_kernel_addr(ea)) { 1071 err = __emulate_dcbz(ea); 1072 } else if (user_write_access_begin((void __user *)ea, size)) { 1073 err = __emulate_dcbz(ea); 1074 user_write_access_end(); 1075 } else { 1076 err = -EFAULT; 1077 } 1078 1079 if (err) 1080 regs->dar = ea; 1081 1082 1083 return err; 1084} 1085NOKPROBE_SYMBOL(emulate_dcbz); 1086 1087#define __put_user_asmx(x, addr, err, op, cr) \ 1088 __asm__ __volatile__( \ 1089 ".machine push\n" \ 1090 ".machine power8\n" \ 1091 "1: " op " %2,0,%3\n" \ 1092 ".machine pop\n" \ 1093 " mfcr %1\n" \ 1094 "2:\n" \ 1095 ".section .fixup,\"ax\"\n" \ 1096 "3: li %0,%4\n" \ 1097 " b 2b\n" \ 1098 ".previous\n" \ 1099 EX_TABLE(1b, 3b) \ 1100 : "=r" (err), "=r" (cr) \ 1101 : "r" (x), "r" (addr), "i" (-EFAULT), "0" (err)) 1102 1103#define __get_user_asmx(x, addr, err, op) \ 1104 __asm__ __volatile__( \ 1105 ".machine push\n" \ 1106 ".machine power8\n" \ 1107 "1: "op" %1,0,%2\n" \ 1108 ".machine pop\n" \ 1109 "2:\n" \ 1110 ".section .fixup,\"ax\"\n" \ 1111 "3: li %0,%3\n" \ 1112 " b 2b\n" \ 1113 ".previous\n" \ 1114 EX_TABLE(1b, 3b) \ 1115 : "=r" (err), "=r" (x) \ 1116 : "r" (addr), "i" (-EFAULT), "0" (err)) 1117 1118#define __cacheop_user_asmx(addr, err, op) \ 1119 __asm__ __volatile__( \ 1120 "1: "op" 0,%1\n" \ 1121 "2:\n" \ 1122 ".section .fixup,\"ax\"\n" \ 1123 "3: li %0,%3\n" \ 1124 " b 2b\n" \ 1125 ".previous\n" \ 1126 EX_TABLE(1b, 3b) \ 1127 : "=r" (err) \ 1128 : "r" (addr), "i" (-EFAULT), "0" (err)) 1129 1130static nokprobe_inline void set_cr0(const struct pt_regs *regs, 1131 struct instruction_op *op) 1132{ 1133 long val = op->val; 1134 1135 op->type |= SETCC; 1136 op->ccval = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000); 1137 if (!(regs->msr & MSR_64BIT)) 1138 val = (int) val; 1139 if (val < 0) 1140 op->ccval |= 0x80000000; 1141 else if (val > 0) 1142 op->ccval |= 0x40000000; 1143 else 1144 op->ccval |= 0x20000000; 1145} 1146 1147static nokprobe_inline void set_ca32(struct instruction_op *op, bool val) 1148{ 1149 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1150 if (val) 1151 op->xerval |= XER_CA32; 1152 else 1153 op->xerval &= ~XER_CA32; 1154 } 1155} 1156 1157static nokprobe_inline void add_with_carry(const struct pt_regs *regs, 1158 struct instruction_op *op, int rd, 1159 unsigned long val1, unsigned long val2, 1160 unsigned long carry_in) 1161{ 1162 unsigned long val = val1 + val2; 1163 1164 if (carry_in) 1165 ++val; 1166 op->type = COMPUTE | SETREG | SETXER; 1167 op->reg = rd; 1168 op->val = val; 1169 val = truncate_if_32bit(regs->msr, val); 1170 val1 = truncate_if_32bit(regs->msr, val1); 1171 op->xerval = regs->xer; 1172 if (val < val1 || (carry_in && val == val1)) 1173 op->xerval |= XER_CA; 1174 else 1175 op->xerval &= ~XER_CA; 1176 1177 set_ca32(op, (unsigned int)val < (unsigned int)val1 || 1178 (carry_in && (unsigned int)val == (unsigned int)val1)); 1179} 1180 1181static nokprobe_inline void do_cmp_signed(const struct pt_regs *regs, 1182 struct instruction_op *op, 1183 long v1, long v2, int crfld) 1184{ 1185 unsigned int crval, shift; 1186 1187 op->type = COMPUTE | SETCC; 1188 crval = (regs->xer >> 31) & 1; /* get SO bit */ 1189 if (v1 < v2) 1190 crval |= 8; 1191 else if (v1 > v2) 1192 crval |= 4; 1193 else 1194 crval |= 2; 1195 shift = (7 - crfld) * 4; 1196 op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift); 1197} 1198 1199static nokprobe_inline void do_cmp_unsigned(const struct pt_regs *regs, 1200 struct instruction_op *op, 1201 unsigned long v1, 1202 unsigned long v2, int crfld) 1203{ 1204 unsigned int crval, shift; 1205 1206 op->type = COMPUTE | SETCC; 1207 crval = (regs->xer >> 31) & 1; /* get SO bit */ 1208 if (v1 < v2) 1209 crval |= 8; 1210 else if (v1 > v2) 1211 crval |= 4; 1212 else 1213 crval |= 2; 1214 shift = (7 - crfld) * 4; 1215 op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift); 1216} 1217 1218static nokprobe_inline void do_cmpb(const struct pt_regs *regs, 1219 struct instruction_op *op, 1220 unsigned long v1, unsigned long v2) 1221{ 1222 unsigned long long out_val, mask; 1223 int i; 1224 1225 out_val = 0; 1226 for (i = 0; i < 8; i++) { 1227 mask = 0xffUL << (i * 8); 1228 if ((v1 & mask) == (v2 & mask)) 1229 out_val |= mask; 1230 } 1231 op->val = out_val; 1232} 1233 1234/* 1235 * The size parameter is used to adjust the equivalent popcnt instruction. 1236 * popcntb = 8, popcntw = 32, popcntd = 64 1237 */ 1238static nokprobe_inline void do_popcnt(const struct pt_regs *regs, 1239 struct instruction_op *op, 1240 unsigned long v1, int size) 1241{ 1242 unsigned long long out = v1; 1243 1244 out -= (out >> 1) & 0x5555555555555555ULL; 1245 out = (0x3333333333333333ULL & out) + 1246 (0x3333333333333333ULL & (out >> 2)); 1247 out = (out + (out >> 4)) & 0x0f0f0f0f0f0f0f0fULL; 1248 1249 if (size == 8) { /* popcntb */ 1250 op->val = out; 1251 return; 1252 } 1253 out += out >> 8; 1254 out += out >> 16; 1255 if (size == 32) { /* popcntw */ 1256 op->val = out & 0x0000003f0000003fULL; 1257 return; 1258 } 1259 1260 out = (out + (out >> 32)) & 0x7f; 1261 op->val = out; /* popcntd */ 1262} 1263 1264#ifdef CONFIG_PPC64 1265static nokprobe_inline void do_bpermd(const struct pt_regs *regs, 1266 struct instruction_op *op, 1267 unsigned long v1, unsigned long v2) 1268{ 1269 unsigned char perm, idx; 1270 unsigned int i; 1271 1272 perm = 0; 1273 for (i = 0; i < 8; i++) { 1274 idx = (v1 >> (i * 8)) & 0xff; 1275 if (idx < 64) 1276 if (v2 & PPC_BIT(idx)) 1277 perm |= 1 << i; 1278 } 1279 op->val = perm; 1280} 1281#endif /* CONFIG_PPC64 */ 1282/* 1283 * The size parameter adjusts the equivalent prty instruction. 1284 * prtyw = 32, prtyd = 64 1285 */ 1286static nokprobe_inline void do_prty(const struct pt_regs *regs, 1287 struct instruction_op *op, 1288 unsigned long v, int size) 1289{ 1290 unsigned long long res = v ^ (v >> 8); 1291 1292 res ^= res >> 16; 1293 if (size == 32) { /* prtyw */ 1294 op->val = res & 0x0000000100000001ULL; 1295 return; 1296 } 1297 1298 res ^= res >> 32; 1299 op->val = res & 1; /*prtyd */ 1300} 1301 1302static nokprobe_inline int trap_compare(long v1, long v2) 1303{ 1304 int ret = 0; 1305 1306 if (v1 < v2) 1307 ret |= 0x10; 1308 else if (v1 > v2) 1309 ret |= 0x08; 1310 else 1311 ret |= 0x04; 1312 if ((unsigned long)v1 < (unsigned long)v2) 1313 ret |= 0x02; 1314 else if ((unsigned long)v1 > (unsigned long)v2) 1315 ret |= 0x01; 1316 return ret; 1317} 1318 1319/* 1320 * Elements of 32-bit rotate and mask instructions. 1321 */ 1322#define MASK32(mb, me) ((0xffffffffUL >> (mb)) + \ 1323 ((signed long)-0x80000000L >> (me)) + ((me) >= (mb))) 1324#ifdef __powerpc64__ 1325#define MASK64_L(mb) (~0UL >> (mb)) 1326#define MASK64_R(me) ((signed long)-0x8000000000000000L >> (me)) 1327#define MASK64(mb, me) (MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb))) 1328#define DATA32(x) (((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32)) 1329#else 1330#define DATA32(x) (x) 1331#endif 1332#define ROTATE(x, n) ((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x)) 1333 1334/* 1335 * Decode an instruction, and return information about it in *op 1336 * without changing *regs. 1337 * Integer arithmetic and logical instructions, branches, and barrier 1338 * instructions can be emulated just using the information in *op. 1339 * 1340 * Return value is 1 if the instruction can be emulated just by 1341 * updating *regs with the information in *op, -1 if we need the 1342 * GPRs but *regs doesn't contain the full register set, or 0 1343 * otherwise. 1344 */ 1345int analyse_instr(struct instruction_op *op, const struct pt_regs *regs, 1346 ppc_inst_t instr) 1347{ 1348#ifdef CONFIG_PPC64 1349 unsigned int suffixopcode, prefixtype, prefix_r; 1350#endif 1351 unsigned int opcode, ra, rb, rc, rd, spr, u; 1352 unsigned long int imm; 1353 unsigned long int val, val2; 1354 unsigned int mb, me, sh; 1355 unsigned int word, suffix; 1356 long ival; 1357 1358 word = ppc_inst_val(instr); 1359 suffix = ppc_inst_suffix(instr); 1360 1361 op->type = COMPUTE; 1362 1363 opcode = ppc_inst_primary_opcode(instr); 1364 switch (opcode) { 1365 case 16: /* bc */ 1366 op->type = BRANCH; 1367 imm = (signed short)(word & 0xfffc); 1368 if ((word & 2) == 0) 1369 imm += regs->nip; 1370 op->val = truncate_if_32bit(regs->msr, imm); 1371 if (word & 1) 1372 op->type |= SETLK; 1373 if (branch_taken(word, regs, op)) 1374 op->type |= BRTAKEN; 1375 return 1; 1376 case 17: /* sc */ 1377 if ((word & 0xfe2) == 2) 1378 op->type = SYSCALL; 1379 else if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && 1380 (word & 0xfe3) == 1) { /* scv */ 1381 op->type = SYSCALL_VECTORED_0; 1382 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1383 goto unknown_opcode; 1384 } else 1385 op->type = UNKNOWN; 1386 return 0; 1387 case 18: /* b */ 1388 op->type = BRANCH | BRTAKEN; 1389 imm = word & 0x03fffffc; 1390 if (imm & 0x02000000) 1391 imm -= 0x04000000; 1392 if ((word & 2) == 0) 1393 imm += regs->nip; 1394 op->val = truncate_if_32bit(regs->msr, imm); 1395 if (word & 1) 1396 op->type |= SETLK; 1397 return 1; 1398 case 19: 1399 switch ((word >> 1) & 0x3ff) { 1400 case 0: /* mcrf */ 1401 op->type = COMPUTE + SETCC; 1402 rd = 7 - ((word >> 23) & 0x7); 1403 ra = 7 - ((word >> 18) & 0x7); 1404 rd *= 4; 1405 ra *= 4; 1406 val = (regs->ccr >> ra) & 0xf; 1407 op->ccval = (regs->ccr & ~(0xfUL << rd)) | (val << rd); 1408 return 1; 1409 1410 case 16: /* bclr */ 1411 case 528: /* bcctr */ 1412 op->type = BRANCH; 1413 imm = (word & 0x400)? regs->ctr: regs->link; 1414 op->val = truncate_if_32bit(regs->msr, imm); 1415 if (word & 1) 1416 op->type |= SETLK; 1417 if (branch_taken(word, regs, op)) 1418 op->type |= BRTAKEN; 1419 return 1; 1420 1421 case 18: /* rfid, scary */ 1422 if (regs->msr & MSR_PR) 1423 goto priv; 1424 op->type = RFI; 1425 return 0; 1426 1427 case 150: /* isync */ 1428 op->type = BARRIER | BARRIER_ISYNC; 1429 return 1; 1430 1431 case 33: /* crnor */ 1432 case 129: /* crandc */ 1433 case 193: /* crxor */ 1434 case 225: /* crnand */ 1435 case 257: /* crand */ 1436 case 289: /* creqv */ 1437 case 417: /* crorc */ 1438 case 449: /* cror */ 1439 op->type = COMPUTE + SETCC; 1440 ra = (word >> 16) & 0x1f; 1441 rb = (word >> 11) & 0x1f; 1442 rd = (word >> 21) & 0x1f; 1443 ra = (regs->ccr >> (31 - ra)) & 1; 1444 rb = (regs->ccr >> (31 - rb)) & 1; 1445 val = (word >> (6 + ra * 2 + rb)) & 1; 1446 op->ccval = (regs->ccr & ~(1UL << (31 - rd))) | 1447 (val << (31 - rd)); 1448 return 1; 1449 } 1450 break; 1451 case 31: 1452 switch ((word >> 1) & 0x3ff) { 1453 case 598: /* sync */ 1454 op->type = BARRIER + BARRIER_SYNC; 1455#ifdef __powerpc64__ 1456 switch ((word >> 21) & 3) { 1457 case 1: /* lwsync */ 1458 op->type = BARRIER + BARRIER_LWSYNC; 1459 break; 1460 case 2: /* ptesync */ 1461 op->type = BARRIER + BARRIER_PTESYNC; 1462 break; 1463 } 1464#endif 1465 return 1; 1466 1467 case 854: /* eieio */ 1468 op->type = BARRIER + BARRIER_EIEIO; 1469 return 1; 1470 } 1471 break; 1472 } 1473 1474 rd = (word >> 21) & 0x1f; 1475 ra = (word >> 16) & 0x1f; 1476 rb = (word >> 11) & 0x1f; 1477 rc = (word >> 6) & 0x1f; 1478 1479 switch (opcode) { 1480#ifdef __powerpc64__ 1481 case 1: 1482 if (!cpu_has_feature(CPU_FTR_ARCH_31)) 1483 goto unknown_opcode; 1484 1485 prefix_r = GET_PREFIX_R(word); 1486 ra = GET_PREFIX_RA(suffix); 1487 rd = (suffix >> 21) & 0x1f; 1488 op->reg = rd; 1489 op->val = regs->gpr[rd]; 1490 suffixopcode = get_op(suffix); 1491 prefixtype = (word >> 24) & 0x3; 1492 switch (prefixtype) { 1493 case 2: 1494 if (prefix_r && ra) 1495 return 0; 1496 switch (suffixopcode) { 1497 case 14: /* paddi */ 1498 op->type = COMPUTE | PREFIXED; 1499 op->val = mlsd_8lsd_ea(word, suffix, regs); 1500 goto compute_done; 1501 } 1502 } 1503 break; 1504 case 2: /* tdi */ 1505 if (rd & trap_compare(regs->gpr[ra], (short) word)) 1506 goto trap; 1507 return 1; 1508#endif 1509 case 3: /* twi */ 1510 if (rd & trap_compare((int)regs->gpr[ra], (short) word)) 1511 goto trap; 1512 return 1; 1513 1514#ifdef __powerpc64__ 1515 case 4: 1516 /* 1517 * There are very many instructions with this primary opcode 1518 * introduced in the ISA as early as v2.03. However, the ones 1519 * we currently emulate were all introduced with ISA 3.0 1520 */ 1521 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1522 goto unknown_opcode; 1523 1524 switch (word & 0x3f) { 1525 case 48: /* maddhd */ 1526 asm volatile(PPC_MADDHD(%0, %1, %2, %3) : 1527 "=r" (op->val) : "r" (regs->gpr[ra]), 1528 "r" (regs->gpr[rb]), "r" (regs->gpr[rc])); 1529 goto compute_done; 1530 1531 case 49: /* maddhdu */ 1532 asm volatile(PPC_MADDHDU(%0, %1, %2, %3) : 1533 "=r" (op->val) : "r" (regs->gpr[ra]), 1534 "r" (regs->gpr[rb]), "r" (regs->gpr[rc])); 1535 goto compute_done; 1536 1537 case 51: /* maddld */ 1538 asm volatile(PPC_MADDLD(%0, %1, %2, %3) : 1539 "=r" (op->val) : "r" (regs->gpr[ra]), 1540 "r" (regs->gpr[rb]), "r" (regs->gpr[rc])); 1541 goto compute_done; 1542 } 1543 1544 /* 1545 * There are other instructions from ISA 3.0 with the same 1546 * primary opcode which do not have emulation support yet. 1547 */ 1548 goto unknown_opcode; 1549#endif 1550 1551 case 7: /* mulli */ 1552 op->val = regs->gpr[ra] * (short) word; 1553 goto compute_done; 1554 1555 case 8: /* subfic */ 1556 imm = (short) word; 1557 add_with_carry(regs, op, rd, ~regs->gpr[ra], imm, 1); 1558 return 1; 1559 1560 case 10: /* cmpli */ 1561 imm = (unsigned short) word; 1562 val = regs->gpr[ra]; 1563#ifdef __powerpc64__ 1564 if ((rd & 1) == 0) 1565 val = (unsigned int) val; 1566#endif 1567 do_cmp_unsigned(regs, op, val, imm, rd >> 2); 1568 return 1; 1569 1570 case 11: /* cmpi */ 1571 imm = (short) word; 1572 val = regs->gpr[ra]; 1573#ifdef __powerpc64__ 1574 if ((rd & 1) == 0) 1575 val = (int) val; 1576#endif 1577 do_cmp_signed(regs, op, val, imm, rd >> 2); 1578 return 1; 1579 1580 case 12: /* addic */ 1581 imm = (short) word; 1582 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0); 1583 return 1; 1584 1585 case 13: /* addic. */ 1586 imm = (short) word; 1587 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0); 1588 set_cr0(regs, op); 1589 return 1; 1590 1591 case 14: /* addi */ 1592 imm = (short) word; 1593 if (ra) 1594 imm += regs->gpr[ra]; 1595 op->val = imm; 1596 goto compute_done; 1597 1598 case 15: /* addis */ 1599 imm = ((short) word) << 16; 1600 if (ra) 1601 imm += regs->gpr[ra]; 1602 op->val = imm; 1603 goto compute_done; 1604 1605 case 19: 1606 if (((word >> 1) & 0x1f) == 2) { 1607 /* addpcis */ 1608 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1609 goto unknown_opcode; 1610 imm = (short) (word & 0xffc1); /* d0 + d2 fields */ 1611 imm |= (word >> 15) & 0x3e; /* d1 field */ 1612 op->val = regs->nip + (imm << 16) + 4; 1613 goto compute_done; 1614 } 1615 op->type = UNKNOWN; 1616 return 0; 1617 1618 case 20: /* rlwimi */ 1619 mb = (word >> 6) & 0x1f; 1620 me = (word >> 1) & 0x1f; 1621 val = DATA32(regs->gpr[rd]); 1622 imm = MASK32(mb, me); 1623 op->val = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm); 1624 goto logical_done; 1625 1626 case 21: /* rlwinm */ 1627 mb = (word >> 6) & 0x1f; 1628 me = (word >> 1) & 0x1f; 1629 val = DATA32(regs->gpr[rd]); 1630 op->val = ROTATE(val, rb) & MASK32(mb, me); 1631 goto logical_done; 1632 1633 case 23: /* rlwnm */ 1634 mb = (word >> 6) & 0x1f; 1635 me = (word >> 1) & 0x1f; 1636 rb = regs->gpr[rb] & 0x1f; 1637 val = DATA32(regs->gpr[rd]); 1638 op->val = ROTATE(val, rb) & MASK32(mb, me); 1639 goto logical_done; 1640 1641 case 24: /* ori */ 1642 op->val = regs->gpr[rd] | (unsigned short) word; 1643 goto logical_done_nocc; 1644 1645 case 25: /* oris */ 1646 imm = (unsigned short) word; 1647 op->val = regs->gpr[rd] | (imm << 16); 1648 goto logical_done_nocc; 1649 1650 case 26: /* xori */ 1651 op->val = regs->gpr[rd] ^ (unsigned short) word; 1652 goto logical_done_nocc; 1653 1654 case 27: /* xoris */ 1655 imm = (unsigned short) word; 1656 op->val = regs->gpr[rd] ^ (imm << 16); 1657 goto logical_done_nocc; 1658 1659 case 28: /* andi. */ 1660 op->val = regs->gpr[rd] & (unsigned short) word; 1661 set_cr0(regs, op); 1662 goto logical_done_nocc; 1663 1664 case 29: /* andis. */ 1665 imm = (unsigned short) word; 1666 op->val = regs->gpr[rd] & (imm << 16); 1667 set_cr0(regs, op); 1668 goto logical_done_nocc; 1669 1670#ifdef __powerpc64__ 1671 case 30: /* rld* */ 1672 mb = ((word >> 6) & 0x1f) | (word & 0x20); 1673 val = regs->gpr[rd]; 1674 if ((word & 0x10) == 0) { 1675 sh = rb | ((word & 2) << 4); 1676 val = ROTATE(val, sh); 1677 switch ((word >> 2) & 3) { 1678 case 0: /* rldicl */ 1679 val &= MASK64_L(mb); 1680 break; 1681 case 1: /* rldicr */ 1682 val &= MASK64_R(mb); 1683 break; 1684 case 2: /* rldic */ 1685 val &= MASK64(mb, 63 - sh); 1686 break; 1687 case 3: /* rldimi */ 1688 imm = MASK64(mb, 63 - sh); 1689 val = (regs->gpr[ra] & ~imm) | 1690 (val & imm); 1691 } 1692 op->val = val; 1693 goto logical_done; 1694 } else { 1695 sh = regs->gpr[rb] & 0x3f; 1696 val = ROTATE(val, sh); 1697 switch ((word >> 1) & 7) { 1698 case 0: /* rldcl */ 1699 op->val = val & MASK64_L(mb); 1700 goto logical_done; 1701 case 1: /* rldcr */ 1702 op->val = val & MASK64_R(mb); 1703 goto logical_done; 1704 } 1705 } 1706#endif 1707 op->type = UNKNOWN; /* illegal instruction */ 1708 return 0; 1709 1710 case 31: 1711 /* isel occupies 32 minor opcodes */ 1712 if (((word >> 1) & 0x1f) == 15) { 1713 mb = (word >> 6) & 0x1f; /* bc field */ 1714 val = (regs->ccr >> (31 - mb)) & 1; 1715 val2 = (ra) ? regs->gpr[ra] : 0; 1716 1717 op->val = (val) ? val2 : regs->gpr[rb]; 1718 goto compute_done; 1719 } 1720 1721 switch ((word >> 1) & 0x3ff) { 1722 case 4: /* tw */ 1723 if (rd == 0x1f || 1724 (rd & trap_compare((int)regs->gpr[ra], 1725 (int)regs->gpr[rb]))) 1726 goto trap; 1727 return 1; 1728#ifdef __powerpc64__ 1729 case 68: /* td */ 1730 if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb])) 1731 goto trap; 1732 return 1; 1733#endif 1734 case 83: /* mfmsr */ 1735 if (regs->msr & MSR_PR) 1736 goto priv; 1737 op->type = MFMSR; 1738 op->reg = rd; 1739 return 0; 1740 case 146: /* mtmsr */ 1741 if (regs->msr & MSR_PR) 1742 goto priv; 1743 op->type = MTMSR; 1744 op->reg = rd; 1745 op->val = 0xffffffff & ~(MSR_ME | MSR_LE); 1746 return 0; 1747#ifdef CONFIG_PPC64 1748 case 178: /* mtmsrd */ 1749 if (regs->msr & MSR_PR) 1750 goto priv; 1751 op->type = MTMSR; 1752 op->reg = rd; 1753 /* only MSR_EE and MSR_RI get changed if bit 15 set */ 1754 /* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */ 1755 imm = (word & 0x10000)? 0x8002: 0xefffffffffffeffeUL; 1756 op->val = imm; 1757 return 0; 1758#endif 1759 1760 case 19: /* mfcr */ 1761 imm = 0xffffffffUL; 1762 if ((word >> 20) & 1) { 1763 imm = 0xf0000000UL; 1764 for (sh = 0; sh < 8; ++sh) { 1765 if (word & (0x80000 >> sh)) 1766 break; 1767 imm >>= 4; 1768 } 1769 } 1770 op->val = regs->ccr & imm; 1771 goto compute_done; 1772 1773 case 128: /* setb */ 1774 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1775 goto unknown_opcode; 1776 /* 1777 * 'ra' encodes the CR field number (bfa) in the top 3 bits. 1778 * Since each CR field is 4 bits, 1779 * we can simply mask off the bottom two bits (bfa * 4) 1780 * to yield the first bit in the CR field. 1781 */ 1782 ra = ra & ~0x3; 1783 /* 'val' stores bits of the CR field (bfa) */ 1784 val = regs->ccr >> (CR0_SHIFT - ra); 1785 /* checks if the LT bit of CR field (bfa) is set */ 1786 if (val & 8) 1787 op->val = -1; 1788 /* checks if the GT bit of CR field (bfa) is set */ 1789 else if (val & 4) 1790 op->val = 1; 1791 else 1792 op->val = 0; 1793 goto compute_done; 1794 1795 case 144: /* mtcrf */ 1796 op->type = COMPUTE + SETCC; 1797 imm = 0xf0000000UL; 1798 val = regs->gpr[rd]; 1799 op->ccval = regs->ccr; 1800 for (sh = 0; sh < 8; ++sh) { 1801 if (word & (0x80000 >> sh)) 1802 op->ccval = (op->ccval & ~imm) | 1803 (val & imm); 1804 imm >>= 4; 1805 } 1806 return 1; 1807 1808 case 339: /* mfspr */ 1809 spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0); 1810 op->type = MFSPR; 1811 op->reg = rd; 1812 op->spr = spr; 1813 if (spr == SPRN_XER || spr == SPRN_LR || 1814 spr == SPRN_CTR) 1815 return 1; 1816 return 0; 1817 1818 case 467: /* mtspr */ 1819 spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0); 1820 op->type = MTSPR; 1821 op->val = regs->gpr[rd]; 1822 op->spr = spr; 1823 if (spr == SPRN_XER || spr == SPRN_LR || 1824 spr == SPRN_CTR) 1825 return 1; 1826 return 0; 1827 1828/* 1829 * Compare instructions 1830 */ 1831 case 0: /* cmp */ 1832 val = regs->gpr[ra]; 1833 val2 = regs->gpr[rb]; 1834#ifdef __powerpc64__ 1835 if ((rd & 1) == 0) { 1836 /* word (32-bit) compare */ 1837 val = (int) val; 1838 val2 = (int) val2; 1839 } 1840#endif 1841 do_cmp_signed(regs, op, val, val2, rd >> 2); 1842 return 1; 1843 1844 case 32: /* cmpl */ 1845 val = regs->gpr[ra]; 1846 val2 = regs->gpr[rb]; 1847#ifdef __powerpc64__ 1848 if ((rd & 1) == 0) { 1849 /* word (32-bit) compare */ 1850 val = (unsigned int) val; 1851 val2 = (unsigned int) val2; 1852 } 1853#endif 1854 do_cmp_unsigned(regs, op, val, val2, rd >> 2); 1855 return 1; 1856 1857 case 508: /* cmpb */ 1858 do_cmpb(regs, op, regs->gpr[rd], regs->gpr[rb]); 1859 goto logical_done_nocc; 1860 1861/* 1862 * Arithmetic instructions 1863 */ 1864 case 8: /* subfc */ 1865 add_with_carry(regs, op, rd, ~regs->gpr[ra], 1866 regs->gpr[rb], 1); 1867 goto arith_done; 1868#ifdef __powerpc64__ 1869 case 9: /* mulhdu */ 1870 asm("mulhdu %0,%1,%2" : "=r" (op->val) : 1871 "r" (regs->gpr[ra]), "r" (regs->gpr[rb])); 1872 goto arith_done; 1873#endif 1874 case 10: /* addc */ 1875 add_with_carry(regs, op, rd, regs->gpr[ra], 1876 regs->gpr[rb], 0); 1877 goto arith_done; 1878 1879 case 11: /* mulhwu */ 1880 asm("mulhwu %0,%1,%2" : "=r" (op->val) : 1881 "r" (regs->gpr[ra]), "r" (regs->gpr[rb])); 1882 goto arith_done; 1883 1884 case 40: /* subf */ 1885 op->val = regs->gpr[rb] - regs->gpr[ra]; 1886 goto arith_done; 1887#ifdef __powerpc64__ 1888 case 73: /* mulhd */ 1889 asm("mulhd %0,%1,%2" : "=r" (op->val) : 1890 "r" (regs->gpr[ra]), "r" (regs->gpr[rb])); 1891 goto arith_done; 1892#endif 1893 case 75: /* mulhw */ 1894 asm("mulhw %0,%1,%2" : "=r" (op->val) : 1895 "r" (regs->gpr[ra]), "r" (regs->gpr[rb])); 1896 goto arith_done; 1897 1898 case 104: /* neg */ 1899 op->val = -regs->gpr[ra]; 1900 goto arith_done; 1901 1902 case 136: /* subfe */ 1903 add_with_carry(regs, op, rd, ~regs->gpr[ra], 1904 regs->gpr[rb], regs->xer & XER_CA); 1905 goto arith_done; 1906 1907 case 138: /* adde */ 1908 add_with_carry(regs, op, rd, regs->gpr[ra], 1909 regs->gpr[rb], regs->xer & XER_CA); 1910 goto arith_done; 1911 1912 case 200: /* subfze */ 1913 add_with_carry(regs, op, rd, ~regs->gpr[ra], 0L, 1914 regs->xer & XER_CA); 1915 goto arith_done; 1916 1917 case 202: /* addze */ 1918 add_with_carry(regs, op, rd, regs->gpr[ra], 0L, 1919 regs->xer & XER_CA); 1920 goto arith_done; 1921 1922 case 232: /* subfme */ 1923 add_with_carry(regs, op, rd, ~regs->gpr[ra], -1L, 1924 regs->xer & XER_CA); 1925 goto arith_done; 1926#ifdef __powerpc64__ 1927 case 233: /* mulld */ 1928 op->val = regs->gpr[ra] * regs->gpr[rb]; 1929 goto arith_done; 1930#endif 1931 case 234: /* addme */ 1932 add_with_carry(regs, op, rd, regs->gpr[ra], -1L, 1933 regs->xer & XER_CA); 1934 goto arith_done; 1935 1936 case 235: /* mullw */ 1937 op->val = (long)(int) regs->gpr[ra] * 1938 (int) regs->gpr[rb]; 1939 1940 goto arith_done; 1941#ifdef __powerpc64__ 1942 case 265: /* modud */ 1943 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1944 goto unknown_opcode; 1945 op->val = regs->gpr[ra] % regs->gpr[rb]; 1946 goto compute_done; 1947#endif 1948 case 266: /* add */ 1949 op->val = regs->gpr[ra] + regs->gpr[rb]; 1950 goto arith_done; 1951 1952 case 267: /* moduw */ 1953 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1954 goto unknown_opcode; 1955 op->val = (unsigned int) regs->gpr[ra] % 1956 (unsigned int) regs->gpr[rb]; 1957 goto compute_done; 1958#ifdef __powerpc64__ 1959 case 457: /* divdu */ 1960 op->val = regs->gpr[ra] / regs->gpr[rb]; 1961 goto arith_done; 1962#endif 1963 case 459: /* divwu */ 1964 op->val = (unsigned int) regs->gpr[ra] / 1965 (unsigned int) regs->gpr[rb]; 1966 goto arith_done; 1967#ifdef __powerpc64__ 1968 case 489: /* divd */ 1969 op->val = (long int) regs->gpr[ra] / 1970 (long int) regs->gpr[rb]; 1971 goto arith_done; 1972#endif 1973 case 491: /* divw */ 1974 op->val = (int) regs->gpr[ra] / 1975 (int) regs->gpr[rb]; 1976 goto arith_done; 1977#ifdef __powerpc64__ 1978 case 425: /* divde[.] */ 1979 asm volatile(PPC_DIVDE(%0, %1, %2) : 1980 "=r" (op->val) : "r" (regs->gpr[ra]), 1981 "r" (regs->gpr[rb])); 1982 goto arith_done; 1983 case 393: /* divdeu[.] */ 1984 asm volatile(PPC_DIVDEU(%0, %1, %2) : 1985 "=r" (op->val) : "r" (regs->gpr[ra]), 1986 "r" (regs->gpr[rb])); 1987 goto arith_done; 1988#endif 1989 case 755: /* darn */ 1990 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1991 goto unknown_opcode; 1992 switch (ra & 0x3) { 1993 case 0: 1994 /* 32-bit conditioned */ 1995 asm volatile(PPC_DARN(%0, 0) : "=r" (op->val)); 1996 goto compute_done; 1997 1998 case 1: 1999 /* 64-bit conditioned */ 2000 asm volatile(PPC_DARN(%0, 1) : "=r" (op->val)); 2001 goto compute_done; 2002 2003 case 2: 2004 /* 64-bit raw */ 2005 asm volatile(PPC_DARN(%0, 2) : "=r" (op->val)); 2006 goto compute_done; 2007 } 2008 2009 goto unknown_opcode; 2010#ifdef __powerpc64__ 2011 case 777: /* modsd */ 2012 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2013 goto unknown_opcode; 2014 op->val = (long int) regs->gpr[ra] % 2015 (long int) regs->gpr[rb]; 2016 goto compute_done; 2017#endif 2018 case 779: /* modsw */ 2019 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2020 goto unknown_opcode; 2021 op->val = (int) regs->gpr[ra] % 2022 (int) regs->gpr[rb]; 2023 goto compute_done; 2024 2025 2026/* 2027 * Logical instructions 2028 */ 2029 case 26: /* cntlzw */ 2030 val = (unsigned int) regs->gpr[rd]; 2031 op->val = ( val ? __builtin_clz(val) : 32 ); 2032 goto logical_done; 2033#ifdef __powerpc64__ 2034 case 58: /* cntlzd */ 2035 val = regs->gpr[rd]; 2036 op->val = ( val ? __builtin_clzl(val) : 64 ); 2037 goto logical_done; 2038#endif 2039 case 28: /* and */ 2040 op->val = regs->gpr[rd] & regs->gpr[rb]; 2041 goto logical_done; 2042 2043 case 60: /* andc */ 2044 op->val = regs->gpr[rd] & ~regs->gpr[rb]; 2045 goto logical_done; 2046 2047 case 122: /* popcntb */ 2048 do_popcnt(regs, op, regs->gpr[rd], 8); 2049 goto logical_done_nocc; 2050 2051 case 124: /* nor */ 2052 op->val = ~(regs->gpr[rd] | regs->gpr[rb]); 2053 goto logical_done; 2054 2055 case 154: /* prtyw */ 2056 do_prty(regs, op, regs->gpr[rd], 32); 2057 goto logical_done_nocc; 2058 2059 case 186: /* prtyd */ 2060 do_prty(regs, op, regs->gpr[rd], 64); 2061 goto logical_done_nocc; 2062#ifdef CONFIG_PPC64 2063 case 252: /* bpermd */ 2064 do_bpermd(regs, op, regs->gpr[rd], regs->gpr[rb]); 2065 goto logical_done_nocc; 2066#endif 2067 case 284: /* xor */ 2068 op->val = ~(regs->gpr[rd] ^ regs->gpr[rb]); 2069 goto logical_done; 2070 2071 case 316: /* xor */ 2072 op->val = regs->gpr[rd] ^ regs->gpr[rb]; 2073 goto logical_done; 2074 2075 case 378: /* popcntw */ 2076 do_popcnt(regs, op, regs->gpr[rd], 32); 2077 goto logical_done_nocc; 2078 2079 case 412: /* orc */ 2080 op->val = regs->gpr[rd] | ~regs->gpr[rb]; 2081 goto logical_done; 2082 2083 case 444: /* or */ 2084 op->val = regs->gpr[rd] | regs->gpr[rb]; 2085 goto logical_done; 2086 2087 case 476: /* nand */ 2088 op->val = ~(regs->gpr[rd] & regs->gpr[rb]); 2089 goto logical_done; 2090#ifdef CONFIG_PPC64 2091 case 506: /* popcntd */ 2092 do_popcnt(regs, op, regs->gpr[rd], 64); 2093 goto logical_done_nocc; 2094#endif 2095 case 538: /* cnttzw */ 2096 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2097 goto unknown_opcode; 2098 val = (unsigned int) regs->gpr[rd]; 2099 op->val = (val ? __builtin_ctz(val) : 32); 2100 goto logical_done; 2101#ifdef __powerpc64__ 2102 case 570: /* cnttzd */ 2103 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2104 goto unknown_opcode; 2105 val = regs->gpr[rd]; 2106 op->val = (val ? __builtin_ctzl(val) : 64); 2107 goto logical_done; 2108#endif 2109 case 922: /* extsh */ 2110 op->val = (signed short) regs->gpr[rd]; 2111 goto logical_done; 2112 2113 case 954: /* extsb */ 2114 op->val = (signed char) regs->gpr[rd]; 2115 goto logical_done; 2116#ifdef __powerpc64__ 2117 case 986: /* extsw */ 2118 op->val = (signed int) regs->gpr[rd]; 2119 goto logical_done; 2120#endif 2121 2122/* 2123 * Shift instructions 2124 */ 2125 case 24: /* slw */ 2126 sh = regs->gpr[rb] & 0x3f; 2127 if (sh < 32) 2128 op->val = (regs->gpr[rd] << sh) & 0xffffffffUL; 2129 else 2130 op->val = 0; 2131 goto logical_done; 2132 2133 case 536: /* srw */ 2134 sh = regs->gpr[rb] & 0x3f; 2135 if (sh < 32) 2136 op->val = (regs->gpr[rd] & 0xffffffffUL) >> sh; 2137 else 2138 op->val = 0; 2139 goto logical_done; 2140 2141 case 792: /* sraw */ 2142 op->type = COMPUTE + SETREG + SETXER; 2143 sh = regs->gpr[rb] & 0x3f; 2144 ival = (signed int) regs->gpr[rd]; 2145 op->val = ival >> (sh < 32 ? sh : 31); 2146 op->xerval = regs->xer; 2147 if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0)) 2148 op->xerval |= XER_CA; 2149 else 2150 op->xerval &= ~XER_CA; 2151 set_ca32(op, op->xerval & XER_CA); 2152 goto logical_done; 2153 2154 case 824: /* srawi */ 2155 op->type = COMPUTE + SETREG + SETXER; 2156 sh = rb; 2157 ival = (signed int) regs->gpr[rd]; 2158 op->val = ival >> sh; 2159 op->xerval = regs->xer; 2160 if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0) 2161 op->xerval |= XER_CA; 2162 else 2163 op->xerval &= ~XER_CA; 2164 set_ca32(op, op->xerval & XER_CA); 2165 goto logical_done; 2166 2167#ifdef __powerpc64__ 2168 case 27: /* sld */ 2169 sh = regs->gpr[rb] & 0x7f; 2170 if (sh < 64) 2171 op->val = regs->gpr[rd] << sh; 2172 else 2173 op->val = 0; 2174 goto logical_done; 2175 2176 case 539: /* srd */ 2177 sh = regs->gpr[rb] & 0x7f; 2178 if (sh < 64) 2179 op->val = regs->gpr[rd] >> sh; 2180 else 2181 op->val = 0; 2182 goto logical_done; 2183 2184 case 794: /* srad */ 2185 op->type = COMPUTE + SETREG + SETXER; 2186 sh = regs->gpr[rb] & 0x7f; 2187 ival = (signed long int) regs->gpr[rd]; 2188 op->val = ival >> (sh < 64 ? sh : 63); 2189 op->xerval = regs->xer; 2190 if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0)) 2191 op->xerval |= XER_CA; 2192 else 2193 op->xerval &= ~XER_CA; 2194 set_ca32(op, op->xerval & XER_CA); 2195 goto logical_done; 2196 2197 case 826: /* sradi with sh_5 = 0 */ 2198 case 827: /* sradi with sh_5 = 1 */ 2199 op->type = COMPUTE + SETREG + SETXER; 2200 sh = rb | ((word & 2) << 4); 2201 ival = (signed long int) regs->gpr[rd]; 2202 op->val = ival >> sh; 2203 op->xerval = regs->xer; 2204 if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0) 2205 op->xerval |= XER_CA; 2206 else 2207 op->xerval &= ~XER_CA; 2208 set_ca32(op, op->xerval & XER_CA); 2209 goto logical_done; 2210 2211 case 890: /* extswsli with sh_5 = 0 */ 2212 case 891: /* extswsli with sh_5 = 1 */ 2213 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2214 goto unknown_opcode; 2215 op->type = COMPUTE + SETREG; 2216 sh = rb | ((word & 2) << 4); 2217 val = (signed int) regs->gpr[rd]; 2218 if (sh) 2219 op->val = ROTATE(val, sh) & MASK64(0, 63 - sh); 2220 else 2221 op->val = val; 2222 goto logical_done; 2223 2224#endif /* __powerpc64__ */ 2225 2226/* 2227 * Cache instructions 2228 */ 2229 case 54: /* dcbst */ 2230 op->type = MKOP(CACHEOP, DCBST, 0); 2231 op->ea = xform_ea(word, regs); 2232 return 0; 2233 2234 case 86: /* dcbf */ 2235 op->type = MKOP(CACHEOP, DCBF, 0); 2236 op->ea = xform_ea(word, regs); 2237 return 0; 2238 2239 case 246: /* dcbtst */ 2240 op->type = MKOP(CACHEOP, DCBTST, 0); 2241 op->ea = xform_ea(word, regs); 2242 op->reg = rd; 2243 return 0; 2244 2245 case 278: /* dcbt */ 2246 op->type = MKOP(CACHEOP, DCBTST, 0); 2247 op->ea = xform_ea(word, regs); 2248 op->reg = rd; 2249 return 0; 2250 2251 case 982: /* icbi */ 2252 op->type = MKOP(CACHEOP, ICBI, 0); 2253 op->ea = xform_ea(word, regs); 2254 return 0; 2255 2256 case 1014: /* dcbz */ 2257 op->type = MKOP(CACHEOP, DCBZ, 0); 2258 op->ea = xform_ea(word, regs); 2259 return 0; 2260 } 2261 break; 2262 } 2263 2264/* 2265 * Loads and stores. 2266 */ 2267 op->type = UNKNOWN; 2268 op->update_reg = ra; 2269 op->reg = rd; 2270 op->val = regs->gpr[rd]; 2271 u = (word >> 20) & UPDATE; 2272 op->vsx_flags = 0; 2273 2274 switch (opcode) { 2275 case 31: 2276 u = word & UPDATE; 2277 op->ea = xform_ea(word, regs); 2278 switch ((word >> 1) & 0x3ff) { 2279 case 20: /* lwarx */ 2280 op->type = MKOP(LARX, 0, 4); 2281 break; 2282 2283 case 150: /* stwcx. */ 2284 op->type = MKOP(STCX, 0, 4); 2285 break; 2286 2287#ifdef __powerpc64__ 2288 case 84: /* ldarx */ 2289 op->type = MKOP(LARX, 0, 8); 2290 break; 2291 2292 case 214: /* stdcx. */ 2293 op->type = MKOP(STCX, 0, 8); 2294 break; 2295 2296 case 52: /* lbarx */ 2297 op->type = MKOP(LARX, 0, 1); 2298 break; 2299 2300 case 694: /* stbcx. */ 2301 op->type = MKOP(STCX, 0, 1); 2302 break; 2303 2304 case 116: /* lharx */ 2305 op->type = MKOP(LARX, 0, 2); 2306 break; 2307 2308 case 726: /* sthcx. */ 2309 op->type = MKOP(STCX, 0, 2); 2310 break; 2311 2312 case 276: /* lqarx */ 2313 if (!((rd & 1) || rd == ra || rd == rb)) 2314 op->type = MKOP(LARX, 0, 16); 2315 break; 2316 2317 case 182: /* stqcx. */ 2318 if (!(rd & 1)) 2319 op->type = MKOP(STCX, 0, 16); 2320 break; 2321#endif 2322 2323 case 23: /* lwzx */ 2324 case 55: /* lwzux */ 2325 op->type = MKOP(LOAD, u, 4); 2326 break; 2327 2328 case 87: /* lbzx */ 2329 case 119: /* lbzux */ 2330 op->type = MKOP(LOAD, u, 1); 2331 break; 2332 2333#ifdef CONFIG_ALTIVEC 2334 /* 2335 * Note: for the load/store vector element instructions, 2336 * bits of the EA say which field of the VMX register to use. 2337 */ 2338 case 7: /* lvebx */ 2339 op->type = MKOP(LOAD_VMX, 0, 1); 2340 op->element_size = 1; 2341 break; 2342 2343 case 39: /* lvehx */ 2344 op->type = MKOP(LOAD_VMX, 0, 2); 2345 op->element_size = 2; 2346 break; 2347 2348 case 71: /* lvewx */ 2349 op->type = MKOP(LOAD_VMX, 0, 4); 2350 op->element_size = 4; 2351 break; 2352 2353 case 103: /* lvx */ 2354 case 359: /* lvxl */ 2355 op->type = MKOP(LOAD_VMX, 0, 16); 2356 op->element_size = 16; 2357 break; 2358 2359 case 135: /* stvebx */ 2360 op->type = MKOP(STORE_VMX, 0, 1); 2361 op->element_size = 1; 2362 break; 2363 2364 case 167: /* stvehx */ 2365 op->type = MKOP(STORE_VMX, 0, 2); 2366 op->element_size = 2; 2367 break; 2368 2369 case 199: /* stvewx */ 2370 op->type = MKOP(STORE_VMX, 0, 4); 2371 op->element_size = 4; 2372 break; 2373 2374 case 231: /* stvx */ 2375 case 487: /* stvxl */ 2376 op->type = MKOP(STORE_VMX, 0, 16); 2377 break; 2378#endif /* CONFIG_ALTIVEC */ 2379 2380#ifdef __powerpc64__ 2381 case 21: /* ldx */ 2382 case 53: /* ldux */ 2383 op->type = MKOP(LOAD, u, 8); 2384 break; 2385 2386 case 149: /* stdx */ 2387 case 181: /* stdux */ 2388 op->type = MKOP(STORE, u, 8); 2389 break; 2390#endif 2391 2392 case 151: /* stwx */ 2393 case 183: /* stwux */ 2394 op->type = MKOP(STORE, u, 4); 2395 break; 2396 2397 case 215: /* stbx */ 2398 case 247: /* stbux */ 2399 op->type = MKOP(STORE, u, 1); 2400 break; 2401 2402 case 279: /* lhzx */ 2403 case 311: /* lhzux */ 2404 op->type = MKOP(LOAD, u, 2); 2405 break; 2406 2407#ifdef __powerpc64__ 2408 case 341: /* lwax */ 2409 case 373: /* lwaux */ 2410 op->type = MKOP(LOAD, SIGNEXT | u, 4); 2411 break; 2412#endif 2413 2414 case 343: /* lhax */ 2415 case 375: /* lhaux */ 2416 op->type = MKOP(LOAD, SIGNEXT | u, 2); 2417 break; 2418 2419 case 407: /* sthx */ 2420 case 439: /* sthux */ 2421 op->type = MKOP(STORE, u, 2); 2422 break; 2423 2424#ifdef __powerpc64__ 2425 case 532: /* ldbrx */ 2426 op->type = MKOP(LOAD, BYTEREV, 8); 2427 break; 2428 2429#endif 2430 case 533: /* lswx */ 2431 op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f); 2432 break; 2433 2434 case 534: /* lwbrx */ 2435 op->type = MKOP(LOAD, BYTEREV, 4); 2436 break; 2437 2438 case 597: /* lswi */ 2439 if (rb == 0) 2440 rb = 32; /* # bytes to load */ 2441 op->type = MKOP(LOAD_MULTI, 0, rb); 2442 op->ea = ra ? regs->gpr[ra] : 0; 2443 break; 2444 2445#ifdef CONFIG_PPC_FPU 2446 case 535: /* lfsx */ 2447 case 567: /* lfsux */ 2448 op->type = MKOP(LOAD_FP, u | FPCONV, 4); 2449 break; 2450 2451 case 599: /* lfdx */ 2452 case 631: /* lfdux */ 2453 op->type = MKOP(LOAD_FP, u, 8); 2454 break; 2455 2456 case 663: /* stfsx */ 2457 case 695: /* stfsux */ 2458 op->type = MKOP(STORE_FP, u | FPCONV, 4); 2459 break; 2460 2461 case 727: /* stfdx */ 2462 case 759: /* stfdux */ 2463 op->type = MKOP(STORE_FP, u, 8); 2464 break; 2465 2466#ifdef __powerpc64__ 2467 case 791: /* lfdpx */ 2468 op->type = MKOP(LOAD_FP, 0, 16); 2469 break; 2470 2471 case 855: /* lfiwax */ 2472 op->type = MKOP(LOAD_FP, SIGNEXT, 4); 2473 break; 2474 2475 case 887: /* lfiwzx */ 2476 op->type = MKOP(LOAD_FP, 0, 4); 2477 break; 2478 2479 case 919: /* stfdpx */ 2480 op->type = MKOP(STORE_FP, 0, 16); 2481 break; 2482 2483 case 983: /* stfiwx */ 2484 op->type = MKOP(STORE_FP, 0, 4); 2485 break; 2486#endif /* __powerpc64 */ 2487#endif /* CONFIG_PPC_FPU */ 2488 2489#ifdef __powerpc64__ 2490 case 660: /* stdbrx */ 2491 op->type = MKOP(STORE, BYTEREV, 8); 2492 op->val = byterev_8(regs->gpr[rd]); 2493 break; 2494 2495#endif 2496 case 661: /* stswx */ 2497 op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f); 2498 break; 2499 2500 case 662: /* stwbrx */ 2501 op->type = MKOP(STORE, BYTEREV, 4); 2502 op->val = byterev_4(regs->gpr[rd]); 2503 break; 2504 2505 case 725: /* stswi */ 2506 if (rb == 0) 2507 rb = 32; /* # bytes to store */ 2508 op->type = MKOP(STORE_MULTI, 0, rb); 2509 op->ea = ra ? regs->gpr[ra] : 0; 2510 break; 2511 2512 case 790: /* lhbrx */ 2513 op->type = MKOP(LOAD, BYTEREV, 2); 2514 break; 2515 2516 case 918: /* sthbrx */ 2517 op->type = MKOP(STORE, BYTEREV, 2); 2518 op->val = byterev_2(regs->gpr[rd]); 2519 break; 2520 2521#ifdef CONFIG_VSX 2522 case 12: /* lxsiwzx */ 2523 op->reg = rd | ((word & 1) << 5); 2524 op->type = MKOP(LOAD_VSX, 0, 4); 2525 op->element_size = 8; 2526 break; 2527 2528 case 76: /* lxsiwax */ 2529 op->reg = rd | ((word & 1) << 5); 2530 op->type = MKOP(LOAD_VSX, SIGNEXT, 4); 2531 op->element_size = 8; 2532 break; 2533 2534 case 140: /* stxsiwx */ 2535 op->reg = rd | ((word & 1) << 5); 2536 op->type = MKOP(STORE_VSX, 0, 4); 2537 op->element_size = 8; 2538 break; 2539 2540 case 268: /* lxvx */ 2541 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2542 goto unknown_opcode; 2543 op->reg = rd | ((word & 1) << 5); 2544 op->type = MKOP(LOAD_VSX, 0, 16); 2545 op->element_size = 16; 2546 op->vsx_flags = VSX_CHECK_VEC; 2547 break; 2548 2549 case 269: /* lxvl */ 2550 case 301: { /* lxvll */ 2551 int nb; 2552 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2553 goto unknown_opcode; 2554 op->reg = rd | ((word & 1) << 5); 2555 op->ea = ra ? regs->gpr[ra] : 0; 2556 nb = regs->gpr[rb] & 0xff; 2557 if (nb > 16) 2558 nb = 16; 2559 op->type = MKOP(LOAD_VSX, 0, nb); 2560 op->element_size = 16; 2561 op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) | 2562 VSX_CHECK_VEC; 2563 break; 2564 } 2565 case 332: /* lxvdsx */ 2566 op->reg = rd | ((word & 1) << 5); 2567 op->type = MKOP(LOAD_VSX, 0, 8); 2568 op->element_size = 8; 2569 op->vsx_flags = VSX_SPLAT; 2570 break; 2571 2572 case 333: /* lxvpx */ 2573 if (!cpu_has_feature(CPU_FTR_ARCH_31)) 2574 goto unknown_opcode; 2575 op->reg = VSX_REGISTER_XTP(rd); 2576 op->type = MKOP(LOAD_VSX, 0, 32); 2577 op->element_size = 32; 2578 break; 2579 2580 case 364: /* lxvwsx */ 2581 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2582 goto unknown_opcode; 2583 op->reg = rd | ((word & 1) << 5); 2584 op->type = MKOP(LOAD_VSX, 0, 4); 2585 op->element_size = 4; 2586 op->vsx_flags = VSX_SPLAT | VSX_CHECK_VEC; 2587 break; 2588 2589 case 396: /* stxvx */ 2590 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2591 goto unknown_opcode; 2592 op->reg = rd | ((word & 1) << 5); 2593 op->type = MKOP(STORE_VSX, 0, 16); 2594 op->element_size = 16; 2595 op->vsx_flags = VSX_CHECK_VEC; 2596 break; 2597 2598 case 397: /* stxvl */ 2599 case 429: { /* stxvll */ 2600 int nb; 2601 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2602 goto unknown_opcode; 2603 op->reg = rd | ((word & 1) << 5); 2604 op->ea = ra ? regs->gpr[ra] : 0; 2605 nb = regs->gpr[rb] & 0xff; 2606 if (nb > 16) 2607 nb = 16; 2608 op->type = MKOP(STORE_VSX, 0, nb); 2609 op->element_size = 16; 2610 op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) | 2611 VSX_CHECK_VEC; 2612 break; 2613 } 2614 case 461: /* stxvpx */ 2615 if (!cpu_has_feature(CPU_FTR_ARCH_31)) 2616 goto unknown_opcode; 2617 op->reg = VSX_REGISTER_XTP(rd); 2618 op->type = MKOP(STORE_VSX, 0, 32); 2619 op->element_size = 32; 2620 break; 2621 case 524: /* lxsspx */ 2622 op->reg = rd | ((word & 1) << 5); 2623 op->type = MKOP(LOAD_VSX, 0, 4); 2624 op->element_size = 8; 2625 op->vsx_flags = VSX_FPCONV; 2626 break; 2627 2628 case 588: /* lxsdx */ 2629 op->reg = rd | ((word & 1) << 5); 2630 op->type = MKOP(LOAD_VSX, 0, 8); 2631 op->element_size = 8; 2632 break; 2633 2634 case 652: /* stxsspx */ 2635 op->reg = rd | ((word & 1) << 5); 2636 op->type = MKOP(STORE_VSX, 0, 4); 2637 op->element_size = 8; 2638 op->vsx_flags = VSX_FPCONV; 2639 break; 2640 2641 case 716: /* stxsdx */ 2642 op->reg = rd | ((word & 1) << 5); 2643 op->type = MKOP(STORE_VSX, 0, 8); 2644 op->element_size = 8; 2645 break; 2646 2647 case 780: /* lxvw4x */ 2648 op->reg = rd | ((word & 1) << 5); 2649 op->type = MKOP(LOAD_VSX, 0, 16); 2650 op->element_size = 4; 2651 break; 2652 2653 case 781: /* lxsibzx */ 2654 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2655 goto unknown_opcode; 2656 op->reg = rd | ((word & 1) << 5); 2657 op->type = MKOP(LOAD_VSX, 0, 1); 2658 op->element_size = 8; 2659 op->vsx_flags = VSX_CHECK_VEC; 2660 break; 2661 2662 case 812: /* lxvh8x */ 2663 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2664 goto unknown_opcode; 2665 op->reg = rd | ((word & 1) << 5); 2666 op->type = MKOP(LOAD_VSX, 0, 16); 2667 op->element_size = 2; 2668 op->vsx_flags = VSX_CHECK_VEC; 2669 break; 2670 2671 case 813: /* lxsihzx */ 2672 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2673 goto unknown_opcode; 2674 op->reg = rd | ((word & 1) << 5); 2675 op->type = MKOP(LOAD_VSX, 0, 2); 2676 op->element_size = 8; 2677 op->vsx_flags = VSX_CHECK_VEC; 2678 break; 2679 2680 case 844: /* lxvd2x */ 2681 op->reg = rd | ((word & 1) << 5); 2682 op->type = MKOP(LOAD_VSX, 0, 16); 2683 op->element_size = 8; 2684 break; 2685 2686 case 876: /* lxvb16x */ 2687 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2688 goto unknown_opcode; 2689 op->reg = rd | ((word & 1) << 5); 2690 op->type = MKOP(LOAD_VSX, 0, 16); 2691 op->element_size = 1; 2692 op->vsx_flags = VSX_CHECK_VEC; 2693 break; 2694 2695 case 908: /* stxvw4x */ 2696 op->reg = rd | ((word & 1) << 5); 2697 op->type = MKOP(STORE_VSX, 0, 16); 2698 op->element_size = 4; 2699 break; 2700 2701 case 909: /* stxsibx */ 2702 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2703 goto unknown_opcode; 2704 op->reg = rd | ((word & 1) << 5); 2705 op->type = MKOP(STORE_VSX, 0, 1); 2706 op->element_size = 8; 2707 op->vsx_flags = VSX_CHECK_VEC; 2708 break; 2709 2710 case 940: /* stxvh8x */ 2711 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2712 goto unknown_opcode; 2713 op->reg = rd | ((word & 1) << 5); 2714 op->type = MKOP(STORE_VSX, 0, 16); 2715 op->element_size = 2; 2716 op->vsx_flags = VSX_CHECK_VEC; 2717 break; 2718 2719 case 941: /* stxsihx */ 2720 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2721 goto unknown_opcode; 2722 op->reg = rd | ((word & 1) << 5); 2723 op->type = MKOP(STORE_VSX, 0, 2); 2724 op->element_size = 8; 2725 op->vsx_flags = VSX_CHECK_VEC; 2726 break; 2727 2728 case 972: /* stxvd2x */ 2729 op->reg = rd | ((word & 1) << 5); 2730 op->type = MKOP(STORE_VSX, 0, 16); 2731 op->element_size = 8; 2732 break; 2733 2734 case 1004: /* stxvb16x */ 2735 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2736 goto unknown_opcode; 2737 op->reg = rd | ((word & 1) << 5); 2738 op->type = MKOP(STORE_VSX, 0, 16); 2739 op->element_size = 1; 2740 op->vsx_flags = VSX_CHECK_VEC; 2741 break; 2742 2743#endif /* CONFIG_VSX */ 2744 } 2745 break; 2746 2747 case 32: /* lwz */ 2748 case 33: /* lwzu */ 2749 op->type = MKOP(LOAD, u, 4); 2750 op->ea = dform_ea(word, regs); 2751 break; 2752 2753 case 34: /* lbz */ 2754 case 35: /* lbzu */ 2755 op->type = MKOP(LOAD, u, 1); 2756 op->ea = dform_ea(word, regs); 2757 break; 2758 2759 case 36: /* stw */ 2760 case 37: /* stwu */ 2761 op->type = MKOP(STORE, u, 4); 2762 op->ea = dform_ea(word, regs); 2763 break; 2764 2765 case 38: /* stb */ 2766 case 39: /* stbu */ 2767 op->type = MKOP(STORE, u, 1); 2768 op->ea = dform_ea(word, regs); 2769 break; 2770 2771 case 40: /* lhz */ 2772 case 41: /* lhzu */ 2773 op->type = MKOP(LOAD, u, 2); 2774 op->ea = dform_ea(word, regs); 2775 break; 2776 2777 case 42: /* lha */ 2778 case 43: /* lhau */ 2779 op->type = MKOP(LOAD, SIGNEXT | u, 2); 2780 op->ea = dform_ea(word, regs); 2781 break; 2782 2783 case 44: /* sth */ 2784 case 45: /* sthu */ 2785 op->type = MKOP(STORE, u, 2); 2786 op->ea = dform_ea(word, regs); 2787 break; 2788 2789 case 46: /* lmw */ 2790 if (ra >= rd) 2791 break; /* invalid form, ra in range to load */ 2792 op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd)); 2793 op->ea = dform_ea(word, regs); 2794 break; 2795 2796 case 47: /* stmw */ 2797 op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd)); 2798 op->ea = dform_ea(word, regs); 2799 break; 2800 2801#ifdef CONFIG_PPC_FPU 2802 case 48: /* lfs */ 2803 case 49: /* lfsu */ 2804 op->type = MKOP(LOAD_FP, u | FPCONV, 4); 2805 op->ea = dform_ea(word, regs); 2806 break; 2807 2808 case 50: /* lfd */ 2809 case 51: /* lfdu */ 2810 op->type = MKOP(LOAD_FP, u, 8); 2811 op->ea = dform_ea(word, regs); 2812 break; 2813 2814 case 52: /* stfs */ 2815 case 53: /* stfsu */ 2816 op->type = MKOP(STORE_FP, u | FPCONV, 4); 2817 op->ea = dform_ea(word, regs); 2818 break; 2819 2820 case 54: /* stfd */ 2821 case 55: /* stfdu */ 2822 op->type = MKOP(STORE_FP, u, 8); 2823 op->ea = dform_ea(word, regs); 2824 break; 2825#endif 2826 2827#ifdef __powerpc64__ 2828 case 56: /* lq */ 2829 if (!((rd & 1) || (rd == ra))) 2830 op->type = MKOP(LOAD, 0, 16); 2831 op->ea = dqform_ea(word, regs); 2832 break; 2833#endif 2834 2835#ifdef CONFIG_VSX 2836 case 57: /* lfdp, lxsd, lxssp */ 2837 op->ea = dsform_ea(word, regs); 2838 switch (word & 3) { 2839 case 0: /* lfdp */ 2840 if (rd & 1) 2841 break; /* reg must be even */ 2842 op->type = MKOP(LOAD_FP, 0, 16); 2843 break; 2844 case 2: /* lxsd */ 2845 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2846 goto unknown_opcode; 2847 op->reg = rd + 32; 2848 op->type = MKOP(LOAD_VSX, 0, 8); 2849 op->element_size = 8; 2850 op->vsx_flags = VSX_CHECK_VEC; 2851 break; 2852 case 3: /* lxssp */ 2853 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2854 goto unknown_opcode; 2855 op->reg = rd + 32; 2856 op->type = MKOP(LOAD_VSX, 0, 4); 2857 op->element_size = 8; 2858 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC; 2859 break; 2860 } 2861 break; 2862#endif /* CONFIG_VSX */ 2863 2864#ifdef __powerpc64__ 2865 case 58: /* ld[u], lwa */ 2866 op->ea = dsform_ea(word, regs); 2867 switch (word & 3) { 2868 case 0: /* ld */ 2869 op->type = MKOP(LOAD, 0, 8); 2870 break; 2871 case 1: /* ldu */ 2872 op->type = MKOP(LOAD, UPDATE, 8); 2873 break; 2874 case 2: /* lwa */ 2875 op->type = MKOP(LOAD, SIGNEXT, 4); 2876 break; 2877 } 2878 break; 2879#endif 2880 2881#ifdef CONFIG_VSX 2882 case 6: 2883 if (!cpu_has_feature(CPU_FTR_ARCH_31)) 2884 goto unknown_opcode; 2885 op->ea = dqform_ea(word, regs); 2886 op->reg = VSX_REGISTER_XTP(rd); 2887 op->element_size = 32; 2888 switch (word & 0xf) { 2889 case 0: /* lxvp */ 2890 op->type = MKOP(LOAD_VSX, 0, 32); 2891 break; 2892 case 1: /* stxvp */ 2893 op->type = MKOP(STORE_VSX, 0, 32); 2894 break; 2895 } 2896 break; 2897 2898 case 61: /* stfdp, lxv, stxsd, stxssp, stxv */ 2899 switch (word & 7) { 2900 case 0: /* stfdp with LSB of DS field = 0 */ 2901 case 4: /* stfdp with LSB of DS field = 1 */ 2902 op->ea = dsform_ea(word, regs); 2903 op->type = MKOP(STORE_FP, 0, 16); 2904 break; 2905 2906 case 1: /* lxv */ 2907 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2908 goto unknown_opcode; 2909 op->ea = dqform_ea(word, regs); 2910 if (word & 8) 2911 op->reg = rd + 32; 2912 op->type = MKOP(LOAD_VSX, 0, 16); 2913 op->element_size = 16; 2914 op->vsx_flags = VSX_CHECK_VEC; 2915 break; 2916 2917 case 2: /* stxsd with LSB of DS field = 0 */ 2918 case 6: /* stxsd with LSB of DS field = 1 */ 2919 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2920 goto unknown_opcode; 2921 op->ea = dsform_ea(word, regs); 2922 op->reg = rd + 32; 2923 op->type = MKOP(STORE_VSX, 0, 8); 2924 op->element_size = 8; 2925 op->vsx_flags = VSX_CHECK_VEC; 2926 break; 2927 2928 case 3: /* stxssp with LSB of DS field = 0 */ 2929 case 7: /* stxssp with LSB of DS field = 1 */ 2930 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2931 goto unknown_opcode; 2932 op->ea = dsform_ea(word, regs); 2933 op->reg = rd + 32; 2934 op->type = MKOP(STORE_VSX, 0, 4); 2935 op->element_size = 8; 2936 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC; 2937 break; 2938 2939 case 5: /* stxv */ 2940 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2941 goto unknown_opcode; 2942 op->ea = dqform_ea(word, regs); 2943 if (word & 8) 2944 op->reg = rd + 32; 2945 op->type = MKOP(STORE_VSX, 0, 16); 2946 op->element_size = 16; 2947 op->vsx_flags = VSX_CHECK_VEC; 2948 break; 2949 } 2950 break; 2951#endif /* CONFIG_VSX */ 2952 2953#ifdef __powerpc64__ 2954 case 62: /* std[u] */ 2955 op->ea = dsform_ea(word, regs); 2956 switch (word & 3) { 2957 case 0: /* std */ 2958 op->type = MKOP(STORE, 0, 8); 2959 break; 2960 case 1: /* stdu */ 2961 op->type = MKOP(STORE, UPDATE, 8); 2962 break; 2963 case 2: /* stq */ 2964 if (!(rd & 1)) 2965 op->type = MKOP(STORE, 0, 16); 2966 break; 2967 } 2968 break; 2969 case 1: /* Prefixed instructions */ 2970 if (!cpu_has_feature(CPU_FTR_ARCH_31)) 2971 goto unknown_opcode; 2972 2973 prefix_r = GET_PREFIX_R(word); 2974 ra = GET_PREFIX_RA(suffix); 2975 op->update_reg = ra; 2976 rd = (suffix >> 21) & 0x1f; 2977 op->reg = rd; 2978 op->val = regs->gpr[rd]; 2979 2980 suffixopcode = get_op(suffix); 2981 prefixtype = (word >> 24) & 0x3; 2982 switch (prefixtype) { 2983 case 0: /* Type 00 Eight-Byte Load/Store */ 2984 if (prefix_r && ra) 2985 break; 2986 op->ea = mlsd_8lsd_ea(word, suffix, regs); 2987 switch (suffixopcode) { 2988 case 41: /* plwa */ 2989 op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 4); 2990 break; 2991#ifdef CONFIG_VSX 2992 case 42: /* plxsd */ 2993 op->reg = rd + 32; 2994 op->type = MKOP(LOAD_VSX, PREFIXED, 8); 2995 op->element_size = 8; 2996 op->vsx_flags = VSX_CHECK_VEC; 2997 break; 2998 case 43: /* plxssp */ 2999 op->reg = rd + 32; 3000 op->type = MKOP(LOAD_VSX, PREFIXED, 4); 3001 op->element_size = 8; 3002 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC; 3003 break; 3004 case 46: /* pstxsd */ 3005 op->reg = rd + 32; 3006 op->type = MKOP(STORE_VSX, PREFIXED, 8); 3007 op->element_size = 8; 3008 op->vsx_flags = VSX_CHECK_VEC; 3009 break; 3010 case 47: /* pstxssp */ 3011 op->reg = rd + 32; 3012 op->type = MKOP(STORE_VSX, PREFIXED, 4); 3013 op->element_size = 8; 3014 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC; 3015 break; 3016 case 51: /* plxv1 */ 3017 op->reg += 32; 3018 fallthrough; 3019 case 50: /* plxv0 */ 3020 op->type = MKOP(LOAD_VSX, PREFIXED, 16); 3021 op->element_size = 16; 3022 op->vsx_flags = VSX_CHECK_VEC; 3023 break; 3024 case 55: /* pstxv1 */ 3025 op->reg = rd + 32; 3026 fallthrough; 3027 case 54: /* pstxv0 */ 3028 op->type = MKOP(STORE_VSX, PREFIXED, 16); 3029 op->element_size = 16; 3030 op->vsx_flags = VSX_CHECK_VEC; 3031 break; 3032#endif /* CONFIG_VSX */ 3033 case 56: /* plq */ 3034 op->type = MKOP(LOAD, PREFIXED, 16); 3035 break; 3036 case 57: /* pld */ 3037 op->type = MKOP(LOAD, PREFIXED, 8); 3038 break; 3039#ifdef CONFIG_VSX 3040 case 58: /* plxvp */ 3041 op->reg = VSX_REGISTER_XTP(rd); 3042 op->type = MKOP(LOAD_VSX, PREFIXED, 32); 3043 op->element_size = 32; 3044 break; 3045#endif /* CONFIG_VSX */ 3046 case 60: /* pstq */ 3047 op->type = MKOP(STORE, PREFIXED, 16); 3048 break; 3049 case 61: /* pstd */ 3050 op->type = MKOP(STORE, PREFIXED, 8); 3051 break; 3052#ifdef CONFIG_VSX 3053 case 62: /* pstxvp */ 3054 op->reg = VSX_REGISTER_XTP(rd); 3055 op->type = MKOP(STORE_VSX, PREFIXED, 32); 3056 op->element_size = 32; 3057 break; 3058#endif /* CONFIG_VSX */ 3059 } 3060 break; 3061 case 1: /* Type 01 Eight-Byte Register-to-Register */ 3062 break; 3063 case 2: /* Type 10 Modified Load/Store */ 3064 if (prefix_r && ra) 3065 break; 3066 op->ea = mlsd_8lsd_ea(word, suffix, regs); 3067 switch (suffixopcode) { 3068 case 32: /* plwz */ 3069 op->type = MKOP(LOAD, PREFIXED, 4); 3070 break; 3071 case 34: /* plbz */ 3072 op->type = MKOP(LOAD, PREFIXED, 1); 3073 break; 3074 case 36: /* pstw */ 3075 op->type = MKOP(STORE, PREFIXED, 4); 3076 break; 3077 case 38: /* pstb */ 3078 op->type = MKOP(STORE, PREFIXED, 1); 3079 break; 3080 case 40: /* plhz */ 3081 op->type = MKOP(LOAD, PREFIXED, 2); 3082 break; 3083 case 42: /* plha */ 3084 op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 2); 3085 break; 3086 case 44: /* psth */ 3087 op->type = MKOP(STORE, PREFIXED, 2); 3088 break; 3089 case 48: /* plfs */ 3090 op->type = MKOP(LOAD_FP, PREFIXED | FPCONV, 4); 3091 break; 3092 case 50: /* plfd */ 3093 op->type = MKOP(LOAD_FP, PREFIXED, 8); 3094 break; 3095 case 52: /* pstfs */ 3096 op->type = MKOP(STORE_FP, PREFIXED | FPCONV, 4); 3097 break; 3098 case 54: /* pstfd */ 3099 op->type = MKOP(STORE_FP, PREFIXED, 8); 3100 break; 3101 } 3102 break; 3103 case 3: /* Type 11 Modified Register-to-Register */ 3104 break; 3105 } 3106#endif /* __powerpc64__ */ 3107 3108 } 3109 3110 if (OP_IS_LOAD_STORE(op->type) && (op->type & UPDATE)) { 3111 switch (GETTYPE(op->type)) { 3112 case LOAD: 3113 if (ra == rd) 3114 goto unknown_opcode; 3115 fallthrough; 3116 case STORE: 3117 case LOAD_FP: 3118 case STORE_FP: 3119 if (ra == 0) 3120 goto unknown_opcode; 3121 } 3122 } 3123 3124#ifdef CONFIG_VSX 3125 if ((GETTYPE(op->type) == LOAD_VSX || 3126 GETTYPE(op->type) == STORE_VSX) && 3127 !cpu_has_feature(CPU_FTR_VSX)) { 3128 return -1; 3129 } 3130#endif /* CONFIG_VSX */ 3131 3132 return 0; 3133 3134 unknown_opcode: 3135 op->type = UNKNOWN; 3136 return 0; 3137 3138 logical_done: 3139 if (word & 1) 3140 set_cr0(regs, op); 3141 logical_done_nocc: 3142 op->reg = ra; 3143 op->type |= SETREG; 3144 return 1; 3145 3146 arith_done: 3147 if (word & 1) 3148 set_cr0(regs, op); 3149 compute_done: 3150 op->reg = rd; 3151 op->type |= SETREG; 3152 return 1; 3153 3154 priv: 3155 op->type = INTERRUPT | 0x700; 3156 op->val = SRR1_PROGPRIV; 3157 return 0; 3158 3159 trap: 3160 op->type = INTERRUPT | 0x700; 3161 op->val = SRR1_PROGTRAP; 3162 return 0; 3163} 3164EXPORT_SYMBOL_GPL(analyse_instr); 3165NOKPROBE_SYMBOL(analyse_instr); 3166 3167/* 3168 * For PPC32 we always use stwu with r1 to change the stack pointer. 3169 * So this emulated store may corrupt the exception frame, now we 3170 * have to provide the exception frame trampoline, which is pushed 3171 * below the kprobed function stack. So we only update gpr[1] but 3172 * don't emulate the real store operation. We will do real store 3173 * operation safely in exception return code by checking this flag. 3174 */ 3175static nokprobe_inline int handle_stack_update(unsigned long ea, struct pt_regs *regs) 3176{ 3177 /* 3178 * Check if we already set since that means we'll 3179 * lose the previous value. 3180 */ 3181 WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE)); 3182 set_thread_flag(TIF_EMULATE_STACK_STORE); 3183 return 0; 3184} 3185 3186static nokprobe_inline void do_signext(unsigned long *valp, int size) 3187{ 3188 switch (size) { 3189 case 2: 3190 *valp = (signed short) *valp; 3191 break; 3192 case 4: 3193 *valp = (signed int) *valp; 3194 break; 3195 } 3196} 3197 3198static nokprobe_inline void do_byterev(unsigned long *valp, int size) 3199{ 3200 switch (size) { 3201 case 2: 3202 *valp = byterev_2(*valp); 3203 break; 3204 case 4: 3205 *valp = byterev_4(*valp); 3206 break; 3207#ifdef __powerpc64__ 3208 case 8: 3209 *valp = byterev_8(*valp); 3210 break; 3211#endif 3212 } 3213} 3214 3215/* 3216 * Emulate an instruction that can be executed just by updating 3217 * fields in *regs. 3218 */ 3219void emulate_update_regs(struct pt_regs *regs, struct instruction_op *op) 3220{ 3221 unsigned long next_pc; 3222 3223 next_pc = truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op->type)); 3224 switch (GETTYPE(op->type)) { 3225 case COMPUTE: 3226 if (op->type & SETREG) 3227 regs->gpr[op->reg] = op->val; 3228 if (op->type & SETCC) 3229 regs->ccr = op->ccval; 3230 if (op->type & SETXER) 3231 regs->xer = op->xerval; 3232 break; 3233 3234 case BRANCH: 3235 if (op->type & SETLK) 3236 regs->link = next_pc; 3237 if (op->type & BRTAKEN) 3238 next_pc = op->val; 3239 if (op->type & DECCTR) 3240 --regs->ctr; 3241 break; 3242 3243 case BARRIER: 3244 switch (op->type & BARRIER_MASK) { 3245 case BARRIER_SYNC: 3246 mb(); 3247 break; 3248 case BARRIER_ISYNC: 3249 isync(); 3250 break; 3251 case BARRIER_EIEIO: 3252 eieio(); 3253 break; 3254#ifdef CONFIG_PPC64 3255 case BARRIER_LWSYNC: 3256 asm volatile("lwsync" : : : "memory"); 3257 break; 3258 case BARRIER_PTESYNC: 3259 asm volatile("ptesync" : : : "memory"); 3260 break; 3261#endif 3262 } 3263 break; 3264 3265 case MFSPR: 3266 switch (op->spr) { 3267 case SPRN_XER: 3268 regs->gpr[op->reg] = regs->xer & 0xffffffffUL; 3269 break; 3270 case SPRN_LR: 3271 regs->gpr[op->reg] = regs->link; 3272 break; 3273 case SPRN_CTR: 3274 regs->gpr[op->reg] = regs->ctr; 3275 break; 3276 default: 3277 WARN_ON_ONCE(1); 3278 } 3279 break; 3280 3281 case MTSPR: 3282 switch (op->spr) { 3283 case SPRN_XER: 3284 regs->xer = op->val & 0xffffffffUL; 3285 break; 3286 case SPRN_LR: 3287 regs->link = op->val; 3288 break; 3289 case SPRN_CTR: 3290 regs->ctr = op->val; 3291 break; 3292 default: 3293 WARN_ON_ONCE(1); 3294 } 3295 break; 3296 3297 default: 3298 WARN_ON_ONCE(1); 3299 } 3300 regs_set_return_ip(regs, next_pc); 3301} 3302NOKPROBE_SYMBOL(emulate_update_regs); 3303 3304/* 3305 * Emulate a previously-analysed load or store instruction. 3306 * Return values are: 3307 * 0 = instruction emulated successfully 3308 * -EFAULT = address out of range or access faulted (regs->dar 3309 * contains the faulting address) 3310 * -EACCES = misaligned access, instruction requires alignment 3311 * -EINVAL = unknown operation in *op 3312 */ 3313int emulate_loadstore(struct pt_regs *regs, struct instruction_op *op) 3314{ 3315 int err, size, type; 3316 int i, rd, nb; 3317 unsigned int cr; 3318 unsigned long val; 3319 unsigned long ea; 3320 bool cross_endian; 3321 3322 err = 0; 3323 size = GETSIZE(op->type); 3324 type = GETTYPE(op->type); 3325 cross_endian = (regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE); 3326 ea = truncate_if_32bit(regs->msr, op->ea); 3327 3328 switch (type) { 3329 case LARX: 3330 if (ea & (size - 1)) 3331 return -EACCES; /* can't handle misaligned */ 3332 if (!address_ok(regs, ea, size)) 3333 return -EFAULT; 3334 err = 0; 3335 val = 0; 3336 switch (size) { 3337#ifdef __powerpc64__ 3338 case 1: 3339 __get_user_asmx(val, ea, err, "lbarx"); 3340 break; 3341 case 2: 3342 __get_user_asmx(val, ea, err, "lharx"); 3343 break; 3344#endif 3345 case 4: 3346 __get_user_asmx(val, ea, err, "lwarx"); 3347 break; 3348#ifdef __powerpc64__ 3349 case 8: 3350 __get_user_asmx(val, ea, err, "ldarx"); 3351 break; 3352 case 16: 3353 err = do_lqarx(ea, ®s->gpr[op->reg]); 3354 break; 3355#endif 3356 default: 3357 return -EINVAL; 3358 } 3359 if (err) { 3360 regs->dar = ea; 3361 break; 3362 } 3363 if (size < 16) 3364 regs->gpr[op->reg] = val; 3365 break; 3366 3367 case STCX: 3368 if (ea & (size - 1)) 3369 return -EACCES; /* can't handle misaligned */ 3370 if (!address_ok(regs, ea, size)) 3371 return -EFAULT; 3372 err = 0; 3373 switch (size) { 3374#ifdef __powerpc64__ 3375 case 1: 3376 __put_user_asmx(op->val, ea, err, "stbcx.", cr); 3377 break; 3378 case 2: 3379 __put_user_asmx(op->val, ea, err, "sthcx.", cr); 3380 break; 3381#endif 3382 case 4: 3383 __put_user_asmx(op->val, ea, err, "stwcx.", cr); 3384 break; 3385#ifdef __powerpc64__ 3386 case 8: 3387 __put_user_asmx(op->val, ea, err, "stdcx.", cr); 3388 break; 3389 case 16: 3390 err = do_stqcx(ea, regs->gpr[op->reg], 3391 regs->gpr[op->reg + 1], &cr); 3392 break; 3393#endif 3394 default: 3395 return -EINVAL; 3396 } 3397 if (!err) 3398 regs->ccr = (regs->ccr & 0x0fffffff) | 3399 (cr & 0xe0000000) | 3400 ((regs->xer >> 3) & 0x10000000); 3401 else 3402 regs->dar = ea; 3403 break; 3404 3405 case LOAD: 3406#ifdef __powerpc64__ 3407 if (size == 16) { 3408 err = emulate_lq(regs, ea, op->reg, cross_endian); 3409 break; 3410 } 3411#endif 3412 err = read_mem(®s->gpr[op->reg], ea, size, regs); 3413 if (!err) { 3414 if (op->type & SIGNEXT) 3415 do_signext(®s->gpr[op->reg], size); 3416 if ((op->type & BYTEREV) == (cross_endian ? 0 : BYTEREV)) 3417 do_byterev(®s->gpr[op->reg], size); 3418 } 3419 break; 3420 3421#ifdef CONFIG_PPC_FPU 3422 case LOAD_FP: 3423 /* 3424 * If the instruction is in userspace, we can emulate it even 3425 * if the VMX state is not live, because we have the state 3426 * stored in the thread_struct. If the instruction is in 3427 * the kernel, we must not touch the state in the thread_struct. 3428 */ 3429 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP)) 3430 return 0; 3431 err = do_fp_load(op, ea, regs, cross_endian); 3432 break; 3433#endif 3434#ifdef CONFIG_ALTIVEC 3435 case LOAD_VMX: 3436 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC)) 3437 return 0; 3438 err = do_vec_load(op->reg, ea, size, regs, cross_endian); 3439 break; 3440#endif 3441#ifdef CONFIG_VSX 3442 case LOAD_VSX: { 3443 unsigned long msrbit = MSR_VSX; 3444 3445 /* 3446 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX 3447 * when the target of the instruction is a vector register. 3448 */ 3449 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC)) 3450 msrbit = MSR_VEC; 3451 if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit)) 3452 return 0; 3453 err = do_vsx_load(op, ea, regs, cross_endian); 3454 break; 3455 } 3456#endif 3457 case LOAD_MULTI: 3458 if (!address_ok(regs, ea, size)) 3459 return -EFAULT; 3460 rd = op->reg; 3461 for (i = 0; i < size; i += 4) { 3462 unsigned int v32 = 0; 3463 3464 nb = size - i; 3465 if (nb > 4) 3466 nb = 4; 3467 err = copy_mem_in((u8 *) &v32, ea, nb, regs); 3468 if (err) 3469 break; 3470 if (unlikely(cross_endian)) 3471 v32 = byterev_4(v32); 3472 regs->gpr[rd] = v32; 3473 ea += 4; 3474 /* reg number wraps from 31 to 0 for lsw[ix] */ 3475 rd = (rd + 1) & 0x1f; 3476 } 3477 break; 3478 3479 case STORE: 3480#ifdef __powerpc64__ 3481 if (size == 16) { 3482 err = emulate_stq(regs, ea, op->reg, cross_endian); 3483 break; 3484 } 3485#endif 3486 if ((op->type & UPDATE) && size == sizeof(long) && 3487 op->reg == 1 && op->update_reg == 1 && 3488 !(regs->msr & MSR_PR) && 3489 ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) { 3490 err = handle_stack_update(ea, regs); 3491 break; 3492 } 3493 if (unlikely(cross_endian)) 3494 do_byterev(&op->val, size); 3495 err = write_mem(op->val, ea, size, regs); 3496 break; 3497 3498#ifdef CONFIG_PPC_FPU 3499 case STORE_FP: 3500 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP)) 3501 return 0; 3502 err = do_fp_store(op, ea, regs, cross_endian); 3503 break; 3504#endif 3505#ifdef CONFIG_ALTIVEC 3506 case STORE_VMX: 3507 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC)) 3508 return 0; 3509 err = do_vec_store(op->reg, ea, size, regs, cross_endian); 3510 break; 3511#endif 3512#ifdef CONFIG_VSX 3513 case STORE_VSX: { 3514 unsigned long msrbit = MSR_VSX; 3515 3516 /* 3517 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX 3518 * when the target of the instruction is a vector register. 3519 */ 3520 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC)) 3521 msrbit = MSR_VEC; 3522 if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit)) 3523 return 0; 3524 err = do_vsx_store(op, ea, regs, cross_endian); 3525 break; 3526 } 3527#endif 3528 case STORE_MULTI: 3529 if (!address_ok(regs, ea, size)) 3530 return -EFAULT; 3531 rd = op->reg; 3532 for (i = 0; i < size; i += 4) { 3533 unsigned int v32 = regs->gpr[rd]; 3534 3535 nb = size - i; 3536 if (nb > 4) 3537 nb = 4; 3538 if (unlikely(cross_endian)) 3539 v32 = byterev_4(v32); 3540 err = copy_mem_out((u8 *) &v32, ea, nb, regs); 3541 if (err) 3542 break; 3543 ea += 4; 3544 /* reg number wraps from 31 to 0 for stsw[ix] */ 3545 rd = (rd + 1) & 0x1f; 3546 } 3547 break; 3548 3549 default: 3550 return -EINVAL; 3551 } 3552 3553 if (err) 3554 return err; 3555 3556 if (op->type & UPDATE) 3557 regs->gpr[op->update_reg] = op->ea; 3558 3559 return 0; 3560} 3561NOKPROBE_SYMBOL(emulate_loadstore); 3562 3563/* 3564 * Emulate instructions that cause a transfer of control, 3565 * loads and stores, and a few other instructions. 3566 * Returns 1 if the step was emulated, 0 if not, 3567 * or -1 if the instruction is one that should not be stepped, 3568 * such as an rfid, or a mtmsrd that would clear MSR_RI. 3569 */ 3570int emulate_step(struct pt_regs *regs, ppc_inst_t instr) 3571{ 3572 struct instruction_op op; 3573 int r, err, type; 3574 unsigned long val; 3575 unsigned long ea; 3576 3577 r = analyse_instr(&op, regs, instr); 3578 if (r < 0) 3579 return r; 3580 if (r > 0) { 3581 emulate_update_regs(regs, &op); 3582 return 1; 3583 } 3584 3585 err = 0; 3586 type = GETTYPE(op.type); 3587 3588 if (OP_IS_LOAD_STORE(type)) { 3589 err = emulate_loadstore(regs, &op); 3590 if (err) 3591 return 0; 3592 goto instr_done; 3593 } 3594 3595 switch (type) { 3596 case CACHEOP: 3597 ea = truncate_if_32bit(regs->msr, op.ea); 3598 if (!address_ok(regs, ea, 8)) 3599 return 0; 3600 switch (op.type & CACHEOP_MASK) { 3601 case DCBST: 3602 __cacheop_user_asmx(ea, err, "dcbst"); 3603 break; 3604 case DCBF: 3605 __cacheop_user_asmx(ea, err, "dcbf"); 3606 break; 3607 case DCBTST: 3608 if (op.reg == 0) 3609 prefetchw((void *) ea); 3610 break; 3611 case DCBT: 3612 if (op.reg == 0) 3613 prefetch((void *) ea); 3614 break; 3615 case ICBI: 3616 __cacheop_user_asmx(ea, err, "icbi"); 3617 break; 3618 case DCBZ: 3619 err = emulate_dcbz(ea, regs); 3620 break; 3621 } 3622 if (err) { 3623 regs->dar = ea; 3624 return 0; 3625 } 3626 goto instr_done; 3627 3628 case MFMSR: 3629 regs->gpr[op.reg] = regs->msr & MSR_MASK; 3630 goto instr_done; 3631 3632 case MTMSR: 3633 val = regs->gpr[op.reg]; 3634 if ((val & MSR_RI) == 0) 3635 /* can't step mtmsr[d] that would clear MSR_RI */ 3636 return -1; 3637 /* here op.val is the mask of bits to change */ 3638 regs_set_return_msr(regs, (regs->msr & ~op.val) | (val & op.val)); 3639 goto instr_done; 3640 3641 case SYSCALL: /* sc */ 3642 /* 3643 * Per ISA v3.1, section 7.5.15 'Trace Interrupt', we can't 3644 * single step a system call instruction: 3645 * 3646 * Successful completion for an instruction means that the 3647 * instruction caused no other interrupt. Thus a Trace 3648 * interrupt never occurs for a System Call or System Call 3649 * Vectored instruction, or for a Trap instruction that 3650 * traps. 3651 */ 3652 return -1; 3653 case SYSCALL_VECTORED_0: /* scv 0 */ 3654 return -1; 3655 case RFI: 3656 return -1; 3657 } 3658 return 0; 3659 3660 instr_done: 3661 regs_set_return_ip(regs, 3662 truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op.type))); 3663 return 1; 3664} 3665NOKPROBE_SYMBOL(emulate_step);