cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

hash_tlb.c (7244B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * This file contains the routines for flushing entries from the
      4 * TLB and MMU hash table.
      5 *
      6 *  Derived from arch/ppc64/mm/init.c:
      7 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
      8 *
      9 *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
     10 *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
     11 *    Copyright (C) 1996 Paul Mackerras
     12 *
     13 *  Derived from "arch/i386/mm/init.c"
     14 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
     15 *
     16 *  Dave Engebretsen <engebret@us.ibm.com>
     17 *      Rework for PPC64 port.
     18 */
     19
     20#include <linux/kernel.h>
     21#include <linux/mm.h>
     22#include <linux/percpu.h>
     23#include <linux/hardirq.h>
     24#include <asm/tlbflush.h>
     25#include <asm/tlb.h>
     26#include <asm/bug.h>
     27#include <asm/pte-walk.h>
     28
     29
     30#include <trace/events/thp.h>
     31
     32DEFINE_PER_CPU(struct ppc64_tlb_batch, ppc64_tlb_batch);
     33
     34/*
     35 * A linux PTE was changed and the corresponding hash table entry
     36 * neesd to be flushed. This function will either perform the flush
     37 * immediately or will batch it up if the current CPU has an active
     38 * batch on it.
     39 */
     40void hpte_need_flush(struct mm_struct *mm, unsigned long addr,
     41		     pte_t *ptep, unsigned long pte, int huge)
     42{
     43	unsigned long vpn;
     44	struct ppc64_tlb_batch *batch = &get_cpu_var(ppc64_tlb_batch);
     45	unsigned long vsid;
     46	unsigned int psize;
     47	int ssize;
     48	real_pte_t rpte;
     49	int i, offset;
     50
     51	i = batch->index;
     52
     53	/*
     54	 * Get page size (maybe move back to caller).
     55	 *
     56	 * NOTE: when using special 64K mappings in 4K environment like
     57	 * for SPEs, we obtain the page size from the slice, which thus
     58	 * must still exist (and thus the VMA not reused) at the time
     59	 * of this call
     60	 */
     61	if (huge) {
     62#ifdef CONFIG_HUGETLB_PAGE
     63		psize = get_slice_psize(mm, addr);
     64		/* Mask the address for the correct page size */
     65		addr &= ~((1UL << mmu_psize_defs[psize].shift) - 1);
     66		if (unlikely(psize == MMU_PAGE_16G))
     67			offset = PTRS_PER_PUD;
     68		else
     69			offset = PTRS_PER_PMD;
     70#else
     71		BUG();
     72		psize = pte_pagesize_index(mm, addr, pte); /* shutup gcc */
     73#endif
     74	} else {
     75		psize = pte_pagesize_index(mm, addr, pte);
     76		/*
     77		 * Mask the address for the standard page size.  If we
     78		 * have a 64k page kernel, but the hardware does not
     79		 * support 64k pages, this might be different from the
     80		 * hardware page size encoded in the slice table.
     81		 */
     82		addr &= PAGE_MASK;
     83		offset = PTRS_PER_PTE;
     84	}
     85
     86
     87	/* Build full vaddr */
     88	if (!is_kernel_addr(addr)) {
     89		ssize = user_segment_size(addr);
     90		vsid = get_user_vsid(&mm->context, addr, ssize);
     91	} else {
     92		vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
     93		ssize = mmu_kernel_ssize;
     94	}
     95	WARN_ON(vsid == 0);
     96	vpn = hpt_vpn(addr, vsid, ssize);
     97	rpte = __real_pte(__pte(pte), ptep, offset);
     98
     99	/*
    100	 * Check if we have an active batch on this CPU. If not, just
    101	 * flush now and return.
    102	 */
    103	if (!batch->active) {
    104		flush_hash_page(vpn, rpte, psize, ssize, mm_is_thread_local(mm));
    105		put_cpu_var(ppc64_tlb_batch);
    106		return;
    107	}
    108
    109	/*
    110	 * This can happen when we are in the middle of a TLB batch and
    111	 * we encounter memory pressure (eg copy_page_range when it tries
    112	 * to allocate a new pte). If we have to reclaim memory and end
    113	 * up scanning and resetting referenced bits then our batch context
    114	 * will change mid stream.
    115	 *
    116	 * We also need to ensure only one page size is present in a given
    117	 * batch
    118	 */
    119	if (i != 0 && (mm != batch->mm || batch->psize != psize ||
    120		       batch->ssize != ssize)) {
    121		__flush_tlb_pending(batch);
    122		i = 0;
    123	}
    124	if (i == 0) {
    125		batch->mm = mm;
    126		batch->psize = psize;
    127		batch->ssize = ssize;
    128	}
    129	batch->pte[i] = rpte;
    130	batch->vpn[i] = vpn;
    131	batch->index = ++i;
    132	if (i >= PPC64_TLB_BATCH_NR)
    133		__flush_tlb_pending(batch);
    134	put_cpu_var(ppc64_tlb_batch);
    135}
    136
    137/*
    138 * This function is called when terminating an mmu batch or when a batch
    139 * is full. It will perform the flush of all the entries currently stored
    140 * in a batch.
    141 *
    142 * Must be called from within some kind of spinlock/non-preempt region...
    143 */
    144void __flush_tlb_pending(struct ppc64_tlb_batch *batch)
    145{
    146	int i, local;
    147
    148	i = batch->index;
    149	local = mm_is_thread_local(batch->mm);
    150	if (i == 1)
    151		flush_hash_page(batch->vpn[0], batch->pte[0],
    152				batch->psize, batch->ssize, local);
    153	else
    154		flush_hash_range(i, local);
    155	batch->index = 0;
    156}
    157
    158void hash__tlb_flush(struct mmu_gather *tlb)
    159{
    160	struct ppc64_tlb_batch *tlbbatch = &get_cpu_var(ppc64_tlb_batch);
    161
    162	/*
    163	 * If there's a TLB batch pending, then we must flush it because the
    164	 * pages are going to be freed and we really don't want to have a CPU
    165	 * access a freed page because it has a stale TLB
    166	 */
    167	if (tlbbatch->index)
    168		__flush_tlb_pending(tlbbatch);
    169
    170	put_cpu_var(ppc64_tlb_batch);
    171}
    172
    173/**
    174 * __flush_hash_table_range - Flush all HPTEs for a given address range
    175 *                            from the hash table (and the TLB). But keeps
    176 *                            the linux PTEs intact.
    177 *
    178 * @start	: starting address
    179 * @end         : ending address (not included in the flush)
    180 *
    181 * This function is mostly to be used by some IO hotplug code in order
    182 * to remove all hash entries from a given address range used to map IO
    183 * space on a removed PCI-PCI bidge without tearing down the full mapping
    184 * since 64K pages may overlap with other bridges when using 64K pages
    185 * with 4K HW pages on IO space.
    186 *
    187 * Because of that usage pattern, it is implemented for small size rather
    188 * than speed.
    189 */
    190void __flush_hash_table_range(unsigned long start, unsigned long end)
    191{
    192	int hugepage_shift;
    193	unsigned long flags;
    194
    195	start = ALIGN_DOWN(start, PAGE_SIZE);
    196	end = ALIGN(end, PAGE_SIZE);
    197
    198
    199	/*
    200	 * Note: Normally, we should only ever use a batch within a
    201	 * PTE locked section. This violates the rule, but will work
    202	 * since we don't actually modify the PTEs, we just flush the
    203	 * hash while leaving the PTEs intact (including their reference
    204	 * to being hashed). This is not the most performance oriented
    205	 * way to do things but is fine for our needs here.
    206	 */
    207	local_irq_save(flags);
    208	arch_enter_lazy_mmu_mode();
    209	for (; start < end; start += PAGE_SIZE) {
    210		pte_t *ptep = find_init_mm_pte(start, &hugepage_shift);
    211		unsigned long pte;
    212
    213		if (ptep == NULL)
    214			continue;
    215		pte = pte_val(*ptep);
    216		if (!(pte & H_PAGE_HASHPTE))
    217			continue;
    218		hpte_need_flush(&init_mm, start, ptep, pte, hugepage_shift);
    219	}
    220	arch_leave_lazy_mmu_mode();
    221	local_irq_restore(flags);
    222}
    223
    224void flush_tlb_pmd_range(struct mm_struct *mm, pmd_t *pmd, unsigned long addr)
    225{
    226	pte_t *pte;
    227	pte_t *start_pte;
    228	unsigned long flags;
    229
    230	addr = ALIGN_DOWN(addr, PMD_SIZE);
    231	/*
    232	 * Note: Normally, we should only ever use a batch within a
    233	 * PTE locked section. This violates the rule, but will work
    234	 * since we don't actually modify the PTEs, we just flush the
    235	 * hash while leaving the PTEs intact (including their reference
    236	 * to being hashed). This is not the most performance oriented
    237	 * way to do things but is fine for our needs here.
    238	 */
    239	local_irq_save(flags);
    240	arch_enter_lazy_mmu_mode();
    241	start_pte = pte_offset_map(pmd, addr);
    242	for (pte = start_pte; pte < start_pte + PTRS_PER_PTE; pte++) {
    243		unsigned long pteval = pte_val(*pte);
    244		if (pteval & H_PAGE_HASHPTE)
    245			hpte_need_flush(mm, addr, pte, pteval, 0);
    246		addr += PAGE_SIZE;
    247	}
    248	arch_leave_lazy_mmu_mode();
    249	local_irq_restore(flags);
    250}