cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

mmu_context.c (8965B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 *  MMU context allocation for 64-bit kernels.
      4 *
      5 *  Copyright (C) 2004 Anton Blanchard, IBM Corp. <anton@samba.org>
      6 */
      7
      8#include <linux/sched.h>
      9#include <linux/kernel.h>
     10#include <linux/errno.h>
     11#include <linux/string.h>
     12#include <linux/types.h>
     13#include <linux/mm.h>
     14#include <linux/pkeys.h>
     15#include <linux/spinlock.h>
     16#include <linux/idr.h>
     17#include <linux/export.h>
     18#include <linux/gfp.h>
     19#include <linux/slab.h>
     20#include <linux/cpu.h>
     21
     22#include <asm/mmu_context.h>
     23#include <asm/pgalloc.h>
     24
     25#include "internal.h"
     26
     27static DEFINE_IDA(mmu_context_ida);
     28
     29static int alloc_context_id(int min_id, int max_id)
     30{
     31	return ida_alloc_range(&mmu_context_ida, min_id, max_id, GFP_KERNEL);
     32}
     33
     34#ifdef CONFIG_PPC_64S_HASH_MMU
     35void __init hash__reserve_context_id(int id)
     36{
     37	int result = ida_alloc_range(&mmu_context_ida, id, id, GFP_KERNEL);
     38
     39	WARN(result != id, "mmu: Failed to reserve context id %d (rc %d)\n", id, result);
     40}
     41
     42int hash__alloc_context_id(void)
     43{
     44	unsigned long max;
     45
     46	if (mmu_has_feature(MMU_FTR_68_BIT_VA))
     47		max = MAX_USER_CONTEXT;
     48	else
     49		max = MAX_USER_CONTEXT_65BIT_VA;
     50
     51	return alloc_context_id(MIN_USER_CONTEXT, max);
     52}
     53EXPORT_SYMBOL_GPL(hash__alloc_context_id);
     54#endif
     55
     56#ifdef CONFIG_PPC_64S_HASH_MMU
     57static int realloc_context_ids(mm_context_t *ctx)
     58{
     59	int i, id;
     60
     61	/*
     62	 * id 0 (aka. ctx->id) is special, we always allocate a new one, even if
     63	 * there wasn't one allocated previously (which happens in the exec
     64	 * case where ctx is newly allocated).
     65	 *
     66	 * We have to be a bit careful here. We must keep the existing ids in
     67	 * the array, so that we can test if they're non-zero to decide if we
     68	 * need to allocate a new one. However in case of error we must free the
     69	 * ids we've allocated but *not* any of the existing ones (or risk a
     70	 * UAF). That's why we decrement i at the start of the error handling
     71	 * loop, to skip the id that we just tested but couldn't reallocate.
     72	 */
     73	for (i = 0; i < ARRAY_SIZE(ctx->extended_id); i++) {
     74		if (i == 0 || ctx->extended_id[i]) {
     75			id = hash__alloc_context_id();
     76			if (id < 0)
     77				goto error;
     78
     79			ctx->extended_id[i] = id;
     80		}
     81	}
     82
     83	/* The caller expects us to return id */
     84	return ctx->id;
     85
     86error:
     87	for (i--; i >= 0; i--) {
     88		if (ctx->extended_id[i])
     89			ida_free(&mmu_context_ida, ctx->extended_id[i]);
     90	}
     91
     92	return id;
     93}
     94
     95static int hash__init_new_context(struct mm_struct *mm)
     96{
     97	int index;
     98
     99	mm->context.hash_context = kmalloc(sizeof(struct hash_mm_context),
    100					   GFP_KERNEL);
    101	if (!mm->context.hash_context)
    102		return -ENOMEM;
    103
    104	/*
    105	 * The old code would re-promote on fork, we don't do that when using
    106	 * slices as it could cause problem promoting slices that have been
    107	 * forced down to 4K.
    108	 *
    109	 * For book3s we have MMU_NO_CONTEXT set to be ~0. Hence check
    110	 * explicitly against context.id == 0. This ensures that we properly
    111	 * initialize context slice details for newly allocated mm's (which will
    112	 * have id == 0) and don't alter context slice inherited via fork (which
    113	 * will have id != 0).
    114	 *
    115	 * We should not be calling init_new_context() on init_mm. Hence a
    116	 * check against 0 is OK.
    117	 */
    118	if (mm->context.id == 0) {
    119		memset(mm->context.hash_context, 0, sizeof(struct hash_mm_context));
    120		slice_init_new_context_exec(mm);
    121	} else {
    122		/* This is fork. Copy hash_context details from current->mm */
    123		memcpy(mm->context.hash_context, current->mm->context.hash_context, sizeof(struct hash_mm_context));
    124#ifdef CONFIG_PPC_SUBPAGE_PROT
    125		/* inherit subpage prot details if we have one. */
    126		if (current->mm->context.hash_context->spt) {
    127			mm->context.hash_context->spt = kmalloc(sizeof(struct subpage_prot_table),
    128								GFP_KERNEL);
    129			if (!mm->context.hash_context->spt) {
    130				kfree(mm->context.hash_context);
    131				return -ENOMEM;
    132			}
    133		}
    134#endif
    135	}
    136
    137	index = realloc_context_ids(&mm->context);
    138	if (index < 0) {
    139#ifdef CONFIG_PPC_SUBPAGE_PROT
    140		kfree(mm->context.hash_context->spt);
    141#endif
    142		kfree(mm->context.hash_context);
    143		return index;
    144	}
    145
    146	pkey_mm_init(mm);
    147	return index;
    148}
    149
    150void hash__setup_new_exec(void)
    151{
    152	slice_setup_new_exec();
    153
    154	slb_setup_new_exec();
    155}
    156#else
    157static inline int hash__init_new_context(struct mm_struct *mm)
    158{
    159	BUILD_BUG();
    160	return 0;
    161}
    162#endif
    163
    164static int radix__init_new_context(struct mm_struct *mm)
    165{
    166	unsigned long rts_field;
    167	int index, max_id;
    168
    169	max_id = (1 << mmu_pid_bits) - 1;
    170	index = alloc_context_id(mmu_base_pid, max_id);
    171	if (index < 0)
    172		return index;
    173
    174	/*
    175	 * set the process table entry,
    176	 */
    177	rts_field = radix__get_tree_size();
    178	process_tb[index].prtb0 = cpu_to_be64(rts_field | __pa(mm->pgd) | RADIX_PGD_INDEX_SIZE);
    179
    180	/*
    181	 * Order the above store with subsequent update of the PID
    182	 * register (at which point HW can start loading/caching
    183	 * the entry) and the corresponding load by the MMU from
    184	 * the L2 cache.
    185	 */
    186	asm volatile("ptesync;isync" : : : "memory");
    187
    188#ifdef CONFIG_PPC_64S_HASH_MMU
    189	mm->context.hash_context = NULL;
    190#endif
    191
    192	return index;
    193}
    194
    195int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
    196{
    197	int index;
    198
    199	if (radix_enabled())
    200		index = radix__init_new_context(mm);
    201	else
    202		index = hash__init_new_context(mm);
    203
    204	if (index < 0)
    205		return index;
    206
    207	mm->context.id = index;
    208
    209	mm->context.pte_frag = NULL;
    210	mm->context.pmd_frag = NULL;
    211#ifdef CONFIG_SPAPR_TCE_IOMMU
    212	mm_iommu_init(mm);
    213#endif
    214	atomic_set(&mm->context.active_cpus, 0);
    215	atomic_set(&mm->context.copros, 0);
    216
    217	return 0;
    218}
    219
    220void __destroy_context(int context_id)
    221{
    222	ida_free(&mmu_context_ida, context_id);
    223}
    224EXPORT_SYMBOL_GPL(__destroy_context);
    225
    226static void destroy_contexts(mm_context_t *ctx)
    227{
    228	if (radix_enabled()) {
    229		ida_free(&mmu_context_ida, ctx->id);
    230	} else {
    231#ifdef CONFIG_PPC_64S_HASH_MMU
    232		int index, context_id;
    233
    234		for (index = 0; index < ARRAY_SIZE(ctx->extended_id); index++) {
    235			context_id = ctx->extended_id[index];
    236			if (context_id)
    237				ida_free(&mmu_context_ida, context_id);
    238		}
    239		kfree(ctx->hash_context);
    240#else
    241		BUILD_BUG(); // radix_enabled() should be constant true
    242#endif
    243	}
    244}
    245
    246static void pmd_frag_destroy(void *pmd_frag)
    247{
    248	int count;
    249	struct page *page;
    250
    251	page = virt_to_page(pmd_frag);
    252	/* drop all the pending references */
    253	count = ((unsigned long)pmd_frag & ~PAGE_MASK) >> PMD_FRAG_SIZE_SHIFT;
    254	/* We allow PTE_FRAG_NR fragments from a PTE page */
    255	if (atomic_sub_and_test(PMD_FRAG_NR - count, &page->pt_frag_refcount)) {
    256		pgtable_pmd_page_dtor(page);
    257		__free_page(page);
    258	}
    259}
    260
    261static void destroy_pagetable_cache(struct mm_struct *mm)
    262{
    263	void *frag;
    264
    265	frag = mm->context.pte_frag;
    266	if (frag)
    267		pte_frag_destroy(frag);
    268
    269	frag = mm->context.pmd_frag;
    270	if (frag)
    271		pmd_frag_destroy(frag);
    272	return;
    273}
    274
    275void destroy_context(struct mm_struct *mm)
    276{
    277#ifdef CONFIG_SPAPR_TCE_IOMMU
    278	WARN_ON_ONCE(!list_empty(&mm->context.iommu_group_mem_list));
    279#endif
    280	/*
    281	 * For tasks which were successfully initialized we end up calling
    282	 * arch_exit_mmap() which clears the process table entry. And
    283	 * arch_exit_mmap() is called before the required fullmm TLB flush
    284	 * which does a RIC=2 flush. Hence for an initialized task, we do clear
    285	 * any cached process table entries.
    286	 *
    287	 * The condition below handles the error case during task init. We have
    288	 * set the process table entry early and if we fail a task
    289	 * initialization, we need to ensure the process table entry is zeroed.
    290	 * We need not worry about process table entry caches because the task
    291	 * never ran with the PID value.
    292	 */
    293	if (radix_enabled())
    294		process_tb[mm->context.id].prtb0 = 0;
    295	else
    296		subpage_prot_free(mm);
    297	destroy_contexts(&mm->context);
    298	mm->context.id = MMU_NO_CONTEXT;
    299}
    300
    301void arch_exit_mmap(struct mm_struct *mm)
    302{
    303	destroy_pagetable_cache(mm);
    304
    305	if (radix_enabled()) {
    306		/*
    307		 * Radix doesn't have a valid bit in the process table
    308		 * entries. However we know that at least P9 implementation
    309		 * will avoid caching an entry with an invalid RTS field,
    310		 * and 0 is invalid. So this will do.
    311		 *
    312		 * This runs before the "fullmm" tlb flush in exit_mmap,
    313		 * which does a RIC=2 tlbie to clear the process table
    314		 * entry. See the "fullmm" comments in tlb-radix.c.
    315		 *
    316		 * No barrier required here after the store because
    317		 * this process will do the invalidate, which starts with
    318		 * ptesync.
    319		 */
    320		process_tb[mm->context.id].prtb0 = 0;
    321	}
    322}
    323
    324#ifdef CONFIG_PPC_RADIX_MMU
    325void radix__switch_mmu_context(struct mm_struct *prev, struct mm_struct *next)
    326{
    327	mtspr(SPRN_PID, next->context.id);
    328	isync();
    329}
    330#endif
    331
    332/**
    333 * cleanup_cpu_mmu_context - Clean up MMU details for this CPU (newly offlined)
    334 *
    335 * This clears the CPU from mm_cpumask for all processes, and then flushes the
    336 * local TLB to ensure TLB coherency in case the CPU is onlined again.
    337 *
    338 * KVM guest translations are not necessarily flushed here. If KVM started
    339 * using mm_cpumask or the Linux APIs which do, this would have to be resolved.
    340 */
    341#ifdef CONFIG_HOTPLUG_CPU
    342void cleanup_cpu_mmu_context(void)
    343{
    344	int cpu = smp_processor_id();
    345
    346	clear_tasks_mm_cpumask(cpu);
    347	tlbiel_all();
    348}
    349#endif