cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

fault.c (18771B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 *  PowerPC version
      4 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
      5 *
      6 *  Derived from "arch/i386/mm/fault.c"
      7 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
      8 *
      9 *  Modified by Cort Dougan and Paul Mackerras.
     10 *
     11 *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
     12 */
     13
     14#include <linux/signal.h>
     15#include <linux/sched.h>
     16#include <linux/sched/task_stack.h>
     17#include <linux/kernel.h>
     18#include <linux/errno.h>
     19#include <linux/string.h>
     20#include <linux/types.h>
     21#include <linux/pagemap.h>
     22#include <linux/ptrace.h>
     23#include <linux/mman.h>
     24#include <linux/mm.h>
     25#include <linux/interrupt.h>
     26#include <linux/highmem.h>
     27#include <linux/extable.h>
     28#include <linux/kprobes.h>
     29#include <linux/kdebug.h>
     30#include <linux/perf_event.h>
     31#include <linux/ratelimit.h>
     32#include <linux/context_tracking.h>
     33#include <linux/hugetlb.h>
     34#include <linux/uaccess.h>
     35#include <linux/kfence.h>
     36#include <linux/pkeys.h>
     37
     38#include <asm/firmware.h>
     39#include <asm/interrupt.h>
     40#include <asm/page.h>
     41#include <asm/mmu.h>
     42#include <asm/mmu_context.h>
     43#include <asm/siginfo.h>
     44#include <asm/debug.h>
     45#include <asm/kup.h>
     46#include <asm/inst.h>
     47
     48
     49/*
     50 * do_page_fault error handling helpers
     51 */
     52
     53static int
     54__bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code)
     55{
     56	/*
     57	 * If we are in kernel mode, bail out with a SEGV, this will
     58	 * be caught by the assembly which will restore the non-volatile
     59	 * registers before calling bad_page_fault()
     60	 */
     61	if (!user_mode(regs))
     62		return SIGSEGV;
     63
     64	_exception(SIGSEGV, regs, si_code, address);
     65
     66	return 0;
     67}
     68
     69static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
     70{
     71	return __bad_area_nosemaphore(regs, address, SEGV_MAPERR);
     72}
     73
     74static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code)
     75{
     76	struct mm_struct *mm = current->mm;
     77
     78	/*
     79	 * Something tried to access memory that isn't in our memory map..
     80	 * Fix it, but check if it's kernel or user first..
     81	 */
     82	mmap_read_unlock(mm);
     83
     84	return __bad_area_nosemaphore(regs, address, si_code);
     85}
     86
     87static noinline int bad_area(struct pt_regs *regs, unsigned long address)
     88{
     89	return __bad_area(regs, address, SEGV_MAPERR);
     90}
     91
     92static noinline int bad_access_pkey(struct pt_regs *regs, unsigned long address,
     93				    struct vm_area_struct *vma)
     94{
     95	struct mm_struct *mm = current->mm;
     96	int pkey;
     97
     98	/*
     99	 * We don't try to fetch the pkey from page table because reading
    100	 * page table without locking doesn't guarantee stable pte value.
    101	 * Hence the pkey value that we return to userspace can be different
    102	 * from the pkey that actually caused access error.
    103	 *
    104	 * It does *not* guarantee that the VMA we find here
    105	 * was the one that we faulted on.
    106	 *
    107	 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
    108	 * 2. T1   : set AMR to deny access to pkey=4, touches, page
    109	 * 3. T1   : faults...
    110	 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
    111	 * 5. T1   : enters fault handler, takes mmap_lock, etc...
    112	 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
    113	 *	     faulted on a pte with its pkey=4.
    114	 */
    115	pkey = vma_pkey(vma);
    116
    117	mmap_read_unlock(mm);
    118
    119	/*
    120	 * If we are in kernel mode, bail out with a SEGV, this will
    121	 * be caught by the assembly which will restore the non-volatile
    122	 * registers before calling bad_page_fault()
    123	 */
    124	if (!user_mode(regs))
    125		return SIGSEGV;
    126
    127	_exception_pkey(regs, address, pkey);
    128
    129	return 0;
    130}
    131
    132static noinline int bad_access(struct pt_regs *regs, unsigned long address)
    133{
    134	return __bad_area(regs, address, SEGV_ACCERR);
    135}
    136
    137static int do_sigbus(struct pt_regs *regs, unsigned long address,
    138		     vm_fault_t fault)
    139{
    140	if (!user_mode(regs))
    141		return SIGBUS;
    142
    143	current->thread.trap_nr = BUS_ADRERR;
    144#ifdef CONFIG_MEMORY_FAILURE
    145	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
    146		unsigned int lsb = 0; /* shutup gcc */
    147
    148		pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
    149			current->comm, current->pid, address);
    150
    151		if (fault & VM_FAULT_HWPOISON_LARGE)
    152			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
    153		if (fault & VM_FAULT_HWPOISON)
    154			lsb = PAGE_SHIFT;
    155
    156		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
    157		return 0;
    158	}
    159
    160#endif
    161	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
    162	return 0;
    163}
    164
    165static int mm_fault_error(struct pt_regs *regs, unsigned long addr,
    166				vm_fault_t fault)
    167{
    168	/*
    169	 * Kernel page fault interrupted by SIGKILL. We have no reason to
    170	 * continue processing.
    171	 */
    172	if (fatal_signal_pending(current) && !user_mode(regs))
    173		return SIGKILL;
    174
    175	/* Out of memory */
    176	if (fault & VM_FAULT_OOM) {
    177		/*
    178		 * We ran out of memory, or some other thing happened to us that
    179		 * made us unable to handle the page fault gracefully.
    180		 */
    181		if (!user_mode(regs))
    182			return SIGSEGV;
    183		pagefault_out_of_memory();
    184	} else {
    185		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
    186			     VM_FAULT_HWPOISON_LARGE))
    187			return do_sigbus(regs, addr, fault);
    188		else if (fault & VM_FAULT_SIGSEGV)
    189			return bad_area_nosemaphore(regs, addr);
    190		else
    191			BUG();
    192	}
    193	return 0;
    194}
    195
    196/* Is this a bad kernel fault ? */
    197static bool bad_kernel_fault(struct pt_regs *regs, unsigned long error_code,
    198			     unsigned long address, bool is_write)
    199{
    200	int is_exec = TRAP(regs) == INTERRUPT_INST_STORAGE;
    201
    202	if (is_exec) {
    203		pr_crit_ratelimited("kernel tried to execute %s page (%lx) - exploit attempt? (uid: %d)\n",
    204				    address >= TASK_SIZE ? "exec-protected" : "user",
    205				    address,
    206				    from_kuid(&init_user_ns, current_uid()));
    207
    208		// Kernel exec fault is always bad
    209		return true;
    210	}
    211
    212	// Kernel fault on kernel address is bad
    213	if (address >= TASK_SIZE)
    214		return true;
    215
    216	// Read/write fault blocked by KUAP is bad, it can never succeed.
    217	if (bad_kuap_fault(regs, address, is_write)) {
    218		pr_crit_ratelimited("Kernel attempted to %s user page (%lx) - exploit attempt? (uid: %d)\n",
    219				    is_write ? "write" : "read", address,
    220				    from_kuid(&init_user_ns, current_uid()));
    221
    222		// Fault on user outside of certain regions (eg. copy_tofrom_user()) is bad
    223		if (!search_exception_tables(regs->nip))
    224			return true;
    225
    226		// Read/write fault in a valid region (the exception table search passed
    227		// above), but blocked by KUAP is bad, it can never succeed.
    228		return WARN(true, "Bug: %s fault blocked by KUAP!", is_write ? "Write" : "Read");
    229	}
    230
    231	// What's left? Kernel fault on user and allowed by KUAP in the faulting context.
    232	return false;
    233}
    234
    235static bool access_pkey_error(bool is_write, bool is_exec, bool is_pkey,
    236			      struct vm_area_struct *vma)
    237{
    238	/*
    239	 * Make sure to check the VMA so that we do not perform
    240	 * faults just to hit a pkey fault as soon as we fill in a
    241	 * page. Only called for current mm, hence foreign == 0
    242	 */
    243	if (!arch_vma_access_permitted(vma, is_write, is_exec, 0))
    244		return true;
    245
    246	return false;
    247}
    248
    249static bool access_error(bool is_write, bool is_exec, struct vm_area_struct *vma)
    250{
    251	/*
    252	 * Allow execution from readable areas if the MMU does not
    253	 * provide separate controls over reading and executing.
    254	 *
    255	 * Note: That code used to not be enabled for 4xx/BookE.
    256	 * It is now as I/D cache coherency for these is done at
    257	 * set_pte_at() time and I see no reason why the test
    258	 * below wouldn't be valid on those processors. This -may-
    259	 * break programs compiled with a really old ABI though.
    260	 */
    261	if (is_exec) {
    262		return !(vma->vm_flags & VM_EXEC) &&
    263			(cpu_has_feature(CPU_FTR_NOEXECUTE) ||
    264			 !(vma->vm_flags & (VM_READ | VM_WRITE)));
    265	}
    266
    267	if (is_write) {
    268		if (unlikely(!(vma->vm_flags & VM_WRITE)))
    269			return true;
    270		return false;
    271	}
    272
    273	if (unlikely(!vma_is_accessible(vma)))
    274		return true;
    275	/*
    276	 * We should ideally do the vma pkey access check here. But in the
    277	 * fault path, handle_mm_fault() also does the same check. To avoid
    278	 * these multiple checks, we skip it here and handle access error due
    279	 * to pkeys later.
    280	 */
    281	return false;
    282}
    283
    284#ifdef CONFIG_PPC_SMLPAR
    285static inline void cmo_account_page_fault(void)
    286{
    287	if (firmware_has_feature(FW_FEATURE_CMO)) {
    288		u32 page_ins;
    289
    290		preempt_disable();
    291		page_ins = be32_to_cpu(get_lppaca()->page_ins);
    292		page_ins += 1 << PAGE_FACTOR;
    293		get_lppaca()->page_ins = cpu_to_be32(page_ins);
    294		preempt_enable();
    295	}
    296}
    297#else
    298static inline void cmo_account_page_fault(void) { }
    299#endif /* CONFIG_PPC_SMLPAR */
    300
    301static void sanity_check_fault(bool is_write, bool is_user,
    302			       unsigned long error_code, unsigned long address)
    303{
    304	/*
    305	 * Userspace trying to access kernel address, we get PROTFAULT for that.
    306	 */
    307	if (is_user && address >= TASK_SIZE) {
    308		if ((long)address == -1)
    309			return;
    310
    311		pr_crit_ratelimited("%s[%d]: User access of kernel address (%lx) - exploit attempt? (uid: %d)\n",
    312				   current->comm, current->pid, address,
    313				   from_kuid(&init_user_ns, current_uid()));
    314		return;
    315	}
    316
    317	if (!IS_ENABLED(CONFIG_PPC_BOOK3S))
    318		return;
    319
    320	/*
    321	 * For hash translation mode, we should never get a
    322	 * PROTFAULT. Any update to pte to reduce access will result in us
    323	 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
    324	 * fault instead of DSISR_PROTFAULT.
    325	 *
    326	 * A pte update to relax the access will not result in a hash page table
    327	 * entry invalidate and hence can result in DSISR_PROTFAULT.
    328	 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
    329	 * the special !is_write in the below conditional.
    330	 *
    331	 * For platforms that doesn't supports coherent icache and do support
    332	 * per page noexec bit, we do setup things such that we do the
    333	 * sync between D/I cache via fault. But that is handled via low level
    334	 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
    335	 * here in such case.
    336	 *
    337	 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
    338	 * check should handle those and hence we should fall to the bad_area
    339	 * handling correctly.
    340	 *
    341	 * For embedded with per page exec support that doesn't support coherent
    342	 * icache we do get PROTFAULT and we handle that D/I cache sync in
    343	 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
    344	 * is conditional for server MMU.
    345	 *
    346	 * For radix, we can get prot fault for autonuma case, because radix
    347	 * page table will have them marked noaccess for user.
    348	 */
    349	if (radix_enabled() || is_write)
    350		return;
    351
    352	WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
    353}
    354
    355/*
    356 * Define the correct "is_write" bit in error_code based
    357 * on the processor family
    358 */
    359#if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
    360#define page_fault_is_write(__err)	((__err) & ESR_DST)
    361#else
    362#define page_fault_is_write(__err)	((__err) & DSISR_ISSTORE)
    363#endif
    364
    365#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
    366#define page_fault_is_bad(__err)	(0)
    367#elif defined(CONFIG_PPC_8xx)
    368#define page_fault_is_bad(__err)	((__err) & DSISR_NOEXEC_OR_G)
    369#elif defined(CONFIG_PPC64)
    370#define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_64S)
    371#else
    372#define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_32S)
    373#endif
    374
    375/*
    376 * For 600- and 800-family processors, the error_code parameter is DSISR
    377 * for a data fault, SRR1 for an instruction fault.
    378 * For 400-family processors the error_code parameter is ESR for a data fault,
    379 * 0 for an instruction fault.
    380 * For 64-bit processors, the error_code parameter is DSISR for a data access
    381 * fault, SRR1 & 0x08000000 for an instruction access fault.
    382 *
    383 * The return value is 0 if the fault was handled, or the signal
    384 * number if this is a kernel fault that can't be handled here.
    385 */
    386static int ___do_page_fault(struct pt_regs *regs, unsigned long address,
    387			   unsigned long error_code)
    388{
    389	struct vm_area_struct * vma;
    390	struct mm_struct *mm = current->mm;
    391	unsigned int flags = FAULT_FLAG_DEFAULT;
    392	int is_exec = TRAP(regs) == INTERRUPT_INST_STORAGE;
    393	int is_user = user_mode(regs);
    394	int is_write = page_fault_is_write(error_code);
    395	vm_fault_t fault, major = 0;
    396	bool kprobe_fault = kprobe_page_fault(regs, 11);
    397
    398	if (unlikely(debugger_fault_handler(regs) || kprobe_fault))
    399		return 0;
    400
    401	if (unlikely(page_fault_is_bad(error_code))) {
    402		if (is_user) {
    403			_exception(SIGBUS, regs, BUS_OBJERR, address);
    404			return 0;
    405		}
    406		return SIGBUS;
    407	}
    408
    409	/* Additional sanity check(s) */
    410	sanity_check_fault(is_write, is_user, error_code, address);
    411
    412	/*
    413	 * The kernel should never take an execute fault nor should it
    414	 * take a page fault to a kernel address or a page fault to a user
    415	 * address outside of dedicated places
    416	 */
    417	if (unlikely(!is_user && bad_kernel_fault(regs, error_code, address, is_write))) {
    418		if (kfence_handle_page_fault(address, is_write, regs))
    419			return 0;
    420
    421		return SIGSEGV;
    422	}
    423
    424	/*
    425	 * If we're in an interrupt, have no user context or are running
    426	 * in a region with pagefaults disabled then we must not take the fault
    427	 */
    428	if (unlikely(faulthandler_disabled() || !mm)) {
    429		if (is_user)
    430			printk_ratelimited(KERN_ERR "Page fault in user mode"
    431					   " with faulthandler_disabled()=%d"
    432					   " mm=%p\n",
    433					   faulthandler_disabled(), mm);
    434		return bad_area_nosemaphore(regs, address);
    435	}
    436
    437	interrupt_cond_local_irq_enable(regs);
    438
    439	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
    440
    441	/*
    442	 * We want to do this outside mmap_lock, because reading code around nip
    443	 * can result in fault, which will cause a deadlock when called with
    444	 * mmap_lock held
    445	 */
    446	if (is_user)
    447		flags |= FAULT_FLAG_USER;
    448	if (is_write)
    449		flags |= FAULT_FLAG_WRITE;
    450	if (is_exec)
    451		flags |= FAULT_FLAG_INSTRUCTION;
    452
    453	/* When running in the kernel we expect faults to occur only to
    454	 * addresses in user space.  All other faults represent errors in the
    455	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
    456	 * erroneous fault occurring in a code path which already holds mmap_lock
    457	 * we will deadlock attempting to validate the fault against the
    458	 * address space.  Luckily the kernel only validly references user
    459	 * space from well defined areas of code, which are listed in the
    460	 * exceptions table.
    461	 *
    462	 * As the vast majority of faults will be valid we will only perform
    463	 * the source reference check when there is a possibility of a deadlock.
    464	 * Attempt to lock the address space, if we cannot we then validate the
    465	 * source.  If this is invalid we can skip the address space check,
    466	 * thus avoiding the deadlock.
    467	 */
    468	if (unlikely(!mmap_read_trylock(mm))) {
    469		if (!is_user && !search_exception_tables(regs->nip))
    470			return bad_area_nosemaphore(regs, address);
    471
    472retry:
    473		mmap_read_lock(mm);
    474	} else {
    475		/*
    476		 * The above down_read_trylock() might have succeeded in
    477		 * which case we'll have missed the might_sleep() from
    478		 * down_read():
    479		 */
    480		might_sleep();
    481	}
    482
    483	vma = find_vma(mm, address);
    484	if (unlikely(!vma))
    485		return bad_area(regs, address);
    486
    487	if (unlikely(vma->vm_start > address)) {
    488		if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
    489			return bad_area(regs, address);
    490
    491		if (unlikely(expand_stack(vma, address)))
    492			return bad_area(regs, address);
    493	}
    494
    495	if (unlikely(access_pkey_error(is_write, is_exec,
    496				       (error_code & DSISR_KEYFAULT), vma)))
    497		return bad_access_pkey(regs, address, vma);
    498
    499	if (unlikely(access_error(is_write, is_exec, vma)))
    500		return bad_access(regs, address);
    501
    502	/*
    503	 * If for any reason at all we couldn't handle the fault,
    504	 * make sure we exit gracefully rather than endlessly redo
    505	 * the fault.
    506	 */
    507	fault = handle_mm_fault(vma, address, flags, regs);
    508
    509	major |= fault & VM_FAULT_MAJOR;
    510
    511	if (fault_signal_pending(fault, regs))
    512		return user_mode(regs) ? 0 : SIGBUS;
    513
    514	/*
    515	 * Handle the retry right now, the mmap_lock has been released in that
    516	 * case.
    517	 */
    518	if (unlikely(fault & VM_FAULT_RETRY)) {
    519		flags |= FAULT_FLAG_TRIED;
    520		goto retry;
    521	}
    522
    523	mmap_read_unlock(current->mm);
    524
    525	if (unlikely(fault & VM_FAULT_ERROR))
    526		return mm_fault_error(regs, address, fault);
    527
    528	/*
    529	 * Major/minor page fault accounting.
    530	 */
    531	if (major)
    532		cmo_account_page_fault();
    533
    534	return 0;
    535}
    536NOKPROBE_SYMBOL(___do_page_fault);
    537
    538static __always_inline void __do_page_fault(struct pt_regs *regs)
    539{
    540	long err;
    541
    542	err = ___do_page_fault(regs, regs->dar, regs->dsisr);
    543	if (unlikely(err))
    544		bad_page_fault(regs, err);
    545}
    546
    547DEFINE_INTERRUPT_HANDLER(do_page_fault)
    548{
    549	__do_page_fault(regs);
    550}
    551
    552#ifdef CONFIG_PPC_BOOK3S_64
    553/* Same as do_page_fault but interrupt entry has already run in do_hash_fault */
    554void hash__do_page_fault(struct pt_regs *regs)
    555{
    556	__do_page_fault(regs);
    557}
    558NOKPROBE_SYMBOL(hash__do_page_fault);
    559#endif
    560
    561/*
    562 * bad_page_fault is called when we have a bad access from the kernel.
    563 * It is called from the DSI and ISI handlers in head.S and from some
    564 * of the procedures in traps.c.
    565 */
    566static void __bad_page_fault(struct pt_regs *regs, int sig)
    567{
    568	int is_write = page_fault_is_write(regs->dsisr);
    569	const char *msg;
    570
    571	/* kernel has accessed a bad area */
    572
    573	if (regs->dar < PAGE_SIZE)
    574		msg = "Kernel NULL pointer dereference";
    575	else
    576		msg = "Unable to handle kernel data access";
    577
    578	switch (TRAP(regs)) {
    579	case INTERRUPT_DATA_STORAGE:
    580	case INTERRUPT_H_DATA_STORAGE:
    581		pr_alert("BUG: %s on %s at 0x%08lx\n", msg,
    582			 is_write ? "write" : "read", regs->dar);
    583		break;
    584	case INTERRUPT_DATA_SEGMENT:
    585		pr_alert("BUG: %s at 0x%08lx\n", msg, regs->dar);
    586		break;
    587	case INTERRUPT_INST_STORAGE:
    588	case INTERRUPT_INST_SEGMENT:
    589		pr_alert("BUG: Unable to handle kernel instruction fetch%s",
    590			 regs->nip < PAGE_SIZE ? " (NULL pointer?)\n" : "\n");
    591		break;
    592	case INTERRUPT_ALIGNMENT:
    593		pr_alert("BUG: Unable to handle kernel unaligned access at 0x%08lx\n",
    594			 regs->dar);
    595		break;
    596	default:
    597		pr_alert("BUG: Unable to handle unknown paging fault at 0x%08lx\n",
    598			 regs->dar);
    599		break;
    600	}
    601	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
    602		regs->nip);
    603
    604	if (task_stack_end_corrupted(current))
    605		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
    606
    607	die("Kernel access of bad area", regs, sig);
    608}
    609
    610void bad_page_fault(struct pt_regs *regs, int sig)
    611{
    612	const struct exception_table_entry *entry;
    613
    614	/* Are we prepared to handle this fault?  */
    615	entry = search_exception_tables(instruction_pointer(regs));
    616	if (entry)
    617		instruction_pointer_set(regs, extable_fixup(entry));
    618	else
    619		__bad_page_fault(regs, sig);
    620}
    621
    622#ifdef CONFIG_PPC_BOOK3S_64
    623DEFINE_INTERRUPT_HANDLER(do_bad_page_fault_segv)
    624{
    625	bad_page_fault(regs, SIGSEGV);
    626}
    627
    628/*
    629 * In radix, segment interrupts indicate the EA is not addressable by the
    630 * page table geometry, so they are always sent here.
    631 *
    632 * In hash, this is called if do_slb_fault returns error. Typically it is
    633 * because the EA was outside the region allowed by software.
    634 */
    635DEFINE_INTERRUPT_HANDLER(do_bad_segment_interrupt)
    636{
    637	int err = regs->result;
    638
    639	if (err == -EFAULT) {
    640		if (user_mode(regs))
    641			_exception(SIGSEGV, regs, SEGV_BNDERR, regs->dar);
    642		else
    643			bad_page_fault(regs, SIGSEGV);
    644	} else if (err == -EINVAL) {
    645		unrecoverable_exception(regs);
    646	} else {
    647		BUG();
    648	}
    649}
    650#endif