cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

mmu_context.c (11589B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * This file contains the routines for handling the MMU on those
      4 * PowerPC implementations where the MMU is not using the hash
      5 * table, such as 8xx, 4xx, BookE's etc...
      6 *
      7 * Copyright 2008 Ben Herrenschmidt <benh@kernel.crashing.org>
      8 *                IBM Corp.
      9 *
     10 *  Derived from previous arch/powerpc/mm/mmu_context.c
     11 *  and arch/powerpc/include/asm/mmu_context.h
     12 *
     13 * TODO:
     14 *
     15 *   - The global context lock will not scale very well
     16 *   - The maps should be dynamically allocated to allow for processors
     17 *     that support more PID bits at runtime
     18 *   - Implement flush_tlb_mm() by making the context stale and picking
     19 *     a new one
     20 *   - More aggressively clear stale map bits and maybe find some way to
     21 *     also clear mm->cpu_vm_mask bits when processes are migrated
     22 */
     23
     24#include <linux/kernel.h>
     25#include <linux/mm.h>
     26#include <linux/init.h>
     27#include <linux/spinlock.h>
     28#include <linux/memblock.h>
     29#include <linux/notifier.h>
     30#include <linux/cpu.h>
     31#include <linux/slab.h>
     32
     33#include <asm/mmu_context.h>
     34#include <asm/tlbflush.h>
     35#include <asm/smp.h>
     36#include <asm/kup.h>
     37
     38#include <mm/mmu_decl.h>
     39
     40/*
     41 * Room for two PTE table pointers, usually the kernel and current user
     42 * pointer to their respective root page table (pgdir).
     43 */
     44void *abatron_pteptrs[2];
     45
     46/*
     47 * The MPC8xx has only 16 contexts. We rotate through them on each task switch.
     48 * A better way would be to keep track of tasks that own contexts, and implement
     49 * an LRU usage. That way very active tasks don't always have to pay the TLB
     50 * reload overhead. The kernel pages are mapped shared, so the kernel can run on
     51 * behalf of any task that makes a kernel entry. Shared does not mean they are
     52 * not protected, just that the ASID comparison is not performed. -- Dan
     53 *
     54 * The IBM4xx has 256 contexts, so we can just rotate through these as a way of
     55 * "switching" contexts. If the TID of the TLB is zero, the PID/TID comparison
     56 * is disabled, so we can use a TID of zero to represent all kernel pages as
     57 * shared among all contexts. -- Dan
     58 *
     59 * The IBM 47x core supports 16-bit PIDs, thus 65535 contexts. We should
     60 * normally never have to steal though the facility is present if needed.
     61 * -- BenH
     62 */
     63#define FIRST_CONTEXT 1
     64#if defined(CONFIG_PPC_8xx)
     65#define LAST_CONTEXT 16
     66#elif defined(CONFIG_PPC_47x)
     67#define LAST_CONTEXT 65535
     68#else
     69#define LAST_CONTEXT 255
     70#endif
     71
     72static unsigned int next_context, nr_free_contexts;
     73static unsigned long *context_map;
     74static unsigned long *stale_map[NR_CPUS];
     75static struct mm_struct **context_mm;
     76static DEFINE_RAW_SPINLOCK(context_lock);
     77
     78#define CTX_MAP_SIZE	\
     79	(sizeof(unsigned long) * (LAST_CONTEXT / BITS_PER_LONG + 1))
     80
     81
     82/* Steal a context from a task that has one at the moment.
     83 *
     84 * This is used when we are running out of available PID numbers
     85 * on the processors.
     86 *
     87 * This isn't an LRU system, it just frees up each context in
     88 * turn (sort-of pseudo-random replacement :).  This would be the
     89 * place to implement an LRU scheme if anyone was motivated to do it.
     90 *  -- paulus
     91 *
     92 * For context stealing, we use a slightly different approach for
     93 * SMP and UP. Basically, the UP one is simpler and doesn't use
     94 * the stale map as we can just flush the local CPU
     95 *  -- benh
     96 */
     97static unsigned int steal_context_smp(unsigned int id)
     98{
     99	struct mm_struct *mm;
    100	unsigned int cpu, max, i;
    101
    102	max = LAST_CONTEXT - FIRST_CONTEXT;
    103
    104	/* Attempt to free next_context first and then loop until we manage */
    105	while (max--) {
    106		/* Pick up the victim mm */
    107		mm = context_mm[id];
    108
    109		/* We have a candidate victim, check if it's active, on SMP
    110		 * we cannot steal active contexts
    111		 */
    112		if (mm->context.active) {
    113			id++;
    114			if (id > LAST_CONTEXT)
    115				id = FIRST_CONTEXT;
    116			continue;
    117		}
    118
    119		/* Mark this mm has having no context anymore */
    120		mm->context.id = MMU_NO_CONTEXT;
    121
    122		/* Mark it stale on all CPUs that used this mm. For threaded
    123		 * implementations, we set it on all threads on each core
    124		 * represented in the mask. A future implementation will use
    125		 * a core map instead but this will do for now.
    126		 */
    127		for_each_cpu(cpu, mm_cpumask(mm)) {
    128			for (i = cpu_first_thread_sibling(cpu);
    129			     i <= cpu_last_thread_sibling(cpu); i++) {
    130				if (stale_map[i])
    131					__set_bit(id, stale_map[i]);
    132			}
    133			cpu = i - 1;
    134		}
    135		return id;
    136	}
    137
    138	/* This will happen if you have more CPUs than available contexts,
    139	 * all we can do here is wait a bit and try again
    140	 */
    141	raw_spin_unlock(&context_lock);
    142	cpu_relax();
    143	raw_spin_lock(&context_lock);
    144
    145	/* This will cause the caller to try again */
    146	return MMU_NO_CONTEXT;
    147}
    148
    149static unsigned int steal_all_contexts(void)
    150{
    151	struct mm_struct *mm;
    152	int cpu = smp_processor_id();
    153	unsigned int id;
    154
    155	for (id = FIRST_CONTEXT; id <= LAST_CONTEXT; id++) {
    156		/* Pick up the victim mm */
    157		mm = context_mm[id];
    158
    159		/* Mark this mm as having no context anymore */
    160		mm->context.id = MMU_NO_CONTEXT;
    161		if (id != FIRST_CONTEXT) {
    162			context_mm[id] = NULL;
    163			__clear_bit(id, context_map);
    164		}
    165		if (IS_ENABLED(CONFIG_SMP))
    166			__clear_bit(id, stale_map[cpu]);
    167	}
    168
    169	/* Flush the TLB for all contexts (not to be used on SMP) */
    170	_tlbil_all();
    171
    172	nr_free_contexts = LAST_CONTEXT - FIRST_CONTEXT;
    173
    174	return FIRST_CONTEXT;
    175}
    176
    177/* Note that this will also be called on SMP if all other CPUs are
    178 * offlined, which means that it may be called for cpu != 0. For
    179 * this to work, we somewhat assume that CPUs that are onlined
    180 * come up with a fully clean TLB (or are cleaned when offlined)
    181 */
    182static unsigned int steal_context_up(unsigned int id)
    183{
    184	struct mm_struct *mm;
    185	int cpu = smp_processor_id();
    186
    187	/* Pick up the victim mm */
    188	mm = context_mm[id];
    189
    190	/* Flush the TLB for that context */
    191	local_flush_tlb_mm(mm);
    192
    193	/* Mark this mm has having no context anymore */
    194	mm->context.id = MMU_NO_CONTEXT;
    195
    196	/* XXX This clear should ultimately be part of local_flush_tlb_mm */
    197	if (IS_ENABLED(CONFIG_SMP))
    198		__clear_bit(id, stale_map[cpu]);
    199
    200	return id;
    201}
    202
    203static void set_context(unsigned long id, pgd_t *pgd)
    204{
    205	if (IS_ENABLED(CONFIG_PPC_8xx)) {
    206		s16 offset = (s16)(__pa(swapper_pg_dir));
    207
    208		/*
    209		 * Register M_TWB will contain base address of level 1 table minus the
    210		 * lower part of the kernel PGDIR base address, so that all accesses to
    211		 * level 1 table are done relative to lower part of kernel PGDIR base
    212		 * address.
    213		 */
    214		mtspr(SPRN_M_TWB, __pa(pgd) - offset);
    215
    216		/* Update context */
    217		mtspr(SPRN_M_CASID, id - 1);
    218
    219		/* sync */
    220		mb();
    221	} else if (kuap_is_disabled()) {
    222		if (IS_ENABLED(CONFIG_40x))
    223			mb();	/* sync */
    224
    225		mtspr(SPRN_PID, id);
    226		isync();
    227	}
    228}
    229
    230void switch_mmu_context(struct mm_struct *prev, struct mm_struct *next,
    231			struct task_struct *tsk)
    232{
    233	unsigned int id;
    234	unsigned int i, cpu = smp_processor_id();
    235	unsigned long *map;
    236
    237	/* No lockless fast path .. yet */
    238	raw_spin_lock(&context_lock);
    239
    240	if (IS_ENABLED(CONFIG_SMP)) {
    241		/* Mark us active and the previous one not anymore */
    242		next->context.active++;
    243		if (prev) {
    244			WARN_ON(prev->context.active < 1);
    245			prev->context.active--;
    246		}
    247	}
    248
    249 again:
    250
    251	/* If we already have a valid assigned context, skip all that */
    252	id = next->context.id;
    253	if (likely(id != MMU_NO_CONTEXT))
    254		goto ctxt_ok;
    255
    256	/* We really don't have a context, let's try to acquire one */
    257	id = next_context;
    258	if (id > LAST_CONTEXT)
    259		id = FIRST_CONTEXT;
    260	map = context_map;
    261
    262	/* No more free contexts, let's try to steal one */
    263	if (nr_free_contexts == 0) {
    264		if (num_online_cpus() > 1) {
    265			id = steal_context_smp(id);
    266			if (id == MMU_NO_CONTEXT)
    267				goto again;
    268			goto stolen;
    269		}
    270		if (IS_ENABLED(CONFIG_PPC_8xx))
    271			id = steal_all_contexts();
    272		else
    273			id = steal_context_up(id);
    274		goto stolen;
    275	}
    276	nr_free_contexts--;
    277
    278	/* We know there's at least one free context, try to find it */
    279	while (__test_and_set_bit(id, map)) {
    280		id = find_next_zero_bit(map, LAST_CONTEXT+1, id);
    281		if (id > LAST_CONTEXT)
    282			id = FIRST_CONTEXT;
    283	}
    284 stolen:
    285	next_context = id + 1;
    286	context_mm[id] = next;
    287	next->context.id = id;
    288
    289 ctxt_ok:
    290
    291	/* If that context got marked stale on this CPU, then flush the
    292	 * local TLB for it and unmark it before we use it
    293	 */
    294	if (IS_ENABLED(CONFIG_SMP) && test_bit(id, stale_map[cpu])) {
    295		local_flush_tlb_mm(next);
    296
    297		/* XXX This clear should ultimately be part of local_flush_tlb_mm */
    298		for (i = cpu_first_thread_sibling(cpu);
    299		     i <= cpu_last_thread_sibling(cpu); i++) {
    300			if (stale_map[i])
    301				__clear_bit(id, stale_map[i]);
    302		}
    303	}
    304
    305	/* Flick the MMU and release lock */
    306	if (IS_ENABLED(CONFIG_BDI_SWITCH))
    307		abatron_pteptrs[1] = next->pgd;
    308	set_context(id, next->pgd);
    309#if defined(CONFIG_BOOKE_OR_40x) && defined(CONFIG_PPC_KUAP)
    310	tsk->thread.pid = id;
    311#endif
    312	raw_spin_unlock(&context_lock);
    313}
    314
    315/*
    316 * Set up the context for a new address space.
    317 */
    318int init_new_context(struct task_struct *t, struct mm_struct *mm)
    319{
    320	mm->context.id = MMU_NO_CONTEXT;
    321	mm->context.active = 0;
    322	pte_frag_set(&mm->context, NULL);
    323	return 0;
    324}
    325
    326/*
    327 * We're finished using the context for an address space.
    328 */
    329void destroy_context(struct mm_struct *mm)
    330{
    331	unsigned long flags;
    332	unsigned int id;
    333
    334	if (mm->context.id == MMU_NO_CONTEXT)
    335		return;
    336
    337	WARN_ON(mm->context.active != 0);
    338
    339	raw_spin_lock_irqsave(&context_lock, flags);
    340	id = mm->context.id;
    341	if (id != MMU_NO_CONTEXT) {
    342		__clear_bit(id, context_map);
    343		mm->context.id = MMU_NO_CONTEXT;
    344		context_mm[id] = NULL;
    345		nr_free_contexts++;
    346	}
    347	raw_spin_unlock_irqrestore(&context_lock, flags);
    348}
    349
    350static int mmu_ctx_cpu_prepare(unsigned int cpu)
    351{
    352	/* We don't touch CPU 0 map, it's allocated at aboot and kept
    353	 * around forever
    354	 */
    355	if (cpu == boot_cpuid)
    356		return 0;
    357
    358	stale_map[cpu] = kzalloc(CTX_MAP_SIZE, GFP_KERNEL);
    359	return 0;
    360}
    361
    362static int mmu_ctx_cpu_dead(unsigned int cpu)
    363{
    364#ifdef CONFIG_HOTPLUG_CPU
    365	if (cpu == boot_cpuid)
    366		return 0;
    367
    368	kfree(stale_map[cpu]);
    369	stale_map[cpu] = NULL;
    370
    371	/* We also clear the cpu_vm_mask bits of CPUs going away */
    372	clear_tasks_mm_cpumask(cpu);
    373#endif
    374	return 0;
    375}
    376
    377/*
    378 * Initialize the context management stuff.
    379 */
    380void __init mmu_context_init(void)
    381{
    382	/* Mark init_mm as being active on all possible CPUs since
    383	 * we'll get called with prev == init_mm the first time
    384	 * we schedule on a given CPU
    385	 */
    386	init_mm.context.active = NR_CPUS;
    387
    388	/*
    389	 * Allocate the maps used by context management
    390	 */
    391	context_map = memblock_alloc(CTX_MAP_SIZE, SMP_CACHE_BYTES);
    392	if (!context_map)
    393		panic("%s: Failed to allocate %zu bytes\n", __func__,
    394		      CTX_MAP_SIZE);
    395	context_mm = memblock_alloc(sizeof(void *) * (LAST_CONTEXT + 1),
    396				    SMP_CACHE_BYTES);
    397	if (!context_mm)
    398		panic("%s: Failed to allocate %zu bytes\n", __func__,
    399		      sizeof(void *) * (LAST_CONTEXT + 1));
    400	if (IS_ENABLED(CONFIG_SMP)) {
    401		stale_map[boot_cpuid] = memblock_alloc(CTX_MAP_SIZE, SMP_CACHE_BYTES);
    402		if (!stale_map[boot_cpuid])
    403			panic("%s: Failed to allocate %zu bytes\n", __func__,
    404			      CTX_MAP_SIZE);
    405
    406		cpuhp_setup_state_nocalls(CPUHP_POWERPC_MMU_CTX_PREPARE,
    407					  "powerpc/mmu/ctx:prepare",
    408					  mmu_ctx_cpu_prepare, mmu_ctx_cpu_dead);
    409	}
    410
    411	printk(KERN_INFO
    412	       "MMU: Allocated %zu bytes of context maps for %d contexts\n",
    413	       2 * CTX_MAP_SIZE + (sizeof(void *) * (LAST_CONTEXT + 1)),
    414	       LAST_CONTEXT - FIRST_CONTEXT + 1);
    415
    416	/*
    417	 * Some processors have too few contexts to reserve one for
    418	 * init_mm, and require using context 0 for a normal task.
    419	 * Other processors reserve the use of context zero for the kernel.
    420	 * This code assumes FIRST_CONTEXT < 32.
    421	 */
    422	context_map[0] = (1 << FIRST_CONTEXT) - 1;
    423	next_context = FIRST_CONTEXT;
    424	nr_free_contexts = LAST_CONTEXT - FIRST_CONTEXT + 1;
    425}