cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

isa207-common.c (21921B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * Common Performance counter support functions for PowerISA v2.07 processors.
      4 *
      5 * Copyright 2009 Paul Mackerras, IBM Corporation.
      6 * Copyright 2013 Michael Ellerman, IBM Corporation.
      7 * Copyright 2016 Madhavan Srinivasan, IBM Corporation.
      8 */
      9#include "isa207-common.h"
     10
     11PMU_FORMAT_ATTR(event,		"config:0-49");
     12PMU_FORMAT_ATTR(pmcxsel,	"config:0-7");
     13PMU_FORMAT_ATTR(mark,		"config:8");
     14PMU_FORMAT_ATTR(combine,	"config:11");
     15PMU_FORMAT_ATTR(unit,		"config:12-15");
     16PMU_FORMAT_ATTR(pmc,		"config:16-19");
     17PMU_FORMAT_ATTR(cache_sel,	"config:20-23");
     18PMU_FORMAT_ATTR(sample_mode,	"config:24-28");
     19PMU_FORMAT_ATTR(thresh_sel,	"config:29-31");
     20PMU_FORMAT_ATTR(thresh_stop,	"config:32-35");
     21PMU_FORMAT_ATTR(thresh_start,	"config:36-39");
     22PMU_FORMAT_ATTR(thresh_cmp,	"config:40-49");
     23
     24static struct attribute *isa207_pmu_format_attr[] = {
     25	&format_attr_event.attr,
     26	&format_attr_pmcxsel.attr,
     27	&format_attr_mark.attr,
     28	&format_attr_combine.attr,
     29	&format_attr_unit.attr,
     30	&format_attr_pmc.attr,
     31	&format_attr_cache_sel.attr,
     32	&format_attr_sample_mode.attr,
     33	&format_attr_thresh_sel.attr,
     34	&format_attr_thresh_stop.attr,
     35	&format_attr_thresh_start.attr,
     36	&format_attr_thresh_cmp.attr,
     37	NULL,
     38};
     39
     40const struct attribute_group isa207_pmu_format_group = {
     41	.name = "format",
     42	.attrs = isa207_pmu_format_attr,
     43};
     44
     45static inline bool event_is_fab_match(u64 event)
     46{
     47	/* Only check pmc, unit and pmcxsel, ignore the edge bit (0) */
     48	event &= 0xff0fe;
     49
     50	/* PM_MRK_FAB_RSP_MATCH & PM_MRK_FAB_RSP_MATCH_CYC */
     51	return (event == 0x30056 || event == 0x4f052);
     52}
     53
     54static bool is_event_valid(u64 event)
     55{
     56	u64 valid_mask = EVENT_VALID_MASK;
     57
     58	if (cpu_has_feature(CPU_FTR_ARCH_31))
     59		valid_mask = p10_EVENT_VALID_MASK;
     60	else if (cpu_has_feature(CPU_FTR_ARCH_300))
     61		valid_mask = p9_EVENT_VALID_MASK;
     62
     63	return !(event & ~valid_mask);
     64}
     65
     66static inline bool is_event_marked(u64 event)
     67{
     68	if (event & EVENT_IS_MARKED)
     69		return true;
     70
     71	return false;
     72}
     73
     74static unsigned long sdar_mod_val(u64 event)
     75{
     76	if (cpu_has_feature(CPU_FTR_ARCH_31))
     77		return p10_SDAR_MODE(event);
     78
     79	return p9_SDAR_MODE(event);
     80}
     81
     82static void mmcra_sdar_mode(u64 event, unsigned long *mmcra)
     83{
     84	/*
     85	 * MMCRA[SDAR_MODE] specifies how the SDAR should be updated in
     86	 * continuous sampling mode.
     87	 *
     88	 * Incase of Power8:
     89	 * MMCRA[SDAR_MODE] will be programmed as "0b01" for continuous sampling
     90	 * mode and will be un-changed when setting MMCRA[63] (Marked events).
     91	 *
     92	 * Incase of Power9/power10:
     93	 * Marked event: MMCRA[SDAR_MODE] will be set to 0b00 ('No Updates'),
     94	 *               or if group already have any marked events.
     95	 * For rest
     96	 *	MMCRA[SDAR_MODE] will be set from event code.
     97	 *      If sdar_mode from event is zero, default to 0b01. Hardware
     98	 *      requires that we set a non-zero value.
     99	 */
    100	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
    101		if (is_event_marked(event) || (*mmcra & MMCRA_SAMPLE_ENABLE))
    102			*mmcra &= MMCRA_SDAR_MODE_NO_UPDATES;
    103		else if (sdar_mod_val(event))
    104			*mmcra |= sdar_mod_val(event) << MMCRA_SDAR_MODE_SHIFT;
    105		else
    106			*mmcra |= MMCRA_SDAR_MODE_DCACHE;
    107	} else
    108		*mmcra |= MMCRA_SDAR_MODE_TLB;
    109}
    110
    111static int p10_thresh_cmp_val(u64 value)
    112{
    113	int exp = 0;
    114	u64 result = value;
    115
    116	if (!value)
    117		return value;
    118
    119	/*
    120	 * Incase of P10, thresh_cmp value is not part of raw event code
    121	 * and provided via attr.config1 parameter. To program threshold in MMCRA,
    122	 * take a 18 bit number N and shift right 2 places and increment
    123	 * the exponent E by 1 until the upper 10 bits of N are zero.
    124	 * Write E to the threshold exponent and write the lower 8 bits of N
    125	 * to the threshold mantissa.
    126	 * The max threshold that can be written is 261120.
    127	 */
    128	if (cpu_has_feature(CPU_FTR_ARCH_31)) {
    129		if (value > 261120)
    130			value = 261120;
    131		while ((64 - __builtin_clzl(value)) > 8) {
    132			exp++;
    133			value >>= 2;
    134		}
    135
    136		/*
    137		 * Note that it is invalid to write a mantissa with the
    138		 * upper 2 bits of mantissa being zero, unless the
    139		 * exponent is also zero.
    140		 */
    141		if (!(value & 0xC0) && exp)
    142			result = -1;
    143		else
    144			result = (exp << 8) | value;
    145	}
    146	return result;
    147}
    148
    149static u64 thresh_cmp_val(u64 value)
    150{
    151	if (cpu_has_feature(CPU_FTR_ARCH_31))
    152		value = p10_thresh_cmp_val(value);
    153
    154	/*
    155	 * Since location of threshold compare bits in MMCRA
    156	 * is different for p8, using different shift value.
    157	 */
    158	if (cpu_has_feature(CPU_FTR_ARCH_300))
    159		return value << p9_MMCRA_THR_CMP_SHIFT;
    160	else
    161		return value << MMCRA_THR_CMP_SHIFT;
    162}
    163
    164static unsigned long combine_from_event(u64 event)
    165{
    166	if (cpu_has_feature(CPU_FTR_ARCH_300))
    167		return p9_EVENT_COMBINE(event);
    168
    169	return EVENT_COMBINE(event);
    170}
    171
    172static unsigned long combine_shift(unsigned long pmc)
    173{
    174	if (cpu_has_feature(CPU_FTR_ARCH_300))
    175		return p9_MMCR1_COMBINE_SHIFT(pmc);
    176
    177	return MMCR1_COMBINE_SHIFT(pmc);
    178}
    179
    180static inline bool event_is_threshold(u64 event)
    181{
    182	return (event >> EVENT_THR_SEL_SHIFT) & EVENT_THR_SEL_MASK;
    183}
    184
    185static bool is_thresh_cmp_valid(u64 event)
    186{
    187	unsigned int cmp, exp;
    188
    189	if (cpu_has_feature(CPU_FTR_ARCH_31))
    190		return p10_thresh_cmp_val(event) >= 0;
    191
    192	/*
    193	 * Check the mantissa upper two bits are not zero, unless the
    194	 * exponent is also zero. See the THRESH_CMP_MANTISSA doc.
    195	 */
    196
    197	cmp = (event >> EVENT_THR_CMP_SHIFT) & EVENT_THR_CMP_MASK;
    198	exp = cmp >> 7;
    199
    200	if (exp && (cmp & 0x60) == 0)
    201		return false;
    202
    203	return true;
    204}
    205
    206static unsigned int dc_ic_rld_quad_l1_sel(u64 event)
    207{
    208	unsigned int cache;
    209
    210	cache = (event >> EVENT_CACHE_SEL_SHIFT) & MMCR1_DC_IC_QUAL_MASK;
    211	return cache;
    212}
    213
    214static inline u64 isa207_find_source(u64 idx, u32 sub_idx)
    215{
    216	u64 ret = PERF_MEM_NA;
    217
    218	switch(idx) {
    219	case 0:
    220		/* Nothing to do */
    221		break;
    222	case 1:
    223		ret = PH(LVL, L1) | LEVEL(L1) | P(SNOOP, HIT);
    224		break;
    225	case 2:
    226		ret = PH(LVL, L2) | LEVEL(L2) | P(SNOOP, HIT);
    227		break;
    228	case 3:
    229		ret = PH(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
    230		break;
    231	case 4:
    232		if (cpu_has_feature(CPU_FTR_ARCH_31)) {
    233			ret = P(SNOOP, HIT);
    234
    235			if (sub_idx == 1)
    236				ret |= PH(LVL, LOC_RAM) | LEVEL(RAM);
    237			else if (sub_idx == 2 || sub_idx == 3)
    238				ret |= P(LVL, HIT) | LEVEL(PMEM);
    239			else if (sub_idx == 4)
    240				ret |= PH(LVL, REM_RAM1) | REM | LEVEL(RAM) | P(HOPS, 2);
    241			else if (sub_idx == 5 || sub_idx == 7)
    242				ret |= P(LVL, HIT) | LEVEL(PMEM) | REM;
    243			else if (sub_idx == 6)
    244				ret |= PH(LVL, REM_RAM2) | REM | LEVEL(RAM) | P(HOPS, 3);
    245		} else {
    246			if (sub_idx <= 1)
    247				ret = PH(LVL, LOC_RAM);
    248			else if (sub_idx > 1 && sub_idx <= 2)
    249				ret = PH(LVL, REM_RAM1);
    250			else
    251				ret = PH(LVL, REM_RAM2);
    252			ret |= P(SNOOP, HIT);
    253		}
    254		break;
    255	case 5:
    256		if (cpu_has_feature(CPU_FTR_ARCH_31)) {
    257			ret = REM | P(HOPS, 0);
    258
    259			if (sub_idx == 0 || sub_idx == 4)
    260				ret |= PH(LVL, L2) | LEVEL(L2) | P(SNOOP, HIT);
    261			else if (sub_idx == 1 || sub_idx == 5)
    262				ret |= PH(LVL, L2) | LEVEL(L2) | P(SNOOP, HITM);
    263			else if (sub_idx == 2 || sub_idx == 6)
    264				ret |= PH(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
    265			else if (sub_idx == 3 || sub_idx == 7)
    266				ret |= PH(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
    267		} else {
    268			if (sub_idx == 0)
    269				ret = PH(LVL, L2) | LEVEL(L2) | REM | P(SNOOP, HIT) | P(HOPS, 0);
    270			else if (sub_idx == 1)
    271				ret = PH(LVL, L2) | LEVEL(L2) | REM | P(SNOOP, HITM) | P(HOPS, 0);
    272			else if (sub_idx == 2 || sub_idx == 4)
    273				ret = PH(LVL, L3) | LEVEL(L3) | REM | P(SNOOP, HIT) | P(HOPS, 0);
    274			else if (sub_idx == 3 || sub_idx == 5)
    275				ret = PH(LVL, L3) | LEVEL(L3) | REM | P(SNOOP, HITM) | P(HOPS, 0);
    276		}
    277		break;
    278	case 6:
    279		if (cpu_has_feature(CPU_FTR_ARCH_31)) {
    280			if (sub_idx == 0)
    281				ret = PH(LVL, REM_CCE1) | LEVEL(ANY_CACHE) | REM |
    282					P(SNOOP, HIT) | P(HOPS, 2);
    283			else if (sub_idx == 1)
    284				ret = PH(LVL, REM_CCE1) | LEVEL(ANY_CACHE) | REM |
    285					P(SNOOP, HITM) | P(HOPS, 2);
    286			else if (sub_idx == 2)
    287				ret = PH(LVL, REM_CCE2) | LEVEL(ANY_CACHE) | REM |
    288					P(SNOOP, HIT) | P(HOPS, 3);
    289			else if (sub_idx == 3)
    290				ret = PH(LVL, REM_CCE2) | LEVEL(ANY_CACHE) | REM |
    291					P(SNOOP, HITM) | P(HOPS, 3);
    292		} else {
    293			ret = PH(LVL, REM_CCE2);
    294			if (sub_idx == 0 || sub_idx == 2)
    295				ret |= P(SNOOP, HIT);
    296			else if (sub_idx == 1 || sub_idx == 3)
    297				ret |= P(SNOOP, HITM);
    298		}
    299		break;
    300	case 7:
    301		ret = PM(LVL, L1);
    302		break;
    303	}
    304
    305	return ret;
    306}
    307
    308void isa207_get_mem_data_src(union perf_mem_data_src *dsrc, u32 flags,
    309							struct pt_regs *regs)
    310{
    311	u64 idx;
    312	u32 sub_idx;
    313	u64 sier;
    314	u64 val;
    315
    316	/* Skip if no SIER support */
    317	if (!(flags & PPMU_HAS_SIER)) {
    318		dsrc->val = 0;
    319		return;
    320	}
    321
    322	sier = mfspr(SPRN_SIER);
    323	val = (sier & ISA207_SIER_TYPE_MASK) >> ISA207_SIER_TYPE_SHIFT;
    324	if (val != 1 && val != 2 && !(val == 7 && cpu_has_feature(CPU_FTR_ARCH_31)))
    325		return;
    326
    327	idx = (sier & ISA207_SIER_LDST_MASK) >> ISA207_SIER_LDST_SHIFT;
    328	sub_idx = (sier & ISA207_SIER_DATA_SRC_MASK) >> ISA207_SIER_DATA_SRC_SHIFT;
    329
    330	dsrc->val = isa207_find_source(idx, sub_idx);
    331	if (val == 7) {
    332		u64 mmcra;
    333		u32 op_type;
    334
    335		/*
    336		 * Type 0b111 denotes either larx or stcx instruction. Use the
    337		 * MMCRA sampling bits [57:59] along with the type value
    338		 * to determine the exact instruction type. If the sampling
    339		 * criteria is neither load or store, set the type as default
    340		 * to NA.
    341		 */
    342		mmcra = mfspr(SPRN_MMCRA);
    343
    344		op_type = (mmcra >> MMCRA_SAMP_ELIG_SHIFT) & MMCRA_SAMP_ELIG_MASK;
    345		switch (op_type) {
    346		case 5:
    347			dsrc->val |= P(OP, LOAD);
    348			break;
    349		case 7:
    350			dsrc->val |= P(OP, STORE);
    351			break;
    352		default:
    353			dsrc->val |= P(OP, NA);
    354			break;
    355		}
    356	} else {
    357		dsrc->val |= (val == 1) ? P(OP, LOAD) : P(OP, STORE);
    358	}
    359}
    360
    361void isa207_get_mem_weight(u64 *weight, u64 type)
    362{
    363	union perf_sample_weight *weight_fields;
    364	u64 weight_lat;
    365	u64 mmcra = mfspr(SPRN_MMCRA);
    366	u64 exp = MMCRA_THR_CTR_EXP(mmcra);
    367	u64 mantissa = MMCRA_THR_CTR_MANT(mmcra);
    368	u64 sier = mfspr(SPRN_SIER);
    369	u64 val = (sier & ISA207_SIER_TYPE_MASK) >> ISA207_SIER_TYPE_SHIFT;
    370
    371	if (cpu_has_feature(CPU_FTR_ARCH_31))
    372		mantissa = P10_MMCRA_THR_CTR_MANT(mmcra);
    373
    374	if (val == 0 || (val == 7 && !cpu_has_feature(CPU_FTR_ARCH_31)))
    375		weight_lat = 0;
    376	else
    377		weight_lat = mantissa << (2 * exp);
    378
    379	/*
    380	 * Use 64 bit weight field (full) if sample type is
    381	 * WEIGHT.
    382	 *
    383	 * if sample type is WEIGHT_STRUCT:
    384	 * - store memory latency in the lower 32 bits.
    385	 * - For ISA v3.1, use remaining two 16 bit fields of
    386	 *   perf_sample_weight to store cycle counter values
    387	 *   from sier2.
    388	 */
    389	weight_fields = (union perf_sample_weight *)weight;
    390	if (type & PERF_SAMPLE_WEIGHT)
    391		weight_fields->full = weight_lat;
    392	else {
    393		weight_fields->var1_dw = (u32)weight_lat;
    394		if (cpu_has_feature(CPU_FTR_ARCH_31)) {
    395			weight_fields->var2_w = P10_SIER2_FINISH_CYC(mfspr(SPRN_SIER2));
    396			weight_fields->var3_w = P10_SIER2_DISPATCH_CYC(mfspr(SPRN_SIER2));
    397		}
    398	}
    399}
    400
    401int isa207_get_constraint(u64 event, unsigned long *maskp, unsigned long *valp, u64 event_config1)
    402{
    403	unsigned int unit, pmc, cache, ebb;
    404	unsigned long mask, value;
    405
    406	mask = value = 0;
    407
    408	if (!is_event_valid(event))
    409		return -1;
    410
    411	pmc   = (event >> EVENT_PMC_SHIFT)        & EVENT_PMC_MASK;
    412	unit  = (event >> EVENT_UNIT_SHIFT)       & EVENT_UNIT_MASK;
    413	if (cpu_has_feature(CPU_FTR_ARCH_31))
    414		cache = (event >> EVENT_CACHE_SEL_SHIFT) &
    415			p10_EVENT_CACHE_SEL_MASK;
    416	else
    417		cache = (event >> EVENT_CACHE_SEL_SHIFT) &
    418			EVENT_CACHE_SEL_MASK;
    419	ebb   = (event >> EVENT_EBB_SHIFT)        & EVENT_EBB_MASK;
    420
    421	if (pmc) {
    422		u64 base_event;
    423
    424		if (pmc > 6)
    425			return -1;
    426
    427		/* Ignore Linux defined bits when checking event below */
    428		base_event = event & ~EVENT_LINUX_MASK;
    429
    430		if (pmc >= 5 && base_event != 0x500fa &&
    431				base_event != 0x600f4)
    432			return -1;
    433
    434		mask  |= CNST_PMC_MASK(pmc);
    435		value |= CNST_PMC_VAL(pmc);
    436
    437		/*
    438		 * PMC5 and PMC6 are used to count cycles and instructions and
    439		 * they do not support most of the constraint bits. Add a check
    440		 * to exclude PMC5/6 from most of the constraints except for
    441		 * EBB/BHRB.
    442		 */
    443		if (pmc >= 5)
    444			goto ebb_bhrb;
    445	}
    446
    447	if (pmc <= 4) {
    448		/*
    449		 * Add to number of counters in use. Note this includes events with
    450		 * a PMC of 0 - they still need a PMC, it's just assigned later.
    451		 * Don't count events on PMC 5 & 6, there is only one valid event
    452		 * on each of those counters, and they are handled above.
    453		 */
    454		mask  |= CNST_NC_MASK;
    455		value |= CNST_NC_VAL;
    456	}
    457
    458	if (unit >= 6 && unit <= 9) {
    459		if (cpu_has_feature(CPU_FTR_ARCH_31)) {
    460			if (unit == 6) {
    461				mask |= CNST_L2L3_GROUP_MASK;
    462				value |= CNST_L2L3_GROUP_VAL(event >> p10_L2L3_EVENT_SHIFT);
    463			}
    464		} else if (cpu_has_feature(CPU_FTR_ARCH_300)) {
    465			mask  |= CNST_CACHE_GROUP_MASK;
    466			value |= CNST_CACHE_GROUP_VAL(event & 0xff);
    467
    468			mask |= CNST_CACHE_PMC4_MASK;
    469			if (pmc == 4)
    470				value |= CNST_CACHE_PMC4_VAL;
    471		} else if (cache & 0x7) {
    472			/*
    473			 * L2/L3 events contain a cache selector field, which is
    474			 * supposed to be programmed into MMCRC. However MMCRC is only
    475			 * HV writable, and there is no API for guest kernels to modify
    476			 * it. The solution is for the hypervisor to initialise the
    477			 * field to zeroes, and for us to only ever allow events that
    478			 * have a cache selector of zero. The bank selector (bit 3) is
    479			 * irrelevant, as long as the rest of the value is 0.
    480			 */
    481			return -1;
    482		}
    483
    484	} else if (cpu_has_feature(CPU_FTR_ARCH_300) || (event & EVENT_IS_L1)) {
    485		mask  |= CNST_L1_QUAL_MASK;
    486		value |= CNST_L1_QUAL_VAL(cache);
    487	}
    488
    489	if (cpu_has_feature(CPU_FTR_ARCH_31)) {
    490		mask |= CNST_RADIX_SCOPE_GROUP_MASK;
    491		value |= CNST_RADIX_SCOPE_GROUP_VAL(event >> p10_EVENT_RADIX_SCOPE_QUAL_SHIFT);
    492	}
    493
    494	if (is_event_marked(event)) {
    495		mask  |= CNST_SAMPLE_MASK;
    496		value |= CNST_SAMPLE_VAL(event >> EVENT_SAMPLE_SHIFT);
    497	}
    498
    499	if (cpu_has_feature(CPU_FTR_ARCH_31)) {
    500		if (event_is_threshold(event) && is_thresh_cmp_valid(event_config1)) {
    501			mask  |= CNST_THRESH_CTL_SEL_MASK;
    502			value |= CNST_THRESH_CTL_SEL_VAL(event >> EVENT_THRESH_SHIFT);
    503			mask  |= p10_CNST_THRESH_CMP_MASK;
    504			value |= p10_CNST_THRESH_CMP_VAL(p10_thresh_cmp_val(event_config1));
    505		} else if (event_is_threshold(event))
    506			return -1;
    507	} else if (cpu_has_feature(CPU_FTR_ARCH_300))  {
    508		if (event_is_threshold(event) && is_thresh_cmp_valid(event)) {
    509			mask  |= CNST_THRESH_MASK;
    510			value |= CNST_THRESH_VAL(event >> EVENT_THRESH_SHIFT);
    511		} else if (event_is_threshold(event))
    512			return -1;
    513	} else {
    514		/*
    515		 * Special case for PM_MRK_FAB_RSP_MATCH and PM_MRK_FAB_RSP_MATCH_CYC,
    516		 * the threshold control bits are used for the match value.
    517		 */
    518		if (event_is_fab_match(event)) {
    519			mask  |= CNST_FAB_MATCH_MASK;
    520			value |= CNST_FAB_MATCH_VAL(event >> EVENT_THR_CTL_SHIFT);
    521		} else {
    522			if (!is_thresh_cmp_valid(event))
    523				return -1;
    524
    525			mask  |= CNST_THRESH_MASK;
    526			value |= CNST_THRESH_VAL(event >> EVENT_THRESH_SHIFT);
    527		}
    528	}
    529
    530ebb_bhrb:
    531	if (!pmc && ebb)
    532		/* EBB events must specify the PMC */
    533		return -1;
    534
    535	if (event & EVENT_WANTS_BHRB) {
    536		if (!ebb)
    537			/* Only EBB events can request BHRB */
    538			return -1;
    539
    540		mask  |= CNST_IFM_MASK;
    541		value |= CNST_IFM_VAL(event >> EVENT_IFM_SHIFT);
    542	}
    543
    544	/*
    545	 * All events must agree on EBB, either all request it or none.
    546	 * EBB events are pinned & exclusive, so this should never actually
    547	 * hit, but we leave it as a fallback in case.
    548	 */
    549	mask  |= CNST_EBB_MASK;
    550	value |= CNST_EBB_VAL(ebb);
    551
    552	*maskp = mask;
    553	*valp = value;
    554
    555	return 0;
    556}
    557
    558int isa207_compute_mmcr(u64 event[], int n_ev,
    559			       unsigned int hwc[], struct mmcr_regs *mmcr,
    560			       struct perf_event *pevents[], u32 flags)
    561{
    562	unsigned long mmcra, mmcr1, mmcr2, unit, combine, psel, cache, val;
    563	unsigned long mmcr3;
    564	unsigned int pmc, pmc_inuse;
    565	int i;
    566
    567	pmc_inuse = 0;
    568
    569	/* First pass to count resource use */
    570	for (i = 0; i < n_ev; ++i) {
    571		pmc = (event[i] >> EVENT_PMC_SHIFT) & EVENT_PMC_MASK;
    572		if (pmc)
    573			pmc_inuse |= 1 << pmc;
    574	}
    575
    576	mmcra = mmcr1 = mmcr2 = mmcr3 = 0;
    577
    578	/*
    579	 * Disable bhrb unless explicitly requested
    580	 * by setting MMCRA (BHRBRD) bit.
    581	 */
    582	if (cpu_has_feature(CPU_FTR_ARCH_31))
    583		mmcra |= MMCRA_BHRB_DISABLE;
    584
    585	/* Second pass: assign PMCs, set all MMCR1 fields */
    586	for (i = 0; i < n_ev; ++i) {
    587		pmc     = (event[i] >> EVENT_PMC_SHIFT) & EVENT_PMC_MASK;
    588		unit    = (event[i] >> EVENT_UNIT_SHIFT) & EVENT_UNIT_MASK;
    589		combine = combine_from_event(event[i]);
    590		psel    =  event[i] & EVENT_PSEL_MASK;
    591
    592		if (!pmc) {
    593			for (pmc = 1; pmc <= 4; ++pmc) {
    594				if (!(pmc_inuse & (1 << pmc)))
    595					break;
    596			}
    597
    598			pmc_inuse |= 1 << pmc;
    599		}
    600
    601		if (pmc <= 4) {
    602			mmcr1 |= unit << MMCR1_UNIT_SHIFT(pmc);
    603			mmcr1 |= combine << combine_shift(pmc);
    604			mmcr1 |= psel << MMCR1_PMCSEL_SHIFT(pmc);
    605		}
    606
    607		/* In continuous sampling mode, update SDAR on TLB miss */
    608		mmcra_sdar_mode(event[i], &mmcra);
    609
    610		if (cpu_has_feature(CPU_FTR_ARCH_300)) {
    611			cache = dc_ic_rld_quad_l1_sel(event[i]);
    612			mmcr1 |= (cache) << MMCR1_DC_IC_QUAL_SHIFT;
    613		} else {
    614			if (event[i] & EVENT_IS_L1) {
    615				cache = dc_ic_rld_quad_l1_sel(event[i]);
    616				mmcr1 |= (cache) << MMCR1_DC_IC_QUAL_SHIFT;
    617			}
    618		}
    619
    620		/* Set RADIX_SCOPE_QUAL bit */
    621		if (cpu_has_feature(CPU_FTR_ARCH_31)) {
    622			val = (event[i] >> p10_EVENT_RADIX_SCOPE_QUAL_SHIFT) &
    623				p10_EVENT_RADIX_SCOPE_QUAL_MASK;
    624			mmcr1 |= val << p10_MMCR1_RADIX_SCOPE_QUAL_SHIFT;
    625		}
    626
    627		if (is_event_marked(event[i])) {
    628			mmcra |= MMCRA_SAMPLE_ENABLE;
    629
    630			val = (event[i] >> EVENT_SAMPLE_SHIFT) & EVENT_SAMPLE_MASK;
    631			if (val) {
    632				mmcra |= (val &  3) << MMCRA_SAMP_MODE_SHIFT;
    633				mmcra |= (val >> 2) << MMCRA_SAMP_ELIG_SHIFT;
    634			}
    635		}
    636
    637		/*
    638		 * PM_MRK_FAB_RSP_MATCH and PM_MRK_FAB_RSP_MATCH_CYC,
    639		 * the threshold bits are used for the match value.
    640		 */
    641		if (!cpu_has_feature(CPU_FTR_ARCH_300) && event_is_fab_match(event[i])) {
    642			mmcr1 |= ((event[i] >> EVENT_THR_CTL_SHIFT) &
    643				  EVENT_THR_CTL_MASK) << MMCR1_FAB_SHIFT;
    644		} else {
    645			val = (event[i] >> EVENT_THR_CTL_SHIFT) & EVENT_THR_CTL_MASK;
    646			mmcra |= val << MMCRA_THR_CTL_SHIFT;
    647			val = (event[i] >> EVENT_THR_SEL_SHIFT) & EVENT_THR_SEL_MASK;
    648			mmcra |= val << MMCRA_THR_SEL_SHIFT;
    649			if (!cpu_has_feature(CPU_FTR_ARCH_31)) {
    650				val = (event[i] >> EVENT_THR_CMP_SHIFT) &
    651					EVENT_THR_CMP_MASK;
    652				mmcra |= thresh_cmp_val(val);
    653			} else if (flags & PPMU_HAS_ATTR_CONFIG1) {
    654				val = (pevents[i]->attr.config1 >> p10_EVENT_THR_CMP_SHIFT) &
    655					p10_EVENT_THR_CMP_MASK;
    656				mmcra |= thresh_cmp_val(val);
    657			}
    658		}
    659
    660		if (cpu_has_feature(CPU_FTR_ARCH_31) && (unit == 6)) {
    661			val = (event[i] >> p10_L2L3_EVENT_SHIFT) &
    662				p10_EVENT_L2L3_SEL_MASK;
    663			mmcr2 |= val << p10_L2L3_SEL_SHIFT;
    664		}
    665
    666		if (event[i] & EVENT_WANTS_BHRB) {
    667			val = (event[i] >> EVENT_IFM_SHIFT) & EVENT_IFM_MASK;
    668			mmcra |= val << MMCRA_IFM_SHIFT;
    669		}
    670
    671		/* set MMCRA (BHRBRD) to 0 if there is user request for BHRB */
    672		if (cpu_has_feature(CPU_FTR_ARCH_31) &&
    673				(has_branch_stack(pevents[i]) || (event[i] & EVENT_WANTS_BHRB)))
    674			mmcra &= ~MMCRA_BHRB_DISABLE;
    675
    676		if (pevents[i]->attr.exclude_user)
    677			mmcr2 |= MMCR2_FCP(pmc);
    678
    679		if (pevents[i]->attr.exclude_hv)
    680			mmcr2 |= MMCR2_FCH(pmc);
    681
    682		if (pevents[i]->attr.exclude_kernel) {
    683			if (cpu_has_feature(CPU_FTR_HVMODE))
    684				mmcr2 |= MMCR2_FCH(pmc);
    685			else
    686				mmcr2 |= MMCR2_FCS(pmc);
    687		}
    688
    689		if (cpu_has_feature(CPU_FTR_ARCH_31)) {
    690			if (pmc <= 4) {
    691				val = (event[i] >> p10_EVENT_MMCR3_SHIFT) &
    692					p10_EVENT_MMCR3_MASK;
    693				mmcr3 |= val << MMCR3_SHIFT(pmc);
    694			}
    695		}
    696
    697		hwc[i] = pmc - 1;
    698	}
    699
    700	/* Return MMCRx values */
    701	mmcr->mmcr0 = 0;
    702
    703	/* pmc_inuse is 1-based */
    704	if (pmc_inuse & 2)
    705		mmcr->mmcr0 = MMCR0_PMC1CE;
    706
    707	if (pmc_inuse & 0x7c)
    708		mmcr->mmcr0 |= MMCR0_PMCjCE;
    709
    710	/* If we're not using PMC 5 or 6, freeze them */
    711	if (!(pmc_inuse & 0x60))
    712		mmcr->mmcr0 |= MMCR0_FC56;
    713
    714	/*
    715	 * Set mmcr0 (PMCCEXT) for p10 which
    716	 * will restrict access to group B registers
    717	 * when MMCR0 PMCC=0b00.
    718	 */
    719	if (cpu_has_feature(CPU_FTR_ARCH_31))
    720		mmcr->mmcr0 |= MMCR0_PMCCEXT;
    721
    722	mmcr->mmcr1 = mmcr1;
    723	mmcr->mmcra = mmcra;
    724	mmcr->mmcr2 = mmcr2;
    725	mmcr->mmcr3 = mmcr3;
    726
    727	return 0;
    728}
    729
    730void isa207_disable_pmc(unsigned int pmc, struct mmcr_regs *mmcr)
    731{
    732	if (pmc <= 3)
    733		mmcr->mmcr1 &= ~(0xffUL << MMCR1_PMCSEL_SHIFT(pmc + 1));
    734}
    735
    736static int find_alternative(u64 event, const unsigned int ev_alt[][MAX_ALT], int size)
    737{
    738	int i, j;
    739
    740	for (i = 0; i < size; ++i) {
    741		if (event < ev_alt[i][0])
    742			break;
    743
    744		for (j = 0; j < MAX_ALT && ev_alt[i][j]; ++j)
    745			if (event == ev_alt[i][j])
    746				return i;
    747	}
    748
    749	return -1;
    750}
    751
    752int isa207_get_alternatives(u64 event, u64 alt[], int size, unsigned int flags,
    753					const unsigned int ev_alt[][MAX_ALT])
    754{
    755	int i, j, num_alt = 0;
    756	u64 alt_event;
    757
    758	alt[num_alt++] = event;
    759	i = find_alternative(event, ev_alt, size);
    760	if (i >= 0) {
    761		/* Filter out the original event, it's already in alt[0] */
    762		for (j = 0; j < MAX_ALT; ++j) {
    763			alt_event = ev_alt[i][j];
    764			if (alt_event && alt_event != event)
    765				alt[num_alt++] = alt_event;
    766		}
    767	}
    768
    769	if (flags & PPMU_ONLY_COUNT_RUN) {
    770		/*
    771		 * We're only counting in RUN state, so PM_CYC is equivalent to
    772		 * PM_RUN_CYC and PM_INST_CMPL === PM_RUN_INST_CMPL.
    773		 */
    774		j = num_alt;
    775		for (i = 0; i < num_alt; ++i) {
    776			switch (alt[i]) {
    777			case 0x1e:			/* PMC_CYC */
    778				alt[j++] = 0x600f4;	/* PM_RUN_CYC */
    779				break;
    780			case 0x600f4:
    781				alt[j++] = 0x1e;
    782				break;
    783			case 0x2:			/* PM_INST_CMPL */
    784				alt[j++] = 0x500fa;	/* PM_RUN_INST_CMPL */
    785				break;
    786			case 0x500fa:
    787				alt[j++] = 0x2;
    788				break;
    789			}
    790		}
    791		num_alt = j;
    792	}
    793
    794	return num_alt;
    795}
    796
    797int isa3XX_check_attr_config(struct perf_event *ev)
    798{
    799	u64 val, sample_mode;
    800	u64 event = ev->attr.config;
    801
    802	val = (event >> EVENT_SAMPLE_SHIFT) & EVENT_SAMPLE_MASK;
    803	sample_mode = val & 0x3;
    804
    805	/*
    806	 * MMCRA[61:62] is Random Sampling Mode (SM).
    807	 * value of 0b11 is reserved.
    808	 */
    809	if (sample_mode == 0x3)
    810		return -EINVAL;
    811
    812	/*
    813	 * Check for all reserved value
    814	 * Source: Performance Monitoring Unit User Guide
    815	 */
    816	switch (val) {
    817	case 0x5:
    818	case 0x9:
    819	case 0xD:
    820	case 0x19:
    821	case 0x1D:
    822	case 0x1A:
    823	case 0x1E:
    824		return -EINVAL;
    825	}
    826
    827	/*
    828	 * MMCRA[48:51]/[52:55]) Threshold Start/Stop
    829	 * Events Selection.
    830	 * 0b11110000/0b00001111 is reserved.
    831	 */
    832	val = (event >> EVENT_THR_CTL_SHIFT) & EVENT_THR_CTL_MASK;
    833	if (((val & 0xF0) == 0xF0) || ((val & 0xF) == 0xF))
    834		return -EINVAL;
    835
    836	return 0;
    837}