p1022_ds.c (15051B)
1/* 2 * P1022DS board specific routines 3 * 4 * Authors: Travis Wheatley <travis.wheatley@freescale.com> 5 * Dave Liu <daveliu@freescale.com> 6 * Timur Tabi <timur@freescale.com> 7 * 8 * Copyright 2010 Freescale Semiconductor, Inc. 9 * 10 * This file is taken from the Freescale P1022DS BSP, with modifications: 11 * 2) No AMP support 12 * 3) No PCI endpoint support 13 * 14 * This file is licensed under the terms of the GNU General Public License 15 * version 2. This program is licensed "as is" without any warranty of any 16 * kind, whether express or implied. 17 */ 18 19#include <linux/fsl/guts.h> 20#include <linux/pci.h> 21#include <linux/of_address.h> 22#include <linux/of_platform.h> 23#include <asm/div64.h> 24#include <asm/mpic.h> 25#include <asm/swiotlb.h> 26 27#include <sysdev/fsl_soc.h> 28#include <sysdev/fsl_pci.h> 29#include <asm/udbg.h> 30#include <asm/fsl_lbc.h> 31#include "smp.h" 32 33#include "mpc85xx.h" 34 35#if defined(CONFIG_FB_FSL_DIU) || defined(CONFIG_FB_FSL_DIU_MODULE) 36 37#define PMUXCR_ELBCDIU_MASK 0xc0000000 38#define PMUXCR_ELBCDIU_NOR16 0x80000000 39#define PMUXCR_ELBCDIU_DIU 0x40000000 40 41/* 42 * Board-specific initialization of the DIU. This code should probably be 43 * executed when the DIU is opened, rather than in arch code, but the DIU 44 * driver does not have a mechanism for this (yet). 45 * 46 * This is especially problematic on the P1022DS because the local bus (eLBC) 47 * and the DIU video signals share the same pins, which means that enabling the 48 * DIU will disable access to NOR flash. 49 */ 50 51/* DIU Pixel Clock bits of the CLKDVDR Global Utilities register */ 52#define CLKDVDR_PXCKEN 0x80000000 53#define CLKDVDR_PXCKINV 0x10000000 54#define CLKDVDR_PXCKDLY 0x06000000 55#define CLKDVDR_PXCLK_MASK 0x00FF0000 56 57/* Some ngPIXIS register definitions */ 58#define PX_CTL 3 59#define PX_BRDCFG0 8 60#define PX_BRDCFG1 9 61 62#define PX_BRDCFG0_ELBC_SPI_MASK 0xc0 63#define PX_BRDCFG0_ELBC_SPI_ELBC 0x00 64#define PX_BRDCFG0_ELBC_SPI_NULL 0xc0 65#define PX_BRDCFG0_ELBC_DIU 0x02 66 67#define PX_BRDCFG1_DVIEN 0x80 68#define PX_BRDCFG1_DFPEN 0x40 69#define PX_BRDCFG1_BACKLIGHT 0x20 70#define PX_BRDCFG1_DDCEN 0x10 71 72#define PX_CTL_ALTACC 0x80 73 74/* 75 * DIU Area Descriptor 76 * 77 * Note that we need to byte-swap the value before it's written to the AD 78 * register. So even though the registers don't look like they're in the same 79 * bit positions as they are on the MPC8610, the same value is written to the 80 * AD register on the MPC8610 and on the P1022. 81 */ 82#define AD_BYTE_F 0x10000000 83#define AD_ALPHA_C_MASK 0x0E000000 84#define AD_ALPHA_C_SHIFT 25 85#define AD_BLUE_C_MASK 0x01800000 86#define AD_BLUE_C_SHIFT 23 87#define AD_GREEN_C_MASK 0x00600000 88#define AD_GREEN_C_SHIFT 21 89#define AD_RED_C_MASK 0x00180000 90#define AD_RED_C_SHIFT 19 91#define AD_PALETTE 0x00040000 92#define AD_PIXEL_S_MASK 0x00030000 93#define AD_PIXEL_S_SHIFT 16 94#define AD_COMP_3_MASK 0x0000F000 95#define AD_COMP_3_SHIFT 12 96#define AD_COMP_2_MASK 0x00000F00 97#define AD_COMP_2_SHIFT 8 98#define AD_COMP_1_MASK 0x000000F0 99#define AD_COMP_1_SHIFT 4 100#define AD_COMP_0_MASK 0x0000000F 101#define AD_COMP_0_SHIFT 0 102 103#define MAKE_AD(alpha, red, blue, green, size, c0, c1, c2, c3) \ 104 cpu_to_le32(AD_BYTE_F | (alpha << AD_ALPHA_C_SHIFT) | \ 105 (blue << AD_BLUE_C_SHIFT) | (green << AD_GREEN_C_SHIFT) | \ 106 (red << AD_RED_C_SHIFT) | (c3 << AD_COMP_3_SHIFT) | \ 107 (c2 << AD_COMP_2_SHIFT) | (c1 << AD_COMP_1_SHIFT) | \ 108 (c0 << AD_COMP_0_SHIFT) | (size << AD_PIXEL_S_SHIFT)) 109 110struct fsl_law { 111 u32 lawbar; 112 u32 reserved1; 113 u32 lawar; 114 u32 reserved[5]; 115}; 116 117#define LAWBAR_MASK 0x00F00000 118#define LAWBAR_SHIFT 12 119 120#define LAWAR_EN 0x80000000 121#define LAWAR_TGT_MASK 0x01F00000 122#define LAW_TRGT_IF_LBC (0x04 << 20) 123 124#define LAWAR_MASK (LAWAR_EN | LAWAR_TGT_MASK) 125#define LAWAR_MATCH (LAWAR_EN | LAW_TRGT_IF_LBC) 126 127#define BR_BA 0xFFFF8000 128 129/* 130 * Map a BRx value to a physical address 131 * 132 * The localbus BRx registers only store the lower 32 bits of the address. To 133 * obtain the upper four bits, we need to scan the LAW table. The entry which 134 * maps to the localbus will contain the upper four bits. 135 */ 136static phys_addr_t lbc_br_to_phys(const void *ecm, unsigned int count, u32 br) 137{ 138#ifndef CONFIG_PHYS_64BIT 139 /* 140 * If we only have 32-bit addressing, then the BRx address *is* the 141 * physical address. 142 */ 143 return br & BR_BA; 144#else 145 const struct fsl_law *law = ecm + 0xc08; 146 unsigned int i; 147 148 for (i = 0; i < count; i++) { 149 u64 lawbar = in_be32(&law[i].lawbar); 150 u32 lawar = in_be32(&law[i].lawar); 151 152 if ((lawar & LAWAR_MASK) == LAWAR_MATCH) 153 /* Extract the upper four bits */ 154 return (br & BR_BA) | ((lawbar & LAWBAR_MASK) << 12); 155 } 156 157 return 0; 158#endif 159} 160 161/** 162 * p1022ds_set_monitor_port: switch the output to a different monitor port 163 */ 164static void p1022ds_set_monitor_port(enum fsl_diu_monitor_port port) 165{ 166 struct device_node *guts_node; 167 struct device_node *lbc_node = NULL; 168 struct device_node *law_node = NULL; 169 struct ccsr_guts __iomem *guts; 170 struct fsl_lbc_regs *lbc = NULL; 171 void *ecm = NULL; 172 u8 __iomem *lbc_lcs0_ba = NULL; 173 u8 __iomem *lbc_lcs1_ba = NULL; 174 phys_addr_t cs0_addr, cs1_addr; 175 u32 br0, or0, br1, or1; 176 const __be32 *iprop; 177 unsigned int num_laws; 178 u8 b; 179 180 /* Map the global utilities registers. */ 181 guts_node = of_find_compatible_node(NULL, NULL, "fsl,p1022-guts"); 182 if (!guts_node) { 183 pr_err("p1022ds: missing global utilities device node\n"); 184 return; 185 } 186 187 guts = of_iomap(guts_node, 0); 188 if (!guts) { 189 pr_err("p1022ds: could not map global utilities device\n"); 190 goto exit; 191 } 192 193 lbc_node = of_find_compatible_node(NULL, NULL, "fsl,p1022-elbc"); 194 if (!lbc_node) { 195 pr_err("p1022ds: missing localbus node\n"); 196 goto exit; 197 } 198 199 lbc = of_iomap(lbc_node, 0); 200 if (!lbc) { 201 pr_err("p1022ds: could not map localbus node\n"); 202 goto exit; 203 } 204 205 law_node = of_find_compatible_node(NULL, NULL, "fsl,ecm-law"); 206 if (!law_node) { 207 pr_err("p1022ds: missing local access window node\n"); 208 goto exit; 209 } 210 211 ecm = of_iomap(law_node, 0); 212 if (!ecm) { 213 pr_err("p1022ds: could not map local access window node\n"); 214 goto exit; 215 } 216 217 iprop = of_get_property(law_node, "fsl,num-laws", NULL); 218 if (!iprop) { 219 pr_err("p1022ds: LAW node is missing fsl,num-laws property\n"); 220 goto exit; 221 } 222 num_laws = be32_to_cpup(iprop); 223 224 /* 225 * Indirect mode requires both BR0 and BR1 to be set to "GPCM", 226 * otherwise writes to these addresses won't actually appear on the 227 * local bus, and so the PIXIS won't see them. 228 * 229 * In FCM mode, writes go to the NAND controller, which does not pass 230 * them to the localbus directly. So we force BR0 and BR1 into GPCM 231 * mode, since we don't care about what's behind the localbus any 232 * more. 233 */ 234 br0 = in_be32(&lbc->bank[0].br); 235 br1 = in_be32(&lbc->bank[1].br); 236 or0 = in_be32(&lbc->bank[0].or); 237 or1 = in_be32(&lbc->bank[1].or); 238 239 /* Make sure CS0 and CS1 are programmed */ 240 if (!(br0 & BR_V) || !(br1 & BR_V)) { 241 pr_err("p1022ds: CS0 and/or CS1 is not programmed\n"); 242 goto exit; 243 } 244 245 /* 246 * Use the existing BRx/ORx values if it's already GPCM. Otherwise, 247 * force the values to simple 32KB GPCM windows with the most 248 * conservative timing. 249 */ 250 if ((br0 & BR_MSEL) != BR_MS_GPCM) { 251 br0 = (br0 & BR_BA) | BR_V; 252 or0 = 0xFFFF8000 | 0xFF7; 253 out_be32(&lbc->bank[0].br, br0); 254 out_be32(&lbc->bank[0].or, or0); 255 } 256 if ((br1 & BR_MSEL) != BR_MS_GPCM) { 257 br1 = (br1 & BR_BA) | BR_V; 258 or1 = 0xFFFF8000 | 0xFF7; 259 out_be32(&lbc->bank[1].br, br1); 260 out_be32(&lbc->bank[1].or, or1); 261 } 262 263 cs0_addr = lbc_br_to_phys(ecm, num_laws, br0); 264 if (!cs0_addr) { 265 pr_err("p1022ds: could not determine physical address for CS0" 266 " (BR0=%08x)\n", br0); 267 goto exit; 268 } 269 cs1_addr = lbc_br_to_phys(ecm, num_laws, br1); 270 if (!cs1_addr) { 271 pr_err("p1022ds: could not determine physical address for CS1" 272 " (BR1=%08x)\n", br1); 273 goto exit; 274 } 275 276 lbc_lcs0_ba = ioremap(cs0_addr, 1); 277 if (!lbc_lcs0_ba) { 278 pr_err("p1022ds: could not ioremap CS0 address %llx\n", 279 (unsigned long long)cs0_addr); 280 goto exit; 281 } 282 lbc_lcs1_ba = ioremap(cs1_addr, 1); 283 if (!lbc_lcs1_ba) { 284 pr_err("p1022ds: could not ioremap CS1 address %llx\n", 285 (unsigned long long)cs1_addr); 286 goto exit; 287 } 288 289 /* Make sure we're in indirect mode first. */ 290 if ((in_be32(&guts->pmuxcr) & PMUXCR_ELBCDIU_MASK) != 291 PMUXCR_ELBCDIU_DIU) { 292 struct device_node *pixis_node; 293 void __iomem *pixis; 294 295 pixis_node = 296 of_find_compatible_node(NULL, NULL, "fsl,p1022ds-fpga"); 297 if (!pixis_node) { 298 pr_err("p1022ds: missing pixis node\n"); 299 goto exit; 300 } 301 302 pixis = of_iomap(pixis_node, 0); 303 of_node_put(pixis_node); 304 if (!pixis) { 305 pr_err("p1022ds: could not map pixis registers\n"); 306 goto exit; 307 } 308 309 /* Enable indirect PIXIS mode. */ 310 setbits8(pixis + PX_CTL, PX_CTL_ALTACC); 311 iounmap(pixis); 312 313 /* Switch the board mux to the DIU */ 314 out_8(lbc_lcs0_ba, PX_BRDCFG0); /* BRDCFG0 */ 315 b = in_8(lbc_lcs1_ba); 316 b |= PX_BRDCFG0_ELBC_DIU; 317 out_8(lbc_lcs1_ba, b); 318 319 /* Set the chip mux to DIU mode. */ 320 clrsetbits_be32(&guts->pmuxcr, PMUXCR_ELBCDIU_MASK, 321 PMUXCR_ELBCDIU_DIU); 322 in_be32(&guts->pmuxcr); 323 } 324 325 326 switch (port) { 327 case FSL_DIU_PORT_DVI: 328 /* Enable the DVI port, disable the DFP and the backlight */ 329 out_8(lbc_lcs0_ba, PX_BRDCFG1); 330 b = in_8(lbc_lcs1_ba); 331 b &= ~(PX_BRDCFG1_DFPEN | PX_BRDCFG1_BACKLIGHT); 332 b |= PX_BRDCFG1_DVIEN; 333 out_8(lbc_lcs1_ba, b); 334 break; 335 case FSL_DIU_PORT_LVDS: 336 /* 337 * LVDS also needs backlight enabled, otherwise the display 338 * will be blank. 339 */ 340 /* Enable the DFP port, disable the DVI and the backlight */ 341 out_8(lbc_lcs0_ba, PX_BRDCFG1); 342 b = in_8(lbc_lcs1_ba); 343 b &= ~PX_BRDCFG1_DVIEN; 344 b |= PX_BRDCFG1_DFPEN | PX_BRDCFG1_BACKLIGHT; 345 out_8(lbc_lcs1_ba, b); 346 break; 347 default: 348 pr_err("p1022ds: unsupported monitor port %i\n", port); 349 } 350 351exit: 352 if (lbc_lcs1_ba) 353 iounmap(lbc_lcs1_ba); 354 if (lbc_lcs0_ba) 355 iounmap(lbc_lcs0_ba); 356 if (lbc) 357 iounmap(lbc); 358 if (ecm) 359 iounmap(ecm); 360 if (guts) 361 iounmap(guts); 362 363 of_node_put(law_node); 364 of_node_put(lbc_node); 365 of_node_put(guts_node); 366} 367 368/** 369 * p1022ds_set_pixel_clock: program the DIU's clock 370 * 371 * @pixclock: the wavelength, in picoseconds, of the clock 372 */ 373void p1022ds_set_pixel_clock(unsigned int pixclock) 374{ 375 struct device_node *guts_np = NULL; 376 struct ccsr_guts __iomem *guts; 377 unsigned long freq; 378 u64 temp; 379 u32 pxclk; 380 381 /* Map the global utilities registers. */ 382 guts_np = of_find_compatible_node(NULL, NULL, "fsl,p1022-guts"); 383 if (!guts_np) { 384 pr_err("p1022ds: missing global utilities device node\n"); 385 return; 386 } 387 388 guts = of_iomap(guts_np, 0); 389 of_node_put(guts_np); 390 if (!guts) { 391 pr_err("p1022ds: could not map global utilities device\n"); 392 return; 393 } 394 395 /* Convert pixclock from a wavelength to a frequency */ 396 temp = 1000000000000ULL; 397 do_div(temp, pixclock); 398 freq = temp; 399 400 /* 401 * 'pxclk' is the ratio of the platform clock to the pixel clock. 402 * This number is programmed into the CLKDVDR register, and the valid 403 * range of values is 2-255. 404 */ 405 pxclk = DIV_ROUND_CLOSEST(fsl_get_sys_freq(), freq); 406 pxclk = clamp_t(u32, pxclk, 2, 255); 407 408 /* Disable the pixel clock, and set it to non-inverted and no delay */ 409 clrbits32(&guts->clkdvdr, 410 CLKDVDR_PXCKEN | CLKDVDR_PXCKDLY | CLKDVDR_PXCLK_MASK); 411 412 /* Enable the clock and set the pxclk */ 413 setbits32(&guts->clkdvdr, CLKDVDR_PXCKEN | (pxclk << 16)); 414 415 iounmap(guts); 416} 417 418/** 419 * p1022ds_valid_monitor_port: set the monitor port for sysfs 420 */ 421enum fsl_diu_monitor_port 422p1022ds_valid_monitor_port(enum fsl_diu_monitor_port port) 423{ 424 switch (port) { 425 case FSL_DIU_PORT_DVI: 426 case FSL_DIU_PORT_LVDS: 427 return port; 428 default: 429 return FSL_DIU_PORT_DVI; /* Dual-link LVDS is not supported */ 430 } 431} 432 433#endif 434 435void __init p1022_ds_pic_init(void) 436{ 437 struct mpic *mpic = mpic_alloc(NULL, 0, MPIC_BIG_ENDIAN | 438 MPIC_SINGLE_DEST_CPU, 439 0, 256, " OpenPIC "); 440 BUG_ON(mpic == NULL); 441 mpic_init(mpic); 442} 443 444#if defined(CONFIG_FB_FSL_DIU) || defined(CONFIG_FB_FSL_DIU_MODULE) 445 446/* TRUE if there is a "video=fslfb" command-line parameter. */ 447static bool fslfb; 448 449/* 450 * Search for a "video=fslfb" command-line parameter, and set 'fslfb' to 451 * true if we find it. 452 * 453 * We need to use early_param() instead of __setup() because the normal 454 * __setup() gets called to late. However, early_param() gets called very 455 * early, before the device tree is unflattened, so all we can do now is set a 456 * global variable. Later on, p1022_ds_setup_arch() will use that variable 457 * to determine if we need to update the device tree. 458 */ 459static int __init early_video_setup(char *options) 460{ 461 fslfb = (strncmp(options, "fslfb:", 6) == 0); 462 463 return 0; 464} 465early_param("video", early_video_setup); 466 467#endif 468 469/* 470 * Setup the architecture 471 */ 472static void __init p1022_ds_setup_arch(void) 473{ 474 if (ppc_md.progress) 475 ppc_md.progress("p1022_ds_setup_arch()", 0); 476 477#if defined(CONFIG_FB_FSL_DIU) || defined(CONFIG_FB_FSL_DIU_MODULE) 478 diu_ops.set_monitor_port = p1022ds_set_monitor_port; 479 diu_ops.set_pixel_clock = p1022ds_set_pixel_clock; 480 diu_ops.valid_monitor_port = p1022ds_valid_monitor_port; 481 482 /* 483 * Disable the NOR and NAND flash nodes if there is video=fslfb... 484 * command-line parameter. When the DIU is active, the localbus is 485 * unavailable, so we have to disable these nodes before the MTD 486 * driver loads. 487 */ 488 if (fslfb) { 489 struct device_node *np = 490 of_find_compatible_node(NULL, NULL, "fsl,p1022-elbc"); 491 492 if (np) { 493 struct device_node *np2; 494 495 of_node_get(np); 496 np2 = of_find_compatible_node(np, NULL, "cfi-flash"); 497 if (np2) { 498 static struct property nor_status = { 499 .name = "status", 500 .value = "disabled", 501 .length = sizeof("disabled"), 502 }; 503 504 /* 505 * of_update_property() is called before 506 * kmalloc() is available, so the 'new' object 507 * should be allocated in the global area. 508 * The easiest way is to do that is to 509 * allocate one static local variable for each 510 * call to this function. 511 */ 512 pr_info("p1022ds: disabling %pOF node", 513 np2); 514 of_update_property(np2, &nor_status); 515 of_node_put(np2); 516 } 517 518 of_node_get(np); 519 np2 = of_find_compatible_node(np, NULL, 520 "fsl,elbc-fcm-nand"); 521 if (np2) { 522 static struct property nand_status = { 523 .name = "status", 524 .value = "disabled", 525 .length = sizeof("disabled"), 526 }; 527 528 pr_info("p1022ds: disabling %pOF node", 529 np2); 530 of_update_property(np2, &nand_status); 531 of_node_put(np2); 532 } 533 534 of_node_put(np); 535 } 536 537 } 538 539#endif 540 541 mpc85xx_smp_init(); 542 543 fsl_pci_assign_primary(); 544 545 swiotlb_detect_4g(); 546 547 pr_info("Freescale P1022 DS reference board\n"); 548} 549 550machine_arch_initcall(p1022_ds, mpc85xx_common_publish_devices); 551 552/* 553 * Called very early, device-tree isn't unflattened 554 */ 555static int __init p1022_ds_probe(void) 556{ 557 return of_machine_is_compatible("fsl,p1022ds"); 558} 559 560define_machine(p1022_ds) { 561 .name = "P1022 DS", 562 .probe = p1022_ds_probe, 563 .setup_arch = p1022_ds_setup_arch, 564 .init_IRQ = p1022_ds_pic_init, 565#ifdef CONFIG_PCI 566 .pcibios_fixup_bus = fsl_pcibios_fixup_bus, 567 .pcibios_fixup_phb = fsl_pcibios_fixup_phb, 568#endif 569 .get_irq = mpic_get_irq, 570 .calibrate_decr = generic_calibrate_decr, 571 .progress = udbg_progress, 572};