cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

pmu.c (9099B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * Cell Broadband Engine Performance Monitor
      4 *
      5 * (C) Copyright IBM Corporation 2001,2006
      6 *
      7 * Author:
      8 *    David Erb (djerb@us.ibm.com)
      9 *    Kevin Corry (kevcorry@us.ibm.com)
     10 */
     11
     12#include <linux/interrupt.h>
     13#include <linux/irqdomain.h>
     14#include <linux/types.h>
     15#include <linux/export.h>
     16#include <asm/io.h>
     17#include <asm/irq_regs.h>
     18#include <asm/machdep.h>
     19#include <asm/pmc.h>
     20#include <asm/reg.h>
     21#include <asm/spu.h>
     22#include <asm/cell-regs.h>
     23
     24#include "interrupt.h"
     25
     26/*
     27 * When writing to write-only mmio addresses, save a shadow copy. All of the
     28 * registers are 32-bit, but stored in the upper-half of a 64-bit field in
     29 * pmd_regs.
     30 */
     31
     32#define WRITE_WO_MMIO(reg, x)					\
     33	do {							\
     34		u32 _x = (x);					\
     35		struct cbe_pmd_regs __iomem *pmd_regs;		\
     36		struct cbe_pmd_shadow_regs *shadow_regs;	\
     37		pmd_regs = cbe_get_cpu_pmd_regs(cpu);		\
     38		shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu);	\
     39		out_be64(&(pmd_regs->reg), (((u64)_x) << 32));	\
     40		shadow_regs->reg = _x;				\
     41	} while (0)
     42
     43#define READ_SHADOW_REG(val, reg)				\
     44	do {							\
     45		struct cbe_pmd_shadow_regs *shadow_regs;	\
     46		shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu);	\
     47		(val) = shadow_regs->reg;			\
     48	} while (0)
     49
     50#define READ_MMIO_UPPER32(val, reg)				\
     51	do {							\
     52		struct cbe_pmd_regs __iomem *pmd_regs;		\
     53		pmd_regs = cbe_get_cpu_pmd_regs(cpu);		\
     54		(val) = (u32)(in_be64(&pmd_regs->reg) >> 32);	\
     55	} while (0)
     56
     57/*
     58 * Physical counter registers.
     59 * Each physical counter can act as one 32-bit counter or two 16-bit counters.
     60 */
     61
     62u32 cbe_read_phys_ctr(u32 cpu, u32 phys_ctr)
     63{
     64	u32 val_in_latch, val = 0;
     65
     66	if (phys_ctr < NR_PHYS_CTRS) {
     67		READ_SHADOW_REG(val_in_latch, counter_value_in_latch);
     68
     69		/* Read the latch or the actual counter, whichever is newer. */
     70		if (val_in_latch & (1 << phys_ctr)) {
     71			READ_SHADOW_REG(val, pm_ctr[phys_ctr]);
     72		} else {
     73			READ_MMIO_UPPER32(val, pm_ctr[phys_ctr]);
     74		}
     75	}
     76
     77	return val;
     78}
     79EXPORT_SYMBOL_GPL(cbe_read_phys_ctr);
     80
     81void cbe_write_phys_ctr(u32 cpu, u32 phys_ctr, u32 val)
     82{
     83	struct cbe_pmd_shadow_regs *shadow_regs;
     84	u32 pm_ctrl;
     85
     86	if (phys_ctr < NR_PHYS_CTRS) {
     87		/* Writing to a counter only writes to a hardware latch.
     88		 * The new value is not propagated to the actual counter
     89		 * until the performance monitor is enabled.
     90		 */
     91		WRITE_WO_MMIO(pm_ctr[phys_ctr], val);
     92
     93		pm_ctrl = cbe_read_pm(cpu, pm_control);
     94		if (pm_ctrl & CBE_PM_ENABLE_PERF_MON) {
     95			/* The counters are already active, so we need to
     96			 * rewrite the pm_control register to "re-enable"
     97			 * the PMU.
     98			 */
     99			cbe_write_pm(cpu, pm_control, pm_ctrl);
    100		} else {
    101			shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu);
    102			shadow_regs->counter_value_in_latch |= (1 << phys_ctr);
    103		}
    104	}
    105}
    106EXPORT_SYMBOL_GPL(cbe_write_phys_ctr);
    107
    108/*
    109 * "Logical" counter registers.
    110 * These will read/write 16-bits or 32-bits depending on the
    111 * current size of the counter. Counters 4 - 7 are always 16-bit.
    112 */
    113
    114u32 cbe_read_ctr(u32 cpu, u32 ctr)
    115{
    116	u32 val;
    117	u32 phys_ctr = ctr & (NR_PHYS_CTRS - 1);
    118
    119	val = cbe_read_phys_ctr(cpu, phys_ctr);
    120
    121	if (cbe_get_ctr_size(cpu, phys_ctr) == 16)
    122		val = (ctr < NR_PHYS_CTRS) ? (val >> 16) : (val & 0xffff);
    123
    124	return val;
    125}
    126EXPORT_SYMBOL_GPL(cbe_read_ctr);
    127
    128void cbe_write_ctr(u32 cpu, u32 ctr, u32 val)
    129{
    130	u32 phys_ctr;
    131	u32 phys_val;
    132
    133	phys_ctr = ctr & (NR_PHYS_CTRS - 1);
    134
    135	if (cbe_get_ctr_size(cpu, phys_ctr) == 16) {
    136		phys_val = cbe_read_phys_ctr(cpu, phys_ctr);
    137
    138		if (ctr < NR_PHYS_CTRS)
    139			val = (val << 16) | (phys_val & 0xffff);
    140		else
    141			val = (val & 0xffff) | (phys_val & 0xffff0000);
    142	}
    143
    144	cbe_write_phys_ctr(cpu, phys_ctr, val);
    145}
    146EXPORT_SYMBOL_GPL(cbe_write_ctr);
    147
    148/*
    149 * Counter-control registers.
    150 * Each "logical" counter has a corresponding control register.
    151 */
    152
    153u32 cbe_read_pm07_control(u32 cpu, u32 ctr)
    154{
    155	u32 pm07_control = 0;
    156
    157	if (ctr < NR_CTRS)
    158		READ_SHADOW_REG(pm07_control, pm07_control[ctr]);
    159
    160	return pm07_control;
    161}
    162EXPORT_SYMBOL_GPL(cbe_read_pm07_control);
    163
    164void cbe_write_pm07_control(u32 cpu, u32 ctr, u32 val)
    165{
    166	if (ctr < NR_CTRS)
    167		WRITE_WO_MMIO(pm07_control[ctr], val);
    168}
    169EXPORT_SYMBOL_GPL(cbe_write_pm07_control);
    170
    171/*
    172 * Other PMU control registers. Most of these are write-only.
    173 */
    174
    175u32 cbe_read_pm(u32 cpu, enum pm_reg_name reg)
    176{
    177	u32 val = 0;
    178
    179	switch (reg) {
    180	case group_control:
    181		READ_SHADOW_REG(val, group_control);
    182		break;
    183
    184	case debug_bus_control:
    185		READ_SHADOW_REG(val, debug_bus_control);
    186		break;
    187
    188	case trace_address:
    189		READ_MMIO_UPPER32(val, trace_address);
    190		break;
    191
    192	case ext_tr_timer:
    193		READ_SHADOW_REG(val, ext_tr_timer);
    194		break;
    195
    196	case pm_status:
    197		READ_MMIO_UPPER32(val, pm_status);
    198		break;
    199
    200	case pm_control:
    201		READ_SHADOW_REG(val, pm_control);
    202		break;
    203
    204	case pm_interval:
    205		READ_MMIO_UPPER32(val, pm_interval);
    206		break;
    207
    208	case pm_start_stop:
    209		READ_SHADOW_REG(val, pm_start_stop);
    210		break;
    211	}
    212
    213	return val;
    214}
    215EXPORT_SYMBOL_GPL(cbe_read_pm);
    216
    217void cbe_write_pm(u32 cpu, enum pm_reg_name reg, u32 val)
    218{
    219	switch (reg) {
    220	case group_control:
    221		WRITE_WO_MMIO(group_control, val);
    222		break;
    223
    224	case debug_bus_control:
    225		WRITE_WO_MMIO(debug_bus_control, val);
    226		break;
    227
    228	case trace_address:
    229		WRITE_WO_MMIO(trace_address, val);
    230		break;
    231
    232	case ext_tr_timer:
    233		WRITE_WO_MMIO(ext_tr_timer, val);
    234		break;
    235
    236	case pm_status:
    237		WRITE_WO_MMIO(pm_status, val);
    238		break;
    239
    240	case pm_control:
    241		WRITE_WO_MMIO(pm_control, val);
    242		break;
    243
    244	case pm_interval:
    245		WRITE_WO_MMIO(pm_interval, val);
    246		break;
    247
    248	case pm_start_stop:
    249		WRITE_WO_MMIO(pm_start_stop, val);
    250		break;
    251	}
    252}
    253EXPORT_SYMBOL_GPL(cbe_write_pm);
    254
    255/*
    256 * Get/set the size of a physical counter to either 16 or 32 bits.
    257 */
    258
    259u32 cbe_get_ctr_size(u32 cpu, u32 phys_ctr)
    260{
    261	u32 pm_ctrl, size = 0;
    262
    263	if (phys_ctr < NR_PHYS_CTRS) {
    264		pm_ctrl = cbe_read_pm(cpu, pm_control);
    265		size = (pm_ctrl & CBE_PM_16BIT_CTR(phys_ctr)) ? 16 : 32;
    266	}
    267
    268	return size;
    269}
    270EXPORT_SYMBOL_GPL(cbe_get_ctr_size);
    271
    272void cbe_set_ctr_size(u32 cpu, u32 phys_ctr, u32 ctr_size)
    273{
    274	u32 pm_ctrl;
    275
    276	if (phys_ctr < NR_PHYS_CTRS) {
    277		pm_ctrl = cbe_read_pm(cpu, pm_control);
    278		switch (ctr_size) {
    279		case 16:
    280			pm_ctrl |= CBE_PM_16BIT_CTR(phys_ctr);
    281			break;
    282
    283		case 32:
    284			pm_ctrl &= ~CBE_PM_16BIT_CTR(phys_ctr);
    285			break;
    286		}
    287		cbe_write_pm(cpu, pm_control, pm_ctrl);
    288	}
    289}
    290EXPORT_SYMBOL_GPL(cbe_set_ctr_size);
    291
    292/*
    293 * Enable/disable the entire performance monitoring unit.
    294 * When we enable the PMU, all pending writes to counters get committed.
    295 */
    296
    297void cbe_enable_pm(u32 cpu)
    298{
    299	struct cbe_pmd_shadow_regs *shadow_regs;
    300	u32 pm_ctrl;
    301
    302	shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu);
    303	shadow_regs->counter_value_in_latch = 0;
    304
    305	pm_ctrl = cbe_read_pm(cpu, pm_control) | CBE_PM_ENABLE_PERF_MON;
    306	cbe_write_pm(cpu, pm_control, pm_ctrl);
    307}
    308EXPORT_SYMBOL_GPL(cbe_enable_pm);
    309
    310void cbe_disable_pm(u32 cpu)
    311{
    312	u32 pm_ctrl;
    313	pm_ctrl = cbe_read_pm(cpu, pm_control) & ~CBE_PM_ENABLE_PERF_MON;
    314	cbe_write_pm(cpu, pm_control, pm_ctrl);
    315}
    316EXPORT_SYMBOL_GPL(cbe_disable_pm);
    317
    318/*
    319 * Reading from the trace_buffer.
    320 * The trace buffer is two 64-bit registers. Reading from
    321 * the second half automatically increments the trace_address.
    322 */
    323
    324void cbe_read_trace_buffer(u32 cpu, u64 *buf)
    325{
    326	struct cbe_pmd_regs __iomem *pmd_regs = cbe_get_cpu_pmd_regs(cpu);
    327
    328	*buf++ = in_be64(&pmd_regs->trace_buffer_0_63);
    329	*buf++ = in_be64(&pmd_regs->trace_buffer_64_127);
    330}
    331EXPORT_SYMBOL_GPL(cbe_read_trace_buffer);
    332
    333/*
    334 * Enabling/disabling interrupts for the entire performance monitoring unit.
    335 */
    336
    337u32 cbe_get_and_clear_pm_interrupts(u32 cpu)
    338{
    339	/* Reading pm_status clears the interrupt bits. */
    340	return cbe_read_pm(cpu, pm_status);
    341}
    342EXPORT_SYMBOL_GPL(cbe_get_and_clear_pm_interrupts);
    343
    344void cbe_enable_pm_interrupts(u32 cpu, u32 thread, u32 mask)
    345{
    346	/* Set which node and thread will handle the next interrupt. */
    347	iic_set_interrupt_routing(cpu, thread, 0);
    348
    349	/* Enable the interrupt bits in the pm_status register. */
    350	if (mask)
    351		cbe_write_pm(cpu, pm_status, mask);
    352}
    353EXPORT_SYMBOL_GPL(cbe_enable_pm_interrupts);
    354
    355void cbe_disable_pm_interrupts(u32 cpu)
    356{
    357	cbe_get_and_clear_pm_interrupts(cpu);
    358	cbe_write_pm(cpu, pm_status, 0);
    359}
    360EXPORT_SYMBOL_GPL(cbe_disable_pm_interrupts);
    361
    362static irqreturn_t cbe_pm_irq(int irq, void *dev_id)
    363{
    364	perf_irq(get_irq_regs());
    365	return IRQ_HANDLED;
    366}
    367
    368static int __init cbe_init_pm_irq(void)
    369{
    370	unsigned int irq;
    371	int rc, node;
    372
    373	for_each_online_node(node) {
    374		irq = irq_create_mapping(NULL, IIC_IRQ_IOEX_PMI |
    375					       (node << IIC_IRQ_NODE_SHIFT));
    376		if (!irq) {
    377			printk("ERROR: Unable to allocate irq for node %d\n",
    378			       node);
    379			return -EINVAL;
    380		}
    381
    382		rc = request_irq(irq, cbe_pm_irq,
    383				 0, "cbe-pmu-0", NULL);
    384		if (rc) {
    385			printk("ERROR: Request for irq on node %d failed\n",
    386			       node);
    387			return rc;
    388		}
    389	}
    390
    391	return 0;
    392}
    393machine_arch_initcall(cell, cbe_init_pm_irq);
    394
    395void cbe_sync_irq(int node)
    396{
    397	unsigned int irq;
    398
    399	irq = irq_find_mapping(NULL,
    400			       IIC_IRQ_IOEX_PMI
    401			       | (node << IIC_IRQ_NODE_SHIFT));
    402
    403	if (!irq) {
    404		printk(KERN_WARNING "ERROR, unable to get existing irq %d " \
    405		"for node %d\n", irq, node);
    406		return;
    407	}
    408
    409	synchronize_irq(irq);
    410}
    411EXPORT_SYMBOL_GPL(cbe_sync_irq);
    412