cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

sched.c (29120B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/* sched.c - SPU scheduler.
      3 *
      4 * Copyright (C) IBM 2005
      5 * Author: Mark Nutter <mnutter@us.ibm.com>
      6 *
      7 * 2006-03-31	NUMA domains added.
      8 */
      9
     10#undef DEBUG
     11
     12#include <linux/errno.h>
     13#include <linux/sched/signal.h>
     14#include <linux/sched/loadavg.h>
     15#include <linux/sched/rt.h>
     16#include <linux/kernel.h>
     17#include <linux/mm.h>
     18#include <linux/slab.h>
     19#include <linux/completion.h>
     20#include <linux/vmalloc.h>
     21#include <linux/smp.h>
     22#include <linux/stddef.h>
     23#include <linux/unistd.h>
     24#include <linux/numa.h>
     25#include <linux/mutex.h>
     26#include <linux/notifier.h>
     27#include <linux/kthread.h>
     28#include <linux/pid_namespace.h>
     29#include <linux/proc_fs.h>
     30#include <linux/seq_file.h>
     31
     32#include <asm/io.h>
     33#include <asm/mmu_context.h>
     34#include <asm/spu.h>
     35#include <asm/spu_csa.h>
     36#include <asm/spu_priv1.h>
     37#include "spufs.h"
     38#define CREATE_TRACE_POINTS
     39#include "sputrace.h"
     40
     41struct spu_prio_array {
     42	DECLARE_BITMAP(bitmap, MAX_PRIO);
     43	struct list_head runq[MAX_PRIO];
     44	spinlock_t runq_lock;
     45	int nr_waiting;
     46};
     47
     48static unsigned long spu_avenrun[3];
     49static struct spu_prio_array *spu_prio;
     50static struct task_struct *spusched_task;
     51static struct timer_list spusched_timer;
     52static struct timer_list spuloadavg_timer;
     53
     54/*
     55 * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
     56 */
     57#define NORMAL_PRIO		120
     58
     59/*
     60 * Frequency of the spu scheduler tick.  By default we do one SPU scheduler
     61 * tick for every 10 CPU scheduler ticks.
     62 */
     63#define SPUSCHED_TICK		(10)
     64
     65/*
     66 * These are the 'tuning knobs' of the scheduler:
     67 *
     68 * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is
     69 * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs.
     70 */
     71#define MIN_SPU_TIMESLICE	max(5 * HZ / (1000 * SPUSCHED_TICK), 1)
     72#define DEF_SPU_TIMESLICE	(100 * HZ / (1000 * SPUSCHED_TICK))
     73
     74#define SCALE_PRIO(x, prio) \
     75	max(x * (MAX_PRIO - prio) / (NICE_WIDTH / 2), MIN_SPU_TIMESLICE)
     76
     77/*
     78 * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values:
     79 * [800ms ... 100ms ... 5ms]
     80 *
     81 * The higher a thread's priority, the bigger timeslices
     82 * it gets during one round of execution. But even the lowest
     83 * priority thread gets MIN_TIMESLICE worth of execution time.
     84 */
     85void spu_set_timeslice(struct spu_context *ctx)
     86{
     87	if (ctx->prio < NORMAL_PRIO)
     88		ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio);
     89	else
     90		ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio);
     91}
     92
     93/*
     94 * Update scheduling information from the owning thread.
     95 */
     96void __spu_update_sched_info(struct spu_context *ctx)
     97{
     98	/*
     99	 * assert that the context is not on the runqueue, so it is safe
    100	 * to change its scheduling parameters.
    101	 */
    102	BUG_ON(!list_empty(&ctx->rq));
    103
    104	/*
    105	 * 32-Bit assignments are atomic on powerpc, and we don't care about
    106	 * memory ordering here because retrieving the controlling thread is
    107	 * per definition racy.
    108	 */
    109	ctx->tid = current->pid;
    110
    111	/*
    112	 * We do our own priority calculations, so we normally want
    113	 * ->static_prio to start with. Unfortunately this field
    114	 * contains junk for threads with a realtime scheduling
    115	 * policy so we have to look at ->prio in this case.
    116	 */
    117	if (rt_prio(current->prio))
    118		ctx->prio = current->prio;
    119	else
    120		ctx->prio = current->static_prio;
    121	ctx->policy = current->policy;
    122
    123	/*
    124	 * TO DO: the context may be loaded, so we may need to activate
    125	 * it again on a different node. But it shouldn't hurt anything
    126	 * to update its parameters, because we know that the scheduler
    127	 * is not actively looking at this field, since it is not on the
    128	 * runqueue. The context will be rescheduled on the proper node
    129	 * if it is timesliced or preempted.
    130	 */
    131	cpumask_copy(&ctx->cpus_allowed, current->cpus_ptr);
    132
    133	/* Save the current cpu id for spu interrupt routing. */
    134	ctx->last_ran = raw_smp_processor_id();
    135}
    136
    137void spu_update_sched_info(struct spu_context *ctx)
    138{
    139	int node;
    140
    141	if (ctx->state == SPU_STATE_RUNNABLE) {
    142		node = ctx->spu->node;
    143
    144		/*
    145		 * Take list_mutex to sync with find_victim().
    146		 */
    147		mutex_lock(&cbe_spu_info[node].list_mutex);
    148		__spu_update_sched_info(ctx);
    149		mutex_unlock(&cbe_spu_info[node].list_mutex);
    150	} else {
    151		__spu_update_sched_info(ctx);
    152	}
    153}
    154
    155static int __node_allowed(struct spu_context *ctx, int node)
    156{
    157	if (nr_cpus_node(node)) {
    158		const struct cpumask *mask = cpumask_of_node(node);
    159
    160		if (cpumask_intersects(mask, &ctx->cpus_allowed))
    161			return 1;
    162	}
    163
    164	return 0;
    165}
    166
    167static int node_allowed(struct spu_context *ctx, int node)
    168{
    169	int rval;
    170
    171	spin_lock(&spu_prio->runq_lock);
    172	rval = __node_allowed(ctx, node);
    173	spin_unlock(&spu_prio->runq_lock);
    174
    175	return rval;
    176}
    177
    178void do_notify_spus_active(void)
    179{
    180	int node;
    181
    182	/*
    183	 * Wake up the active spu_contexts.
    184	 */
    185	for_each_online_node(node) {
    186		struct spu *spu;
    187
    188		mutex_lock(&cbe_spu_info[node].list_mutex);
    189		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
    190			if (spu->alloc_state != SPU_FREE) {
    191				struct spu_context *ctx = spu->ctx;
    192				set_bit(SPU_SCHED_NOTIFY_ACTIVE,
    193					&ctx->sched_flags);
    194				mb();
    195				wake_up_all(&ctx->stop_wq);
    196			}
    197		}
    198		mutex_unlock(&cbe_spu_info[node].list_mutex);
    199	}
    200}
    201
    202/**
    203 * spu_bind_context - bind spu context to physical spu
    204 * @spu:	physical spu to bind to
    205 * @ctx:	context to bind
    206 */
    207static void spu_bind_context(struct spu *spu, struct spu_context *ctx)
    208{
    209	spu_context_trace(spu_bind_context__enter, ctx, spu);
    210
    211	spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
    212
    213	if (ctx->flags & SPU_CREATE_NOSCHED)
    214		atomic_inc(&cbe_spu_info[spu->node].reserved_spus);
    215
    216	ctx->stats.slb_flt_base = spu->stats.slb_flt;
    217	ctx->stats.class2_intr_base = spu->stats.class2_intr;
    218
    219	spu_associate_mm(spu, ctx->owner);
    220
    221	spin_lock_irq(&spu->register_lock);
    222	spu->ctx = ctx;
    223	spu->flags = 0;
    224	ctx->spu = spu;
    225	ctx->ops = &spu_hw_ops;
    226	spu->pid = current->pid;
    227	spu->tgid = current->tgid;
    228	spu->ibox_callback = spufs_ibox_callback;
    229	spu->wbox_callback = spufs_wbox_callback;
    230	spu->stop_callback = spufs_stop_callback;
    231	spu->mfc_callback = spufs_mfc_callback;
    232	spin_unlock_irq(&spu->register_lock);
    233
    234	spu_unmap_mappings(ctx);
    235
    236	spu_switch_log_notify(spu, ctx, SWITCH_LOG_START, 0);
    237	spu_restore(&ctx->csa, spu);
    238	spu->timestamp = jiffies;
    239	ctx->state = SPU_STATE_RUNNABLE;
    240
    241	spuctx_switch_state(ctx, SPU_UTIL_USER);
    242}
    243
    244/*
    245 * Must be used with the list_mutex held.
    246 */
    247static inline int sched_spu(struct spu *spu)
    248{
    249	BUG_ON(!mutex_is_locked(&cbe_spu_info[spu->node].list_mutex));
    250
    251	return (!spu->ctx || !(spu->ctx->flags & SPU_CREATE_NOSCHED));
    252}
    253
    254static void aff_merge_remaining_ctxs(struct spu_gang *gang)
    255{
    256	struct spu_context *ctx;
    257
    258	list_for_each_entry(ctx, &gang->aff_list_head, aff_list) {
    259		if (list_empty(&ctx->aff_list))
    260			list_add(&ctx->aff_list, &gang->aff_list_head);
    261	}
    262	gang->aff_flags |= AFF_MERGED;
    263}
    264
    265static void aff_set_offsets(struct spu_gang *gang)
    266{
    267	struct spu_context *ctx;
    268	int offset;
    269
    270	offset = -1;
    271	list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
    272								aff_list) {
    273		if (&ctx->aff_list == &gang->aff_list_head)
    274			break;
    275		ctx->aff_offset = offset--;
    276	}
    277
    278	offset = 0;
    279	list_for_each_entry(ctx, gang->aff_ref_ctx->aff_list.prev, aff_list) {
    280		if (&ctx->aff_list == &gang->aff_list_head)
    281			break;
    282		ctx->aff_offset = offset++;
    283	}
    284
    285	gang->aff_flags |= AFF_OFFSETS_SET;
    286}
    287
    288static struct spu *aff_ref_location(struct spu_context *ctx, int mem_aff,
    289		 int group_size, int lowest_offset)
    290{
    291	struct spu *spu;
    292	int node, n;
    293
    294	/*
    295	 * TODO: A better algorithm could be used to find a good spu to be
    296	 *       used as reference location for the ctxs chain.
    297	 */
    298	node = cpu_to_node(raw_smp_processor_id());
    299	for (n = 0; n < MAX_NUMNODES; n++, node++) {
    300		/*
    301		 * "available_spus" counts how many spus are not potentially
    302		 * going to be used by other affinity gangs whose reference
    303		 * context is already in place. Although this code seeks to
    304		 * avoid having affinity gangs with a summed amount of
    305		 * contexts bigger than the amount of spus in the node,
    306		 * this may happen sporadically. In this case, available_spus
    307		 * becomes negative, which is harmless.
    308		 */
    309		int available_spus;
    310
    311		node = (node < MAX_NUMNODES) ? node : 0;
    312		if (!node_allowed(ctx, node))
    313			continue;
    314
    315		available_spus = 0;
    316		mutex_lock(&cbe_spu_info[node].list_mutex);
    317		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
    318			if (spu->ctx && spu->ctx->gang && !spu->ctx->aff_offset
    319					&& spu->ctx->gang->aff_ref_spu)
    320				available_spus -= spu->ctx->gang->contexts;
    321			available_spus++;
    322		}
    323		if (available_spus < ctx->gang->contexts) {
    324			mutex_unlock(&cbe_spu_info[node].list_mutex);
    325			continue;
    326		}
    327
    328		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
    329			if ((!mem_aff || spu->has_mem_affinity) &&
    330							sched_spu(spu)) {
    331				mutex_unlock(&cbe_spu_info[node].list_mutex);
    332				return spu;
    333			}
    334		}
    335		mutex_unlock(&cbe_spu_info[node].list_mutex);
    336	}
    337	return NULL;
    338}
    339
    340static void aff_set_ref_point_location(struct spu_gang *gang)
    341{
    342	int mem_aff, gs, lowest_offset;
    343	struct spu_context *tmp, *ctx;
    344
    345	mem_aff = gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM;
    346	lowest_offset = 0;
    347	gs = 0;
    348
    349	list_for_each_entry(tmp, &gang->aff_list_head, aff_list)
    350		gs++;
    351
    352	list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
    353								aff_list) {
    354		if (&ctx->aff_list == &gang->aff_list_head)
    355			break;
    356		lowest_offset = ctx->aff_offset;
    357	}
    358
    359	gang->aff_ref_spu = aff_ref_location(gang->aff_ref_ctx, mem_aff, gs,
    360							lowest_offset);
    361}
    362
    363static struct spu *ctx_location(struct spu *ref, int offset, int node)
    364{
    365	struct spu *spu;
    366
    367	spu = NULL;
    368	if (offset >= 0) {
    369		list_for_each_entry(spu, ref->aff_list.prev, aff_list) {
    370			BUG_ON(spu->node != node);
    371			if (offset == 0)
    372				break;
    373			if (sched_spu(spu))
    374				offset--;
    375		}
    376	} else {
    377		list_for_each_entry_reverse(spu, ref->aff_list.next, aff_list) {
    378			BUG_ON(spu->node != node);
    379			if (offset == 0)
    380				break;
    381			if (sched_spu(spu))
    382				offset++;
    383		}
    384	}
    385
    386	return spu;
    387}
    388
    389/*
    390 * affinity_check is called each time a context is going to be scheduled.
    391 * It returns the spu ptr on which the context must run.
    392 */
    393static int has_affinity(struct spu_context *ctx)
    394{
    395	struct spu_gang *gang = ctx->gang;
    396
    397	if (list_empty(&ctx->aff_list))
    398		return 0;
    399
    400	if (atomic_read(&ctx->gang->aff_sched_count) == 0)
    401		ctx->gang->aff_ref_spu = NULL;
    402
    403	if (!gang->aff_ref_spu) {
    404		if (!(gang->aff_flags & AFF_MERGED))
    405			aff_merge_remaining_ctxs(gang);
    406		if (!(gang->aff_flags & AFF_OFFSETS_SET))
    407			aff_set_offsets(gang);
    408		aff_set_ref_point_location(gang);
    409	}
    410
    411	return gang->aff_ref_spu != NULL;
    412}
    413
    414/**
    415 * spu_unbind_context - unbind spu context from physical spu
    416 * @spu:	physical spu to unbind from
    417 * @ctx:	context to unbind
    418 */
    419static void spu_unbind_context(struct spu *spu, struct spu_context *ctx)
    420{
    421	u32 status;
    422
    423	spu_context_trace(spu_unbind_context__enter, ctx, spu);
    424
    425	spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
    426
    427 	if (spu->ctx->flags & SPU_CREATE_NOSCHED)
    428		atomic_dec(&cbe_spu_info[spu->node].reserved_spus);
    429
    430	if (ctx->gang)
    431		/*
    432		 * If ctx->gang->aff_sched_count is positive, SPU affinity is
    433		 * being considered in this gang. Using atomic_dec_if_positive
    434		 * allow us to skip an explicit check for affinity in this gang
    435		 */
    436		atomic_dec_if_positive(&ctx->gang->aff_sched_count);
    437
    438	spu_unmap_mappings(ctx);
    439	spu_save(&ctx->csa, spu);
    440	spu_switch_log_notify(spu, ctx, SWITCH_LOG_STOP, 0);
    441
    442	spin_lock_irq(&spu->register_lock);
    443	spu->timestamp = jiffies;
    444	ctx->state = SPU_STATE_SAVED;
    445	spu->ibox_callback = NULL;
    446	spu->wbox_callback = NULL;
    447	spu->stop_callback = NULL;
    448	spu->mfc_callback = NULL;
    449	spu->pid = 0;
    450	spu->tgid = 0;
    451	ctx->ops = &spu_backing_ops;
    452	spu->flags = 0;
    453	spu->ctx = NULL;
    454	spin_unlock_irq(&spu->register_lock);
    455
    456	spu_associate_mm(spu, NULL);
    457
    458	ctx->stats.slb_flt +=
    459		(spu->stats.slb_flt - ctx->stats.slb_flt_base);
    460	ctx->stats.class2_intr +=
    461		(spu->stats.class2_intr - ctx->stats.class2_intr_base);
    462
    463	/* This maps the underlying spu state to idle */
    464	spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
    465	ctx->spu = NULL;
    466
    467	if (spu_stopped(ctx, &status))
    468		wake_up_all(&ctx->stop_wq);
    469}
    470
    471/**
    472 * spu_add_to_rq - add a context to the runqueue
    473 * @ctx:       context to add
    474 */
    475static void __spu_add_to_rq(struct spu_context *ctx)
    476{
    477	/*
    478	 * Unfortunately this code path can be called from multiple threads
    479	 * on behalf of a single context due to the way the problem state
    480	 * mmap support works.
    481	 *
    482	 * Fortunately we need to wake up all these threads at the same time
    483	 * and can simply skip the runqueue addition for every but the first
    484	 * thread getting into this codepath.
    485	 *
    486	 * It's still quite hacky, and long-term we should proxy all other
    487	 * threads through the owner thread so that spu_run is in control
    488	 * of all the scheduling activity for a given context.
    489	 */
    490	if (list_empty(&ctx->rq)) {
    491		list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]);
    492		set_bit(ctx->prio, spu_prio->bitmap);
    493		if (!spu_prio->nr_waiting++)
    494			mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
    495	}
    496}
    497
    498static void spu_add_to_rq(struct spu_context *ctx)
    499{
    500	spin_lock(&spu_prio->runq_lock);
    501	__spu_add_to_rq(ctx);
    502	spin_unlock(&spu_prio->runq_lock);
    503}
    504
    505static void __spu_del_from_rq(struct spu_context *ctx)
    506{
    507	int prio = ctx->prio;
    508
    509	if (!list_empty(&ctx->rq)) {
    510		if (!--spu_prio->nr_waiting)
    511			del_timer(&spusched_timer);
    512		list_del_init(&ctx->rq);
    513
    514		if (list_empty(&spu_prio->runq[prio]))
    515			clear_bit(prio, spu_prio->bitmap);
    516	}
    517}
    518
    519void spu_del_from_rq(struct spu_context *ctx)
    520{
    521	spin_lock(&spu_prio->runq_lock);
    522	__spu_del_from_rq(ctx);
    523	spin_unlock(&spu_prio->runq_lock);
    524}
    525
    526static void spu_prio_wait(struct spu_context *ctx)
    527{
    528	DEFINE_WAIT(wait);
    529
    530	/*
    531	 * The caller must explicitly wait for a context to be loaded
    532	 * if the nosched flag is set.  If NOSCHED is not set, the caller
    533	 * queues the context and waits for an spu event or error.
    534	 */
    535	BUG_ON(!(ctx->flags & SPU_CREATE_NOSCHED));
    536
    537	spin_lock(&spu_prio->runq_lock);
    538	prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE);
    539	if (!signal_pending(current)) {
    540		__spu_add_to_rq(ctx);
    541		spin_unlock(&spu_prio->runq_lock);
    542		mutex_unlock(&ctx->state_mutex);
    543		schedule();
    544		mutex_lock(&ctx->state_mutex);
    545		spin_lock(&spu_prio->runq_lock);
    546		__spu_del_from_rq(ctx);
    547	}
    548	spin_unlock(&spu_prio->runq_lock);
    549	__set_current_state(TASK_RUNNING);
    550	remove_wait_queue(&ctx->stop_wq, &wait);
    551}
    552
    553static struct spu *spu_get_idle(struct spu_context *ctx)
    554{
    555	struct spu *spu, *aff_ref_spu;
    556	int node, n;
    557
    558	spu_context_nospu_trace(spu_get_idle__enter, ctx);
    559
    560	if (ctx->gang) {
    561		mutex_lock(&ctx->gang->aff_mutex);
    562		if (has_affinity(ctx)) {
    563			aff_ref_spu = ctx->gang->aff_ref_spu;
    564			atomic_inc(&ctx->gang->aff_sched_count);
    565			mutex_unlock(&ctx->gang->aff_mutex);
    566			node = aff_ref_spu->node;
    567
    568			mutex_lock(&cbe_spu_info[node].list_mutex);
    569			spu = ctx_location(aff_ref_spu, ctx->aff_offset, node);
    570			if (spu && spu->alloc_state == SPU_FREE)
    571				goto found;
    572			mutex_unlock(&cbe_spu_info[node].list_mutex);
    573
    574			atomic_dec(&ctx->gang->aff_sched_count);
    575			goto not_found;
    576		}
    577		mutex_unlock(&ctx->gang->aff_mutex);
    578	}
    579	node = cpu_to_node(raw_smp_processor_id());
    580	for (n = 0; n < MAX_NUMNODES; n++, node++) {
    581		node = (node < MAX_NUMNODES) ? node : 0;
    582		if (!node_allowed(ctx, node))
    583			continue;
    584
    585		mutex_lock(&cbe_spu_info[node].list_mutex);
    586		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
    587			if (spu->alloc_state == SPU_FREE)
    588				goto found;
    589		}
    590		mutex_unlock(&cbe_spu_info[node].list_mutex);
    591	}
    592
    593 not_found:
    594	spu_context_nospu_trace(spu_get_idle__not_found, ctx);
    595	return NULL;
    596
    597 found:
    598	spu->alloc_state = SPU_USED;
    599	mutex_unlock(&cbe_spu_info[node].list_mutex);
    600	spu_context_trace(spu_get_idle__found, ctx, spu);
    601	spu_init_channels(spu);
    602	return spu;
    603}
    604
    605/**
    606 * find_victim - find a lower priority context to preempt
    607 * @ctx:	candidate context for running
    608 *
    609 * Returns the freed physical spu to run the new context on.
    610 */
    611static struct spu *find_victim(struct spu_context *ctx)
    612{
    613	struct spu_context *victim = NULL;
    614	struct spu *spu;
    615	int node, n;
    616
    617	spu_context_nospu_trace(spu_find_victim__enter, ctx);
    618
    619	/*
    620	 * Look for a possible preemption candidate on the local node first.
    621	 * If there is no candidate look at the other nodes.  This isn't
    622	 * exactly fair, but so far the whole spu scheduler tries to keep
    623	 * a strong node affinity.  We might want to fine-tune this in
    624	 * the future.
    625	 */
    626 restart:
    627	node = cpu_to_node(raw_smp_processor_id());
    628	for (n = 0; n < MAX_NUMNODES; n++, node++) {
    629		node = (node < MAX_NUMNODES) ? node : 0;
    630		if (!node_allowed(ctx, node))
    631			continue;
    632
    633		mutex_lock(&cbe_spu_info[node].list_mutex);
    634		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
    635			struct spu_context *tmp = spu->ctx;
    636
    637			if (tmp && tmp->prio > ctx->prio &&
    638			    !(tmp->flags & SPU_CREATE_NOSCHED) &&
    639			    (!victim || tmp->prio > victim->prio)) {
    640				victim = spu->ctx;
    641			}
    642		}
    643		if (victim)
    644			get_spu_context(victim);
    645		mutex_unlock(&cbe_spu_info[node].list_mutex);
    646
    647		if (victim) {
    648			/*
    649			 * This nests ctx->state_mutex, but we always lock
    650			 * higher priority contexts before lower priority
    651			 * ones, so this is safe until we introduce
    652			 * priority inheritance schemes.
    653			 *
    654			 * XXX if the highest priority context is locked,
    655			 * this can loop a long time.  Might be better to
    656			 * look at another context or give up after X retries.
    657			 */
    658			if (!mutex_trylock(&victim->state_mutex)) {
    659				put_spu_context(victim);
    660				victim = NULL;
    661				goto restart;
    662			}
    663
    664			spu = victim->spu;
    665			if (!spu || victim->prio <= ctx->prio) {
    666				/*
    667				 * This race can happen because we've dropped
    668				 * the active list mutex.  Not a problem, just
    669				 * restart the search.
    670				 */
    671				mutex_unlock(&victim->state_mutex);
    672				put_spu_context(victim);
    673				victim = NULL;
    674				goto restart;
    675			}
    676
    677			spu_context_trace(__spu_deactivate__unload, ctx, spu);
    678
    679			mutex_lock(&cbe_spu_info[node].list_mutex);
    680			cbe_spu_info[node].nr_active--;
    681			spu_unbind_context(spu, victim);
    682			mutex_unlock(&cbe_spu_info[node].list_mutex);
    683
    684			victim->stats.invol_ctx_switch++;
    685			spu->stats.invol_ctx_switch++;
    686			if (test_bit(SPU_SCHED_SPU_RUN, &victim->sched_flags))
    687				spu_add_to_rq(victim);
    688
    689			mutex_unlock(&victim->state_mutex);
    690			put_spu_context(victim);
    691
    692			return spu;
    693		}
    694	}
    695
    696	return NULL;
    697}
    698
    699static void __spu_schedule(struct spu *spu, struct spu_context *ctx)
    700{
    701	int node = spu->node;
    702	int success = 0;
    703
    704	spu_set_timeslice(ctx);
    705
    706	mutex_lock(&cbe_spu_info[node].list_mutex);
    707	if (spu->ctx == NULL) {
    708		spu_bind_context(spu, ctx);
    709		cbe_spu_info[node].nr_active++;
    710		spu->alloc_state = SPU_USED;
    711		success = 1;
    712	}
    713	mutex_unlock(&cbe_spu_info[node].list_mutex);
    714
    715	if (success)
    716		wake_up_all(&ctx->run_wq);
    717	else
    718		spu_add_to_rq(ctx);
    719}
    720
    721static void spu_schedule(struct spu *spu, struct spu_context *ctx)
    722{
    723	/* not a candidate for interruptible because it's called either
    724	   from the scheduler thread or from spu_deactivate */
    725	mutex_lock(&ctx->state_mutex);
    726	if (ctx->state == SPU_STATE_SAVED)
    727		__spu_schedule(spu, ctx);
    728	spu_release(ctx);
    729}
    730
    731/**
    732 * spu_unschedule - remove a context from a spu, and possibly release it.
    733 * @spu:	The SPU to unschedule from
    734 * @ctx:	The context currently scheduled on the SPU
    735 * @free_spu	Whether to free the SPU for other contexts
    736 *
    737 * Unbinds the context @ctx from the SPU @spu. If @free_spu is non-zero, the
    738 * SPU is made available for other contexts (ie, may be returned by
    739 * spu_get_idle). If this is zero, the caller is expected to schedule another
    740 * context to this spu.
    741 *
    742 * Should be called with ctx->state_mutex held.
    743 */
    744static void spu_unschedule(struct spu *spu, struct spu_context *ctx,
    745		int free_spu)
    746{
    747	int node = spu->node;
    748
    749	mutex_lock(&cbe_spu_info[node].list_mutex);
    750	cbe_spu_info[node].nr_active--;
    751	if (free_spu)
    752		spu->alloc_state = SPU_FREE;
    753	spu_unbind_context(spu, ctx);
    754	ctx->stats.invol_ctx_switch++;
    755	spu->stats.invol_ctx_switch++;
    756	mutex_unlock(&cbe_spu_info[node].list_mutex);
    757}
    758
    759/**
    760 * spu_activate - find a free spu for a context and execute it
    761 * @ctx:	spu context to schedule
    762 * @flags:	flags (currently ignored)
    763 *
    764 * Tries to find a free spu to run @ctx.  If no free spu is available
    765 * add the context to the runqueue so it gets woken up once an spu
    766 * is available.
    767 */
    768int spu_activate(struct spu_context *ctx, unsigned long flags)
    769{
    770	struct spu *spu;
    771
    772	/*
    773	 * If there are multiple threads waiting for a single context
    774	 * only one actually binds the context while the others will
    775	 * only be able to acquire the state_mutex once the context
    776	 * already is in runnable state.
    777	 */
    778	if (ctx->spu)
    779		return 0;
    780
    781spu_activate_top:
    782	if (signal_pending(current))
    783		return -ERESTARTSYS;
    784
    785	spu = spu_get_idle(ctx);
    786	/*
    787	 * If this is a realtime thread we try to get it running by
    788	 * preempting a lower priority thread.
    789	 */
    790	if (!spu && rt_prio(ctx->prio))
    791		spu = find_victim(ctx);
    792	if (spu) {
    793		unsigned long runcntl;
    794
    795		runcntl = ctx->ops->runcntl_read(ctx);
    796		__spu_schedule(spu, ctx);
    797		if (runcntl & SPU_RUNCNTL_RUNNABLE)
    798			spuctx_switch_state(ctx, SPU_UTIL_USER);
    799
    800		return 0;
    801	}
    802
    803	if (ctx->flags & SPU_CREATE_NOSCHED) {
    804		spu_prio_wait(ctx);
    805		goto spu_activate_top;
    806	}
    807
    808	spu_add_to_rq(ctx);
    809
    810	return 0;
    811}
    812
    813/**
    814 * grab_runnable_context - try to find a runnable context
    815 *
    816 * Remove the highest priority context on the runqueue and return it
    817 * to the caller.  Returns %NULL if no runnable context was found.
    818 */
    819static struct spu_context *grab_runnable_context(int prio, int node)
    820{
    821	struct spu_context *ctx;
    822	int best;
    823
    824	spin_lock(&spu_prio->runq_lock);
    825	best = find_first_bit(spu_prio->bitmap, prio);
    826	while (best < prio) {
    827		struct list_head *rq = &spu_prio->runq[best];
    828
    829		list_for_each_entry(ctx, rq, rq) {
    830			/* XXX(hch): check for affinity here as well */
    831			if (__node_allowed(ctx, node)) {
    832				__spu_del_from_rq(ctx);
    833				goto found;
    834			}
    835		}
    836		best++;
    837	}
    838	ctx = NULL;
    839 found:
    840	spin_unlock(&spu_prio->runq_lock);
    841	return ctx;
    842}
    843
    844static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio)
    845{
    846	struct spu *spu = ctx->spu;
    847	struct spu_context *new = NULL;
    848
    849	if (spu) {
    850		new = grab_runnable_context(max_prio, spu->node);
    851		if (new || force) {
    852			spu_unschedule(spu, ctx, new == NULL);
    853			if (new) {
    854				if (new->flags & SPU_CREATE_NOSCHED)
    855					wake_up(&new->stop_wq);
    856				else {
    857					spu_release(ctx);
    858					spu_schedule(spu, new);
    859					/* this one can't easily be made
    860					   interruptible */
    861					mutex_lock(&ctx->state_mutex);
    862				}
    863			}
    864		}
    865	}
    866
    867	return new != NULL;
    868}
    869
    870/**
    871 * spu_deactivate - unbind a context from it's physical spu
    872 * @ctx:	spu context to unbind
    873 *
    874 * Unbind @ctx from the physical spu it is running on and schedule
    875 * the highest priority context to run on the freed physical spu.
    876 */
    877void spu_deactivate(struct spu_context *ctx)
    878{
    879	spu_context_nospu_trace(spu_deactivate__enter, ctx);
    880	__spu_deactivate(ctx, 1, MAX_PRIO);
    881}
    882
    883/**
    884 * spu_yield -	yield a physical spu if others are waiting
    885 * @ctx:	spu context to yield
    886 *
    887 * Check if there is a higher priority context waiting and if yes
    888 * unbind @ctx from the physical spu and schedule the highest
    889 * priority context to run on the freed physical spu instead.
    890 */
    891void spu_yield(struct spu_context *ctx)
    892{
    893	spu_context_nospu_trace(spu_yield__enter, ctx);
    894	if (!(ctx->flags & SPU_CREATE_NOSCHED)) {
    895		mutex_lock(&ctx->state_mutex);
    896		__spu_deactivate(ctx, 0, MAX_PRIO);
    897		mutex_unlock(&ctx->state_mutex);
    898	}
    899}
    900
    901static noinline void spusched_tick(struct spu_context *ctx)
    902{
    903	struct spu_context *new = NULL;
    904	struct spu *spu = NULL;
    905
    906	if (spu_acquire(ctx))
    907		BUG();	/* a kernel thread never has signals pending */
    908
    909	if (ctx->state != SPU_STATE_RUNNABLE)
    910		goto out;
    911	if (ctx->flags & SPU_CREATE_NOSCHED)
    912		goto out;
    913	if (ctx->policy == SCHED_FIFO)
    914		goto out;
    915
    916	if (--ctx->time_slice && test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
    917		goto out;
    918
    919	spu = ctx->spu;
    920
    921	spu_context_trace(spusched_tick__preempt, ctx, spu);
    922
    923	new = grab_runnable_context(ctx->prio + 1, spu->node);
    924	if (new) {
    925		spu_unschedule(spu, ctx, 0);
    926		if (test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
    927			spu_add_to_rq(ctx);
    928	} else {
    929		spu_context_nospu_trace(spusched_tick__newslice, ctx);
    930		if (!ctx->time_slice)
    931			ctx->time_slice++;
    932	}
    933out:
    934	spu_release(ctx);
    935
    936	if (new)
    937		spu_schedule(spu, new);
    938}
    939
    940/**
    941 * count_active_contexts - count nr of active tasks
    942 *
    943 * Return the number of tasks currently running or waiting to run.
    944 *
    945 * Note that we don't take runq_lock / list_mutex here.  Reading
    946 * a single 32bit value is atomic on powerpc, and we don't care
    947 * about memory ordering issues here.
    948 */
    949static unsigned long count_active_contexts(void)
    950{
    951	int nr_active = 0, node;
    952
    953	for (node = 0; node < MAX_NUMNODES; node++)
    954		nr_active += cbe_spu_info[node].nr_active;
    955	nr_active += spu_prio->nr_waiting;
    956
    957	return nr_active;
    958}
    959
    960/**
    961 * spu_calc_load - update the avenrun load estimates.
    962 *
    963 * No locking against reading these values from userspace, as for
    964 * the CPU loadavg code.
    965 */
    966static void spu_calc_load(void)
    967{
    968	unsigned long active_tasks; /* fixed-point */
    969
    970	active_tasks = count_active_contexts() * FIXED_1;
    971	spu_avenrun[0] = calc_load(spu_avenrun[0], EXP_1, active_tasks);
    972	spu_avenrun[1] = calc_load(spu_avenrun[1], EXP_5, active_tasks);
    973	spu_avenrun[2] = calc_load(spu_avenrun[2], EXP_15, active_tasks);
    974}
    975
    976static void spusched_wake(struct timer_list *unused)
    977{
    978	mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
    979	wake_up_process(spusched_task);
    980}
    981
    982static void spuloadavg_wake(struct timer_list *unused)
    983{
    984	mod_timer(&spuloadavg_timer, jiffies + LOAD_FREQ);
    985	spu_calc_load();
    986}
    987
    988static int spusched_thread(void *unused)
    989{
    990	struct spu *spu;
    991	int node;
    992
    993	while (!kthread_should_stop()) {
    994		set_current_state(TASK_INTERRUPTIBLE);
    995		schedule();
    996		for (node = 0; node < MAX_NUMNODES; node++) {
    997			struct mutex *mtx = &cbe_spu_info[node].list_mutex;
    998
    999			mutex_lock(mtx);
   1000			list_for_each_entry(spu, &cbe_spu_info[node].spus,
   1001					cbe_list) {
   1002				struct spu_context *ctx = spu->ctx;
   1003
   1004				if (ctx) {
   1005					get_spu_context(ctx);
   1006					mutex_unlock(mtx);
   1007					spusched_tick(ctx);
   1008					mutex_lock(mtx);
   1009					put_spu_context(ctx);
   1010				}
   1011			}
   1012			mutex_unlock(mtx);
   1013		}
   1014	}
   1015
   1016	return 0;
   1017}
   1018
   1019void spuctx_switch_state(struct spu_context *ctx,
   1020		enum spu_utilization_state new_state)
   1021{
   1022	unsigned long long curtime;
   1023	signed long long delta;
   1024	struct spu *spu;
   1025	enum spu_utilization_state old_state;
   1026	int node;
   1027
   1028	curtime = ktime_get_ns();
   1029	delta = curtime - ctx->stats.tstamp;
   1030
   1031	WARN_ON(!mutex_is_locked(&ctx->state_mutex));
   1032	WARN_ON(delta < 0);
   1033
   1034	spu = ctx->spu;
   1035	old_state = ctx->stats.util_state;
   1036	ctx->stats.util_state = new_state;
   1037	ctx->stats.tstamp = curtime;
   1038
   1039	/*
   1040	 * Update the physical SPU utilization statistics.
   1041	 */
   1042	if (spu) {
   1043		ctx->stats.times[old_state] += delta;
   1044		spu->stats.times[old_state] += delta;
   1045		spu->stats.util_state = new_state;
   1046		spu->stats.tstamp = curtime;
   1047		node = spu->node;
   1048		if (old_state == SPU_UTIL_USER)
   1049			atomic_dec(&cbe_spu_info[node].busy_spus);
   1050		if (new_state == SPU_UTIL_USER)
   1051			atomic_inc(&cbe_spu_info[node].busy_spus);
   1052	}
   1053}
   1054
   1055#ifdef CONFIG_PROC_FS
   1056static int show_spu_loadavg(struct seq_file *s, void *private)
   1057{
   1058	int a, b, c;
   1059
   1060	a = spu_avenrun[0] + (FIXED_1/200);
   1061	b = spu_avenrun[1] + (FIXED_1/200);
   1062	c = spu_avenrun[2] + (FIXED_1/200);
   1063
   1064	/*
   1065	 * Note that last_pid doesn't really make much sense for the
   1066	 * SPU loadavg (it even seems very odd on the CPU side...),
   1067	 * but we include it here to have a 100% compatible interface.
   1068	 */
   1069	seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n",
   1070		LOAD_INT(a), LOAD_FRAC(a),
   1071		LOAD_INT(b), LOAD_FRAC(b),
   1072		LOAD_INT(c), LOAD_FRAC(c),
   1073		count_active_contexts(),
   1074		atomic_read(&nr_spu_contexts),
   1075		idr_get_cursor(&task_active_pid_ns(current)->idr) - 1);
   1076	return 0;
   1077}
   1078#endif
   1079
   1080int __init spu_sched_init(void)
   1081{
   1082	struct proc_dir_entry *entry;
   1083	int err = -ENOMEM, i;
   1084
   1085	spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
   1086	if (!spu_prio)
   1087		goto out;
   1088
   1089	for (i = 0; i < MAX_PRIO; i++) {
   1090		INIT_LIST_HEAD(&spu_prio->runq[i]);
   1091		__clear_bit(i, spu_prio->bitmap);
   1092	}
   1093	spin_lock_init(&spu_prio->runq_lock);
   1094
   1095	timer_setup(&spusched_timer, spusched_wake, 0);
   1096	timer_setup(&spuloadavg_timer, spuloadavg_wake, 0);
   1097
   1098	spusched_task = kthread_run(spusched_thread, NULL, "spusched");
   1099	if (IS_ERR(spusched_task)) {
   1100		err = PTR_ERR(spusched_task);
   1101		goto out_free_spu_prio;
   1102	}
   1103
   1104	mod_timer(&spuloadavg_timer, 0);
   1105
   1106	entry = proc_create_single("spu_loadavg", 0, NULL, show_spu_loadavg);
   1107	if (!entry)
   1108		goto out_stop_kthread;
   1109
   1110	pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n",
   1111			SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE);
   1112	return 0;
   1113
   1114 out_stop_kthread:
   1115	kthread_stop(spusched_task);
   1116 out_free_spu_prio:
   1117	kfree(spu_prio);
   1118 out:
   1119	return err;
   1120}
   1121
   1122void spu_sched_exit(void)
   1123{
   1124	struct spu *spu;
   1125	int node;
   1126
   1127	remove_proc_entry("spu_loadavg", NULL);
   1128
   1129	del_timer_sync(&spusched_timer);
   1130	del_timer_sync(&spuloadavg_timer);
   1131	kthread_stop(spusched_task);
   1132
   1133	for (node = 0; node < MAX_NUMNODES; node++) {
   1134		mutex_lock(&cbe_spu_info[node].list_mutex);
   1135		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list)
   1136			if (spu->alloc_state != SPU_FREE)
   1137				spu->alloc_state = SPU_FREE;
   1138		mutex_unlock(&cbe_spu_info[node].list_mutex);
   1139	}
   1140	kfree(spu_prio);
   1141}