cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

switch.c (63875B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * spu_switch.c
      4 *
      5 * (C) Copyright IBM Corp. 2005
      6 *
      7 * Author: Mark Nutter <mnutter@us.ibm.com>
      8 *
      9 * Host-side part of SPU context switch sequence outlined in
     10 * Synergistic Processor Element, Book IV.
     11 *
     12 * A fully premptive switch of an SPE is very expensive in terms
     13 * of time and system resources.  SPE Book IV indicates that SPE
     14 * allocation should follow a "serially reusable device" model,
     15 * in which the SPE is assigned a task until it completes.  When
     16 * this is not possible, this sequence may be used to premptively
     17 * save, and then later (optionally) restore the context of a
     18 * program executing on an SPE.
     19 */
     20
     21#include <linux/export.h>
     22#include <linux/errno.h>
     23#include <linux/hardirq.h>
     24#include <linux/sched.h>
     25#include <linux/kernel.h>
     26#include <linux/mm.h>
     27#include <linux/vmalloc.h>
     28#include <linux/smp.h>
     29#include <linux/stddef.h>
     30#include <linux/unistd.h>
     31
     32#include <asm/io.h>
     33#include <asm/spu.h>
     34#include <asm/spu_priv1.h>
     35#include <asm/spu_csa.h>
     36#include <asm/mmu_context.h>
     37
     38#include "spufs.h"
     39
     40#include "spu_save_dump.h"
     41#include "spu_restore_dump.h"
     42
     43#if 0
     44#define POLL_WHILE_TRUE(_c) {				\
     45    do {						\
     46    } while (_c);					\
     47  }
     48#else
     49#define RELAX_SPIN_COUNT				1000
     50#define POLL_WHILE_TRUE(_c) {				\
     51    do {						\
     52	int _i;						\
     53	for (_i=0; _i<RELAX_SPIN_COUNT && (_c); _i++) { \
     54	    cpu_relax();				\
     55	}						\
     56	if (unlikely(_c)) yield();			\
     57	else break;					\
     58    } while (_c);					\
     59  }
     60#endif				/* debug */
     61
     62#define POLL_WHILE_FALSE(_c)	POLL_WHILE_TRUE(!(_c))
     63
     64static inline void acquire_spu_lock(struct spu *spu)
     65{
     66	/* Save, Step 1:
     67	 * Restore, Step 1:
     68	 *    Acquire SPU-specific mutual exclusion lock.
     69	 *    TBD.
     70	 */
     71}
     72
     73static inline void release_spu_lock(struct spu *spu)
     74{
     75	/* Restore, Step 76:
     76	 *    Release SPU-specific mutual exclusion lock.
     77	 *    TBD.
     78	 */
     79}
     80
     81static inline int check_spu_isolate(struct spu_state *csa, struct spu *spu)
     82{
     83	struct spu_problem __iomem *prob = spu->problem;
     84	u32 isolate_state;
     85
     86	/* Save, Step 2:
     87	 * Save, Step 6:
     88	 *     If SPU_Status[E,L,IS] any field is '1', this
     89	 *     SPU is in isolate state and cannot be context
     90	 *     saved at this time.
     91	 */
     92	isolate_state = SPU_STATUS_ISOLATED_STATE |
     93	    SPU_STATUS_ISOLATED_LOAD_STATUS | SPU_STATUS_ISOLATED_EXIT_STATUS;
     94	return (in_be32(&prob->spu_status_R) & isolate_state) ? 1 : 0;
     95}
     96
     97static inline void disable_interrupts(struct spu_state *csa, struct spu *spu)
     98{
     99	/* Save, Step 3:
    100	 * Restore, Step 2:
    101	 *     Save INT_Mask_class0 in CSA.
    102	 *     Write INT_MASK_class0 with value of 0.
    103	 *     Save INT_Mask_class1 in CSA.
    104	 *     Write INT_MASK_class1 with value of 0.
    105	 *     Save INT_Mask_class2 in CSA.
    106	 *     Write INT_MASK_class2 with value of 0.
    107	 *     Synchronize all three interrupts to be sure
    108	 *     we no longer execute a handler on another CPU.
    109	 */
    110	spin_lock_irq(&spu->register_lock);
    111	if (csa) {
    112		csa->priv1.int_mask_class0_RW = spu_int_mask_get(spu, 0);
    113		csa->priv1.int_mask_class1_RW = spu_int_mask_get(spu, 1);
    114		csa->priv1.int_mask_class2_RW = spu_int_mask_get(spu, 2);
    115	}
    116	spu_int_mask_set(spu, 0, 0ul);
    117	spu_int_mask_set(spu, 1, 0ul);
    118	spu_int_mask_set(spu, 2, 0ul);
    119	eieio();
    120	spin_unlock_irq(&spu->register_lock);
    121
    122	/*
    123	 * This flag needs to be set before calling synchronize_irq so
    124	 * that the update will be visible to the relevant handlers
    125	 * via a simple load.
    126	 */
    127	set_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
    128	clear_bit(SPU_CONTEXT_FAULT_PENDING, &spu->flags);
    129	synchronize_irq(spu->irqs[0]);
    130	synchronize_irq(spu->irqs[1]);
    131	synchronize_irq(spu->irqs[2]);
    132}
    133
    134static inline void set_watchdog_timer(struct spu_state *csa, struct spu *spu)
    135{
    136	/* Save, Step 4:
    137	 * Restore, Step 25.
    138	 *    Set a software watchdog timer, which specifies the
    139	 *    maximum allowable time for a context save sequence.
    140	 *
    141	 *    For present, this implementation will not set a global
    142	 *    watchdog timer, as virtualization & variable system load
    143	 *    may cause unpredictable execution times.
    144	 */
    145}
    146
    147static inline void inhibit_user_access(struct spu_state *csa, struct spu *spu)
    148{
    149	/* Save, Step 5:
    150	 * Restore, Step 3:
    151	 *     Inhibit user-space access (if provided) to this
    152	 *     SPU by unmapping the virtual pages assigned to
    153	 *     the SPU memory-mapped I/O (MMIO) for problem
    154	 *     state. TBD.
    155	 */
    156}
    157
    158static inline void set_switch_pending(struct spu_state *csa, struct spu *spu)
    159{
    160	/* Save, Step 7:
    161	 * Restore, Step 5:
    162	 *     Set a software context switch pending flag.
    163	 *     Done above in Step 3 - disable_interrupts().
    164	 */
    165}
    166
    167static inline void save_mfc_cntl(struct spu_state *csa, struct spu *spu)
    168{
    169	struct spu_priv2 __iomem *priv2 = spu->priv2;
    170
    171	/* Save, Step 8:
    172	 *     Suspend DMA and save MFC_CNTL.
    173	 */
    174	switch (in_be64(&priv2->mfc_control_RW) &
    175	       MFC_CNTL_SUSPEND_DMA_STATUS_MASK) {
    176	case MFC_CNTL_SUSPEND_IN_PROGRESS:
    177		POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
    178				  MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
    179				 MFC_CNTL_SUSPEND_COMPLETE);
    180		fallthrough;
    181	case MFC_CNTL_SUSPEND_COMPLETE:
    182		if (csa)
    183			csa->priv2.mfc_control_RW =
    184				in_be64(&priv2->mfc_control_RW) |
    185				MFC_CNTL_SUSPEND_DMA_QUEUE;
    186		break;
    187	case MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION:
    188		out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
    189		POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
    190				  MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
    191				 MFC_CNTL_SUSPEND_COMPLETE);
    192		if (csa)
    193			csa->priv2.mfc_control_RW =
    194				in_be64(&priv2->mfc_control_RW) &
    195				~MFC_CNTL_SUSPEND_DMA_QUEUE &
    196				~MFC_CNTL_SUSPEND_MASK;
    197		break;
    198	}
    199}
    200
    201static inline void save_spu_runcntl(struct spu_state *csa, struct spu *spu)
    202{
    203	struct spu_problem __iomem *prob = spu->problem;
    204
    205	/* Save, Step 9:
    206	 *     Save SPU_Runcntl in the CSA.  This value contains
    207	 *     the "Application Desired State".
    208	 */
    209	csa->prob.spu_runcntl_RW = in_be32(&prob->spu_runcntl_RW);
    210}
    211
    212static inline void save_mfc_sr1(struct spu_state *csa, struct spu *spu)
    213{
    214	/* Save, Step 10:
    215	 *     Save MFC_SR1 in the CSA.
    216	 */
    217	csa->priv1.mfc_sr1_RW = spu_mfc_sr1_get(spu);
    218}
    219
    220static inline void save_spu_status(struct spu_state *csa, struct spu *spu)
    221{
    222	struct spu_problem __iomem *prob = spu->problem;
    223
    224	/* Save, Step 11:
    225	 *     Read SPU_Status[R], and save to CSA.
    226	 */
    227	if ((in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) == 0) {
    228		csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
    229	} else {
    230		u32 stopped;
    231
    232		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
    233		eieio();
    234		POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
    235				SPU_STATUS_RUNNING);
    236		stopped =
    237		    SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP |
    238		    SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
    239		if ((in_be32(&prob->spu_status_R) & stopped) == 0)
    240			csa->prob.spu_status_R = SPU_STATUS_RUNNING;
    241		else
    242			csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
    243	}
    244}
    245
    246static inline void save_mfc_stopped_status(struct spu_state *csa,
    247		struct spu *spu)
    248{
    249	struct spu_priv2 __iomem *priv2 = spu->priv2;
    250	const u64 mask = MFC_CNTL_DECREMENTER_RUNNING |
    251			MFC_CNTL_DMA_QUEUES_EMPTY;
    252
    253	/* Save, Step 12:
    254	 *     Read MFC_CNTL[Ds].  Update saved copy of
    255	 *     CSA.MFC_CNTL[Ds].
    256	 *
    257	 * update: do the same with MFC_CNTL[Q].
    258	 */
    259	csa->priv2.mfc_control_RW &= ~mask;
    260	csa->priv2.mfc_control_RW |= in_be64(&priv2->mfc_control_RW) & mask;
    261}
    262
    263static inline void halt_mfc_decr(struct spu_state *csa, struct spu *spu)
    264{
    265	struct spu_priv2 __iomem *priv2 = spu->priv2;
    266
    267	/* Save, Step 13:
    268	 *     Write MFC_CNTL[Dh] set to a '1' to halt
    269	 *     the decrementer.
    270	 */
    271	out_be64(&priv2->mfc_control_RW,
    272		 MFC_CNTL_DECREMENTER_HALTED | MFC_CNTL_SUSPEND_MASK);
    273	eieio();
    274}
    275
    276static inline void save_timebase(struct spu_state *csa, struct spu *spu)
    277{
    278	/* Save, Step 14:
    279	 *    Read PPE Timebase High and Timebase low registers
    280	 *    and save in CSA.  TBD.
    281	 */
    282	csa->suspend_time = get_cycles();
    283}
    284
    285static inline void remove_other_spu_access(struct spu_state *csa,
    286					   struct spu *spu)
    287{
    288	/* Save, Step 15:
    289	 *     Remove other SPU access to this SPU by unmapping
    290	 *     this SPU's pages from their address space.  TBD.
    291	 */
    292}
    293
    294static inline void do_mfc_mssync(struct spu_state *csa, struct spu *spu)
    295{
    296	struct spu_problem __iomem *prob = spu->problem;
    297
    298	/* Save, Step 16:
    299	 * Restore, Step 11.
    300	 *     Write SPU_MSSync register. Poll SPU_MSSync[P]
    301	 *     for a value of 0.
    302	 */
    303	out_be64(&prob->spc_mssync_RW, 1UL);
    304	POLL_WHILE_TRUE(in_be64(&prob->spc_mssync_RW) & MS_SYNC_PENDING);
    305}
    306
    307static inline void issue_mfc_tlbie(struct spu_state *csa, struct spu *spu)
    308{
    309	/* Save, Step 17:
    310	 * Restore, Step 12.
    311	 * Restore, Step 48.
    312	 *     Write TLB_Invalidate_Entry[IS,VPN,L,Lp]=0 register.
    313	 *     Then issue a PPE sync instruction.
    314	 */
    315	spu_tlb_invalidate(spu);
    316	mb();
    317}
    318
    319static inline void handle_pending_interrupts(struct spu_state *csa,
    320					     struct spu *spu)
    321{
    322	/* Save, Step 18:
    323	 *     Handle any pending interrupts from this SPU
    324	 *     here.  This is OS or hypervisor specific.  One
    325	 *     option is to re-enable interrupts to handle any
    326	 *     pending interrupts, with the interrupt handlers
    327	 *     recognizing the software Context Switch Pending
    328	 *     flag, to ensure the SPU execution or MFC command
    329	 *     queue is not restarted.  TBD.
    330	 */
    331}
    332
    333static inline void save_mfc_queues(struct spu_state *csa, struct spu *spu)
    334{
    335	struct spu_priv2 __iomem *priv2 = spu->priv2;
    336	int i;
    337
    338	/* Save, Step 19:
    339	 *     If MFC_Cntl[Se]=0 then save
    340	 *     MFC command queues.
    341	 */
    342	if ((in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DMA_QUEUES_EMPTY) == 0) {
    343		for (i = 0; i < 8; i++) {
    344			csa->priv2.puq[i].mfc_cq_data0_RW =
    345			    in_be64(&priv2->puq[i].mfc_cq_data0_RW);
    346			csa->priv2.puq[i].mfc_cq_data1_RW =
    347			    in_be64(&priv2->puq[i].mfc_cq_data1_RW);
    348			csa->priv2.puq[i].mfc_cq_data2_RW =
    349			    in_be64(&priv2->puq[i].mfc_cq_data2_RW);
    350			csa->priv2.puq[i].mfc_cq_data3_RW =
    351			    in_be64(&priv2->puq[i].mfc_cq_data3_RW);
    352		}
    353		for (i = 0; i < 16; i++) {
    354			csa->priv2.spuq[i].mfc_cq_data0_RW =
    355			    in_be64(&priv2->spuq[i].mfc_cq_data0_RW);
    356			csa->priv2.spuq[i].mfc_cq_data1_RW =
    357			    in_be64(&priv2->spuq[i].mfc_cq_data1_RW);
    358			csa->priv2.spuq[i].mfc_cq_data2_RW =
    359			    in_be64(&priv2->spuq[i].mfc_cq_data2_RW);
    360			csa->priv2.spuq[i].mfc_cq_data3_RW =
    361			    in_be64(&priv2->spuq[i].mfc_cq_data3_RW);
    362		}
    363	}
    364}
    365
    366static inline void save_ppu_querymask(struct spu_state *csa, struct spu *spu)
    367{
    368	struct spu_problem __iomem *prob = spu->problem;
    369
    370	/* Save, Step 20:
    371	 *     Save the PPU_QueryMask register
    372	 *     in the CSA.
    373	 */
    374	csa->prob.dma_querymask_RW = in_be32(&prob->dma_querymask_RW);
    375}
    376
    377static inline void save_ppu_querytype(struct spu_state *csa, struct spu *spu)
    378{
    379	struct spu_problem __iomem *prob = spu->problem;
    380
    381	/* Save, Step 21:
    382	 *     Save the PPU_QueryType register
    383	 *     in the CSA.
    384	 */
    385	csa->prob.dma_querytype_RW = in_be32(&prob->dma_querytype_RW);
    386}
    387
    388static inline void save_ppu_tagstatus(struct spu_state *csa, struct spu *spu)
    389{
    390	struct spu_problem __iomem *prob = spu->problem;
    391
    392	/* Save the Prxy_TagStatus register in the CSA.
    393	 *
    394	 * It is unnecessary to restore dma_tagstatus_R, however,
    395	 * dma_tagstatus_R in the CSA is accessed via backing_ops, so
    396	 * we must save it.
    397	 */
    398	csa->prob.dma_tagstatus_R = in_be32(&prob->dma_tagstatus_R);
    399}
    400
    401static inline void save_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
    402{
    403	struct spu_priv2 __iomem *priv2 = spu->priv2;
    404
    405	/* Save, Step 22:
    406	 *     Save the MFC_CSR_TSQ register
    407	 *     in the LSCSA.
    408	 */
    409	csa->priv2.spu_tag_status_query_RW =
    410	    in_be64(&priv2->spu_tag_status_query_RW);
    411}
    412
    413static inline void save_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
    414{
    415	struct spu_priv2 __iomem *priv2 = spu->priv2;
    416
    417	/* Save, Step 23:
    418	 *     Save the MFC_CSR_CMD1 and MFC_CSR_CMD2
    419	 *     registers in the CSA.
    420	 */
    421	csa->priv2.spu_cmd_buf1_RW = in_be64(&priv2->spu_cmd_buf1_RW);
    422	csa->priv2.spu_cmd_buf2_RW = in_be64(&priv2->spu_cmd_buf2_RW);
    423}
    424
    425static inline void save_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
    426{
    427	struct spu_priv2 __iomem *priv2 = spu->priv2;
    428
    429	/* Save, Step 24:
    430	 *     Save the MFC_CSR_ATO register in
    431	 *     the CSA.
    432	 */
    433	csa->priv2.spu_atomic_status_RW = in_be64(&priv2->spu_atomic_status_RW);
    434}
    435
    436static inline void save_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
    437{
    438	/* Save, Step 25:
    439	 *     Save the MFC_TCLASS_ID register in
    440	 *     the CSA.
    441	 */
    442	csa->priv1.mfc_tclass_id_RW = spu_mfc_tclass_id_get(spu);
    443}
    444
    445static inline void set_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
    446{
    447	/* Save, Step 26:
    448	 * Restore, Step 23.
    449	 *     Write the MFC_TCLASS_ID register with
    450	 *     the value 0x10000000.
    451	 */
    452	spu_mfc_tclass_id_set(spu, 0x10000000);
    453	eieio();
    454}
    455
    456static inline void purge_mfc_queue(struct spu_state *csa, struct spu *spu)
    457{
    458	struct spu_priv2 __iomem *priv2 = spu->priv2;
    459
    460	/* Save, Step 27:
    461	 * Restore, Step 14.
    462	 *     Write MFC_CNTL[Pc]=1 (purge queue).
    463	 */
    464	out_be64(&priv2->mfc_control_RW,
    465			MFC_CNTL_PURGE_DMA_REQUEST |
    466			MFC_CNTL_SUSPEND_MASK);
    467	eieio();
    468}
    469
    470static inline void wait_purge_complete(struct spu_state *csa, struct spu *spu)
    471{
    472	struct spu_priv2 __iomem *priv2 = spu->priv2;
    473
    474	/* Save, Step 28:
    475	 *     Poll MFC_CNTL[Ps] until value '11' is read
    476	 *     (purge complete).
    477	 */
    478	POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
    479			 MFC_CNTL_PURGE_DMA_STATUS_MASK) ==
    480			 MFC_CNTL_PURGE_DMA_COMPLETE);
    481}
    482
    483static inline void setup_mfc_sr1(struct spu_state *csa, struct spu *spu)
    484{
    485	/* Save, Step 30:
    486	 * Restore, Step 18:
    487	 *     Write MFC_SR1 with MFC_SR1[D=0,S=1] and
    488	 *     MFC_SR1[TL,R,Pr,T] set correctly for the
    489	 *     OS specific environment.
    490	 *
    491	 *     Implementation note: The SPU-side code
    492	 *     for save/restore is privileged, so the
    493	 *     MFC_SR1[Pr] bit is not set.
    494	 *
    495	 */
    496	spu_mfc_sr1_set(spu, (MFC_STATE1_MASTER_RUN_CONTROL_MASK |
    497			      MFC_STATE1_RELOCATE_MASK |
    498			      MFC_STATE1_BUS_TLBIE_MASK));
    499}
    500
    501static inline void save_spu_npc(struct spu_state *csa, struct spu *spu)
    502{
    503	struct spu_problem __iomem *prob = spu->problem;
    504
    505	/* Save, Step 31:
    506	 *     Save SPU_NPC in the CSA.
    507	 */
    508	csa->prob.spu_npc_RW = in_be32(&prob->spu_npc_RW);
    509}
    510
    511static inline void save_spu_privcntl(struct spu_state *csa, struct spu *spu)
    512{
    513	struct spu_priv2 __iomem *priv2 = spu->priv2;
    514
    515	/* Save, Step 32:
    516	 *     Save SPU_PrivCntl in the CSA.
    517	 */
    518	csa->priv2.spu_privcntl_RW = in_be64(&priv2->spu_privcntl_RW);
    519}
    520
    521static inline void reset_spu_privcntl(struct spu_state *csa, struct spu *spu)
    522{
    523	struct spu_priv2 __iomem *priv2 = spu->priv2;
    524
    525	/* Save, Step 33:
    526	 * Restore, Step 16:
    527	 *     Write SPU_PrivCntl[S,Le,A] fields reset to 0.
    528	 */
    529	out_be64(&priv2->spu_privcntl_RW, 0UL);
    530	eieio();
    531}
    532
    533static inline void save_spu_lslr(struct spu_state *csa, struct spu *spu)
    534{
    535	struct spu_priv2 __iomem *priv2 = spu->priv2;
    536
    537	/* Save, Step 34:
    538	 *     Save SPU_LSLR in the CSA.
    539	 */
    540	csa->priv2.spu_lslr_RW = in_be64(&priv2->spu_lslr_RW);
    541}
    542
    543static inline void reset_spu_lslr(struct spu_state *csa, struct spu *spu)
    544{
    545	struct spu_priv2 __iomem *priv2 = spu->priv2;
    546
    547	/* Save, Step 35:
    548	 * Restore, Step 17.
    549	 *     Reset SPU_LSLR.
    550	 */
    551	out_be64(&priv2->spu_lslr_RW, LS_ADDR_MASK);
    552	eieio();
    553}
    554
    555static inline void save_spu_cfg(struct spu_state *csa, struct spu *spu)
    556{
    557	struct spu_priv2 __iomem *priv2 = spu->priv2;
    558
    559	/* Save, Step 36:
    560	 *     Save SPU_Cfg in the CSA.
    561	 */
    562	csa->priv2.spu_cfg_RW = in_be64(&priv2->spu_cfg_RW);
    563}
    564
    565static inline void save_pm_trace(struct spu_state *csa, struct spu *spu)
    566{
    567	/* Save, Step 37:
    568	 *     Save PM_Trace_Tag_Wait_Mask in the CSA.
    569	 *     Not performed by this implementation.
    570	 */
    571}
    572
    573static inline void save_mfc_rag(struct spu_state *csa, struct spu *spu)
    574{
    575	/* Save, Step 38:
    576	 *     Save RA_GROUP_ID register and the
    577	 *     RA_ENABLE reigster in the CSA.
    578	 */
    579	csa->priv1.resource_allocation_groupID_RW =
    580		spu_resource_allocation_groupID_get(spu);
    581	csa->priv1.resource_allocation_enable_RW =
    582		spu_resource_allocation_enable_get(spu);
    583}
    584
    585static inline void save_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
    586{
    587	struct spu_problem __iomem *prob = spu->problem;
    588
    589	/* Save, Step 39:
    590	 *     Save MB_Stat register in the CSA.
    591	 */
    592	csa->prob.mb_stat_R = in_be32(&prob->mb_stat_R);
    593}
    594
    595static inline void save_ppu_mb(struct spu_state *csa, struct spu *spu)
    596{
    597	struct spu_problem __iomem *prob = spu->problem;
    598
    599	/* Save, Step 40:
    600	 *     Save the PPU_MB register in the CSA.
    601	 */
    602	csa->prob.pu_mb_R = in_be32(&prob->pu_mb_R);
    603}
    604
    605static inline void save_ppuint_mb(struct spu_state *csa, struct spu *spu)
    606{
    607	struct spu_priv2 __iomem *priv2 = spu->priv2;
    608
    609	/* Save, Step 41:
    610	 *     Save the PPUINT_MB register in the CSA.
    611	 */
    612	csa->priv2.puint_mb_R = in_be64(&priv2->puint_mb_R);
    613}
    614
    615static inline void save_ch_part1(struct spu_state *csa, struct spu *spu)
    616{
    617	struct spu_priv2 __iomem *priv2 = spu->priv2;
    618	u64 idx, ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
    619	int i;
    620
    621	/* Save, Step 42:
    622	 */
    623
    624	/* Save CH 1, without channel count */
    625	out_be64(&priv2->spu_chnlcntptr_RW, 1);
    626	csa->spu_chnldata_RW[1] = in_be64(&priv2->spu_chnldata_RW);
    627
    628	/* Save the following CH: [0,3,4,24,25,27] */
    629	for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
    630		idx = ch_indices[i];
    631		out_be64(&priv2->spu_chnlcntptr_RW, idx);
    632		eieio();
    633		csa->spu_chnldata_RW[idx] = in_be64(&priv2->spu_chnldata_RW);
    634		csa->spu_chnlcnt_RW[idx] = in_be64(&priv2->spu_chnlcnt_RW);
    635		out_be64(&priv2->spu_chnldata_RW, 0UL);
    636		out_be64(&priv2->spu_chnlcnt_RW, 0UL);
    637		eieio();
    638	}
    639}
    640
    641static inline void save_spu_mb(struct spu_state *csa, struct spu *spu)
    642{
    643	struct spu_priv2 __iomem *priv2 = spu->priv2;
    644	int i;
    645
    646	/* Save, Step 43:
    647	 *     Save SPU Read Mailbox Channel.
    648	 */
    649	out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
    650	eieio();
    651	csa->spu_chnlcnt_RW[29] = in_be64(&priv2->spu_chnlcnt_RW);
    652	for (i = 0; i < 4; i++) {
    653		csa->spu_mailbox_data[i] = in_be64(&priv2->spu_chnldata_RW);
    654	}
    655	out_be64(&priv2->spu_chnlcnt_RW, 0UL);
    656	eieio();
    657}
    658
    659static inline void save_mfc_cmd(struct spu_state *csa, struct spu *spu)
    660{
    661	struct spu_priv2 __iomem *priv2 = spu->priv2;
    662
    663	/* Save, Step 44:
    664	 *     Save MFC_CMD Channel.
    665	 */
    666	out_be64(&priv2->spu_chnlcntptr_RW, 21UL);
    667	eieio();
    668	csa->spu_chnlcnt_RW[21] = in_be64(&priv2->spu_chnlcnt_RW);
    669	eieio();
    670}
    671
    672static inline void reset_ch(struct spu_state *csa, struct spu *spu)
    673{
    674	struct spu_priv2 __iomem *priv2 = spu->priv2;
    675	u64 ch_indices[4] = { 21UL, 23UL, 28UL, 30UL };
    676	u64 ch_counts[4] = { 16UL, 1UL, 1UL, 1UL };
    677	u64 idx;
    678	int i;
    679
    680	/* Save, Step 45:
    681	 *     Reset the following CH: [21, 23, 28, 30]
    682	 */
    683	for (i = 0; i < 4; i++) {
    684		idx = ch_indices[i];
    685		out_be64(&priv2->spu_chnlcntptr_RW, idx);
    686		eieio();
    687		out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
    688		eieio();
    689	}
    690}
    691
    692static inline void resume_mfc_queue(struct spu_state *csa, struct spu *spu)
    693{
    694	struct spu_priv2 __iomem *priv2 = spu->priv2;
    695
    696	/* Save, Step 46:
    697	 * Restore, Step 25.
    698	 *     Write MFC_CNTL[Sc]=0 (resume queue processing).
    699	 */
    700	out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESUME_DMA_QUEUE);
    701}
    702
    703static inline void setup_mfc_slbs(struct spu_state *csa, struct spu *spu,
    704		unsigned int *code, int code_size)
    705{
    706	/* Save, Step 47:
    707	 * Restore, Step 30.
    708	 *     If MFC_SR1[R]=1, write 0 to SLB_Invalidate_All
    709	 *     register, then initialize SLB_VSID and SLB_ESID
    710	 *     to provide access to SPU context save code and
    711	 *     LSCSA.
    712	 *
    713	 *     This implementation places both the context
    714	 *     switch code and LSCSA in kernel address space.
    715	 *
    716	 *     Further this implementation assumes that the
    717	 *     MFC_SR1[R]=1 (in other words, assume that
    718	 *     translation is desired by OS environment).
    719	 */
    720	spu_invalidate_slbs(spu);
    721	spu_setup_kernel_slbs(spu, csa->lscsa, code, code_size);
    722}
    723
    724static inline void set_switch_active(struct spu_state *csa, struct spu *spu)
    725{
    726	/* Save, Step 48:
    727	 * Restore, Step 23.
    728	 *     Change the software context switch pending flag
    729	 *     to context switch active.  This implementation does
    730	 *     not uses a switch active flag.
    731	 *
    732	 * Now that we have saved the mfc in the csa, we can add in the
    733	 * restart command if an exception occurred.
    734	 */
    735	if (test_bit(SPU_CONTEXT_FAULT_PENDING, &spu->flags))
    736		csa->priv2.mfc_control_RW |= MFC_CNTL_RESTART_DMA_COMMAND;
    737	clear_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
    738	mb();
    739}
    740
    741static inline void enable_interrupts(struct spu_state *csa, struct spu *spu)
    742{
    743	unsigned long class1_mask = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
    744	    CLASS1_ENABLE_STORAGE_FAULT_INTR;
    745
    746	/* Save, Step 49:
    747	 * Restore, Step 22:
    748	 *     Reset and then enable interrupts, as
    749	 *     needed by OS.
    750	 *
    751	 *     This implementation enables only class1
    752	 *     (translation) interrupts.
    753	 */
    754	spin_lock_irq(&spu->register_lock);
    755	spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
    756	spu_int_stat_clear(spu, 1, CLASS1_INTR_MASK);
    757	spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
    758	spu_int_mask_set(spu, 0, 0ul);
    759	spu_int_mask_set(spu, 1, class1_mask);
    760	spu_int_mask_set(spu, 2, 0ul);
    761	spin_unlock_irq(&spu->register_lock);
    762}
    763
    764static inline int send_mfc_dma(struct spu *spu, unsigned long ea,
    765			       unsigned int ls_offset, unsigned int size,
    766			       unsigned int tag, unsigned int rclass,
    767			       unsigned int cmd)
    768{
    769	struct spu_problem __iomem *prob = spu->problem;
    770	union mfc_tag_size_class_cmd command;
    771	unsigned int transfer_size;
    772	volatile unsigned int status = 0x0;
    773
    774	while (size > 0) {
    775		transfer_size =
    776		    (size > MFC_MAX_DMA_SIZE) ? MFC_MAX_DMA_SIZE : size;
    777		command.u.mfc_size = transfer_size;
    778		command.u.mfc_tag = tag;
    779		command.u.mfc_rclassid = rclass;
    780		command.u.mfc_cmd = cmd;
    781		do {
    782			out_be32(&prob->mfc_lsa_W, ls_offset);
    783			out_be64(&prob->mfc_ea_W, ea);
    784			out_be64(&prob->mfc_union_W.all64, command.all64);
    785			status =
    786			    in_be32(&prob->mfc_union_W.by32.mfc_class_cmd32);
    787			if (unlikely(status & 0x2)) {
    788				cpu_relax();
    789			}
    790		} while (status & 0x3);
    791		size -= transfer_size;
    792		ea += transfer_size;
    793		ls_offset += transfer_size;
    794	}
    795	return 0;
    796}
    797
    798static inline void save_ls_16kb(struct spu_state *csa, struct spu *spu)
    799{
    800	unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
    801	unsigned int ls_offset = 0x0;
    802	unsigned int size = 16384;
    803	unsigned int tag = 0;
    804	unsigned int rclass = 0;
    805	unsigned int cmd = MFC_PUT_CMD;
    806
    807	/* Save, Step 50:
    808	 *     Issue a DMA command to copy the first 16K bytes
    809	 *     of local storage to the CSA.
    810	 */
    811	send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
    812}
    813
    814static inline void set_spu_npc(struct spu_state *csa, struct spu *spu)
    815{
    816	struct spu_problem __iomem *prob = spu->problem;
    817
    818	/* Save, Step 51:
    819	 * Restore, Step 31.
    820	 *     Write SPU_NPC[IE]=0 and SPU_NPC[LSA] to entry
    821	 *     point address of context save code in local
    822	 *     storage.
    823	 *
    824	 *     This implementation uses SPU-side save/restore
    825	 *     programs with entry points at LSA of 0.
    826	 */
    827	out_be32(&prob->spu_npc_RW, 0);
    828	eieio();
    829}
    830
    831static inline void set_signot1(struct spu_state *csa, struct spu *spu)
    832{
    833	struct spu_problem __iomem *prob = spu->problem;
    834	union {
    835		u64 ull;
    836		u32 ui[2];
    837	} addr64;
    838
    839	/* Save, Step 52:
    840	 * Restore, Step 32:
    841	 *    Write SPU_Sig_Notify_1 register with upper 32-bits
    842	 *    of the CSA.LSCSA effective address.
    843	 */
    844	addr64.ull = (u64) csa->lscsa;
    845	out_be32(&prob->signal_notify1, addr64.ui[0]);
    846	eieio();
    847}
    848
    849static inline void set_signot2(struct spu_state *csa, struct spu *spu)
    850{
    851	struct spu_problem __iomem *prob = spu->problem;
    852	union {
    853		u64 ull;
    854		u32 ui[2];
    855	} addr64;
    856
    857	/* Save, Step 53:
    858	 * Restore, Step 33:
    859	 *    Write SPU_Sig_Notify_2 register with lower 32-bits
    860	 *    of the CSA.LSCSA effective address.
    861	 */
    862	addr64.ull = (u64) csa->lscsa;
    863	out_be32(&prob->signal_notify2, addr64.ui[1]);
    864	eieio();
    865}
    866
    867static inline void send_save_code(struct spu_state *csa, struct spu *spu)
    868{
    869	unsigned long addr = (unsigned long)&spu_save_code[0];
    870	unsigned int ls_offset = 0x0;
    871	unsigned int size = sizeof(spu_save_code);
    872	unsigned int tag = 0;
    873	unsigned int rclass = 0;
    874	unsigned int cmd = MFC_GETFS_CMD;
    875
    876	/* Save, Step 54:
    877	 *     Issue a DMA command to copy context save code
    878	 *     to local storage and start SPU.
    879	 */
    880	send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
    881}
    882
    883static inline void set_ppu_querymask(struct spu_state *csa, struct spu *spu)
    884{
    885	struct spu_problem __iomem *prob = spu->problem;
    886
    887	/* Save, Step 55:
    888	 * Restore, Step 38.
    889	 *     Write PPU_QueryMask=1 (enable Tag Group 0)
    890	 *     and issue eieio instruction.
    891	 */
    892	out_be32(&prob->dma_querymask_RW, MFC_TAGID_TO_TAGMASK(0));
    893	eieio();
    894}
    895
    896static inline void wait_tag_complete(struct spu_state *csa, struct spu *spu)
    897{
    898	struct spu_problem __iomem *prob = spu->problem;
    899	u32 mask = MFC_TAGID_TO_TAGMASK(0);
    900	unsigned long flags;
    901
    902	/* Save, Step 56:
    903	 * Restore, Step 39.
    904	 * Restore, Step 39.
    905	 * Restore, Step 46.
    906	 *     Poll PPU_TagStatus[gn] until 01 (Tag group 0 complete)
    907	 *     or write PPU_QueryType[TS]=01 and wait for Tag Group
    908	 *     Complete Interrupt.  Write INT_Stat_Class0 or
    909	 *     INT_Stat_Class2 with value of 'handled'.
    910	 */
    911	POLL_WHILE_FALSE(in_be32(&prob->dma_tagstatus_R) & mask);
    912
    913	local_irq_save(flags);
    914	spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
    915	spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
    916	local_irq_restore(flags);
    917}
    918
    919static inline void wait_spu_stopped(struct spu_state *csa, struct spu *spu)
    920{
    921	struct spu_problem __iomem *prob = spu->problem;
    922	unsigned long flags;
    923
    924	/* Save, Step 57:
    925	 * Restore, Step 40.
    926	 *     Poll until SPU_Status[R]=0 or wait for SPU Class 0
    927	 *     or SPU Class 2 interrupt.  Write INT_Stat_class0
    928	 *     or INT_Stat_class2 with value of handled.
    929	 */
    930	POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
    931
    932	local_irq_save(flags);
    933	spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
    934	spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
    935	local_irq_restore(flags);
    936}
    937
    938static inline int check_save_status(struct spu_state *csa, struct spu *spu)
    939{
    940	struct spu_problem __iomem *prob = spu->problem;
    941	u32 complete;
    942
    943	/* Save, Step 54:
    944	 *     If SPU_Status[P]=1 and SPU_Status[SC] = "success",
    945	 *     context save succeeded, otherwise context save
    946	 *     failed.
    947	 */
    948	complete = ((SPU_SAVE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
    949		    SPU_STATUS_STOPPED_BY_STOP);
    950	return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
    951}
    952
    953static inline void terminate_spu_app(struct spu_state *csa, struct spu *spu)
    954{
    955	/* Restore, Step 4:
    956	 *    If required, notify the "using application" that
    957	 *    the SPU task has been terminated.  TBD.
    958	 */
    959}
    960
    961static inline void suspend_mfc_and_halt_decr(struct spu_state *csa,
    962		struct spu *spu)
    963{
    964	struct spu_priv2 __iomem *priv2 = spu->priv2;
    965
    966	/* Restore, Step 7:
    967	 *     Write MFC_Cntl[Dh,Sc,Sm]='1','1','0' to suspend
    968	 *     the queue and halt the decrementer.
    969	 */
    970	out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE |
    971		 MFC_CNTL_DECREMENTER_HALTED);
    972	eieio();
    973}
    974
    975static inline void wait_suspend_mfc_complete(struct spu_state *csa,
    976					     struct spu *spu)
    977{
    978	struct spu_priv2 __iomem *priv2 = spu->priv2;
    979
    980	/* Restore, Step 8:
    981	 * Restore, Step 47.
    982	 *     Poll MFC_CNTL[Ss] until 11 is returned.
    983	 */
    984	POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
    985			 MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
    986			 MFC_CNTL_SUSPEND_COMPLETE);
    987}
    988
    989static inline int suspend_spe(struct spu_state *csa, struct spu *spu)
    990{
    991	struct spu_problem __iomem *prob = spu->problem;
    992
    993	/* Restore, Step 9:
    994	 *    If SPU_Status[R]=1, stop SPU execution
    995	 *    and wait for stop to complete.
    996	 *
    997	 *    Returns       1 if SPU_Status[R]=1 on entry.
    998	 *                  0 otherwise
    999	 */
   1000	if (in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) {
   1001		if (in_be32(&prob->spu_status_R) &
   1002		    SPU_STATUS_ISOLATED_EXIT_STATUS) {
   1003			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
   1004					SPU_STATUS_RUNNING);
   1005		}
   1006		if ((in_be32(&prob->spu_status_R) &
   1007		     SPU_STATUS_ISOLATED_LOAD_STATUS)
   1008		    || (in_be32(&prob->spu_status_R) &
   1009			SPU_STATUS_ISOLATED_STATE)) {
   1010			out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
   1011			eieio();
   1012			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
   1013					SPU_STATUS_RUNNING);
   1014			out_be32(&prob->spu_runcntl_RW, 0x2);
   1015			eieio();
   1016			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
   1017					SPU_STATUS_RUNNING);
   1018		}
   1019		if (in_be32(&prob->spu_status_R) &
   1020		    SPU_STATUS_WAITING_FOR_CHANNEL) {
   1021			out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
   1022			eieio();
   1023			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
   1024					SPU_STATUS_RUNNING);
   1025		}
   1026		return 1;
   1027	}
   1028	return 0;
   1029}
   1030
   1031static inline void clear_spu_status(struct spu_state *csa, struct spu *spu)
   1032{
   1033	struct spu_problem __iomem *prob = spu->problem;
   1034
   1035	/* Restore, Step 10:
   1036	 *    If SPU_Status[R]=0 and SPU_Status[E,L,IS]=1,
   1037	 *    release SPU from isolate state.
   1038	 */
   1039	if (!(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING)) {
   1040		if (in_be32(&prob->spu_status_R) &
   1041		    SPU_STATUS_ISOLATED_EXIT_STATUS) {
   1042			spu_mfc_sr1_set(spu,
   1043					MFC_STATE1_MASTER_RUN_CONTROL_MASK);
   1044			eieio();
   1045			out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
   1046			eieio();
   1047			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
   1048					SPU_STATUS_RUNNING);
   1049		}
   1050		if ((in_be32(&prob->spu_status_R) &
   1051		     SPU_STATUS_ISOLATED_LOAD_STATUS)
   1052		    || (in_be32(&prob->spu_status_R) &
   1053			SPU_STATUS_ISOLATED_STATE)) {
   1054			spu_mfc_sr1_set(spu,
   1055					MFC_STATE1_MASTER_RUN_CONTROL_MASK);
   1056			eieio();
   1057			out_be32(&prob->spu_runcntl_RW, 0x2);
   1058			eieio();
   1059			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
   1060					SPU_STATUS_RUNNING);
   1061		}
   1062	}
   1063}
   1064
   1065static inline void reset_ch_part1(struct spu_state *csa, struct spu *spu)
   1066{
   1067	struct spu_priv2 __iomem *priv2 = spu->priv2;
   1068	u64 ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
   1069	u64 idx;
   1070	int i;
   1071
   1072	/* Restore, Step 20:
   1073	 */
   1074
   1075	/* Reset CH 1 */
   1076	out_be64(&priv2->spu_chnlcntptr_RW, 1);
   1077	out_be64(&priv2->spu_chnldata_RW, 0UL);
   1078
   1079	/* Reset the following CH: [0,3,4,24,25,27] */
   1080	for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
   1081		idx = ch_indices[i];
   1082		out_be64(&priv2->spu_chnlcntptr_RW, idx);
   1083		eieio();
   1084		out_be64(&priv2->spu_chnldata_RW, 0UL);
   1085		out_be64(&priv2->spu_chnlcnt_RW, 0UL);
   1086		eieio();
   1087	}
   1088}
   1089
   1090static inline void reset_ch_part2(struct spu_state *csa, struct spu *spu)
   1091{
   1092	struct spu_priv2 __iomem *priv2 = spu->priv2;
   1093	u64 ch_indices[5] = { 21UL, 23UL, 28UL, 29UL, 30UL };
   1094	u64 ch_counts[5] = { 16UL, 1UL, 1UL, 0UL, 1UL };
   1095	u64 idx;
   1096	int i;
   1097
   1098	/* Restore, Step 21:
   1099	 *     Reset the following CH: [21, 23, 28, 29, 30]
   1100	 */
   1101	for (i = 0; i < 5; i++) {
   1102		idx = ch_indices[i];
   1103		out_be64(&priv2->spu_chnlcntptr_RW, idx);
   1104		eieio();
   1105		out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
   1106		eieio();
   1107	}
   1108}
   1109
   1110static inline void setup_spu_status_part1(struct spu_state *csa,
   1111					  struct spu *spu)
   1112{
   1113	u32 status_P = SPU_STATUS_STOPPED_BY_STOP;
   1114	u32 status_I = SPU_STATUS_INVALID_INSTR;
   1115	u32 status_H = SPU_STATUS_STOPPED_BY_HALT;
   1116	u32 status_S = SPU_STATUS_SINGLE_STEP;
   1117	u32 status_S_I = SPU_STATUS_SINGLE_STEP | SPU_STATUS_INVALID_INSTR;
   1118	u32 status_S_P = SPU_STATUS_SINGLE_STEP | SPU_STATUS_STOPPED_BY_STOP;
   1119	u32 status_P_H = SPU_STATUS_STOPPED_BY_HALT |SPU_STATUS_STOPPED_BY_STOP;
   1120	u32 status_P_I = SPU_STATUS_STOPPED_BY_STOP |SPU_STATUS_INVALID_INSTR;
   1121	u32 status_code;
   1122
   1123	/* Restore, Step 27:
   1124	 *     If the CSA.SPU_Status[I,S,H,P]=1 then add the correct
   1125	 *     instruction sequence to the end of the SPU based restore
   1126	 *     code (after the "context restored" stop and signal) to
   1127	 *     restore the correct SPU status.
   1128	 *
   1129	 *     NOTE: Rather than modifying the SPU executable, we
   1130	 *     instead add a new 'stopped_status' field to the
   1131	 *     LSCSA.  The SPU-side restore reads this field and
   1132	 *     takes the appropriate action when exiting.
   1133	 */
   1134
   1135	status_code =
   1136	    (csa->prob.spu_status_R >> SPU_STOP_STATUS_SHIFT) & 0xFFFF;
   1137	if ((csa->prob.spu_status_R & status_P_I) == status_P_I) {
   1138
   1139		/* SPU_Status[P,I]=1 - Illegal Instruction followed
   1140		 * by Stop and Signal instruction, followed by 'br -4'.
   1141		 *
   1142		 */
   1143		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_I;
   1144		csa->lscsa->stopped_status.slot[1] = status_code;
   1145
   1146	} else if ((csa->prob.spu_status_R & status_P_H) == status_P_H) {
   1147
   1148		/* SPU_Status[P,H]=1 - Halt Conditional, followed
   1149		 * by Stop and Signal instruction, followed by
   1150		 * 'br -4'.
   1151		 */
   1152		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_H;
   1153		csa->lscsa->stopped_status.slot[1] = status_code;
   1154
   1155	} else if ((csa->prob.spu_status_R & status_S_P) == status_S_P) {
   1156
   1157		/* SPU_Status[S,P]=1 - Stop and Signal instruction
   1158		 * followed by 'br -4'.
   1159		 */
   1160		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_P;
   1161		csa->lscsa->stopped_status.slot[1] = status_code;
   1162
   1163	} else if ((csa->prob.spu_status_R & status_S_I) == status_S_I) {
   1164
   1165		/* SPU_Status[S,I]=1 - Illegal instruction followed
   1166		 * by 'br -4'.
   1167		 */
   1168		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_I;
   1169		csa->lscsa->stopped_status.slot[1] = status_code;
   1170
   1171	} else if ((csa->prob.spu_status_R & status_P) == status_P) {
   1172
   1173		/* SPU_Status[P]=1 - Stop and Signal instruction
   1174		 * followed by 'br -4'.
   1175		 */
   1176		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P;
   1177		csa->lscsa->stopped_status.slot[1] = status_code;
   1178
   1179	} else if ((csa->prob.spu_status_R & status_H) == status_H) {
   1180
   1181		/* SPU_Status[H]=1 - Halt Conditional, followed
   1182		 * by 'br -4'.
   1183		 */
   1184		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_H;
   1185
   1186	} else if ((csa->prob.spu_status_R & status_S) == status_S) {
   1187
   1188		/* SPU_Status[S]=1 - Two nop instructions.
   1189		 */
   1190		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S;
   1191
   1192	} else if ((csa->prob.spu_status_R & status_I) == status_I) {
   1193
   1194		/* SPU_Status[I]=1 - Illegal instruction followed
   1195		 * by 'br -4'.
   1196		 */
   1197		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_I;
   1198
   1199	}
   1200}
   1201
   1202static inline void setup_spu_status_part2(struct spu_state *csa,
   1203					  struct spu *spu)
   1204{
   1205	u32 mask;
   1206
   1207	/* Restore, Step 28:
   1208	 *     If the CSA.SPU_Status[I,S,H,P,R]=0 then
   1209	 *     add a 'br *' instruction to the end of
   1210	 *     the SPU based restore code.
   1211	 *
   1212	 *     NOTE: Rather than modifying the SPU executable, we
   1213	 *     instead add a new 'stopped_status' field to the
   1214	 *     LSCSA.  The SPU-side restore reads this field and
   1215	 *     takes the appropriate action when exiting.
   1216	 */
   1217	mask = SPU_STATUS_INVALID_INSTR |
   1218	    SPU_STATUS_SINGLE_STEP |
   1219	    SPU_STATUS_STOPPED_BY_HALT |
   1220	    SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
   1221	if (!(csa->prob.spu_status_R & mask)) {
   1222		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_R;
   1223	}
   1224}
   1225
   1226static inline void restore_mfc_rag(struct spu_state *csa, struct spu *spu)
   1227{
   1228	/* Restore, Step 29:
   1229	 *     Restore RA_GROUP_ID register and the
   1230	 *     RA_ENABLE reigster from the CSA.
   1231	 */
   1232	spu_resource_allocation_groupID_set(spu,
   1233			csa->priv1.resource_allocation_groupID_RW);
   1234	spu_resource_allocation_enable_set(spu,
   1235			csa->priv1.resource_allocation_enable_RW);
   1236}
   1237
   1238static inline void send_restore_code(struct spu_state *csa, struct spu *spu)
   1239{
   1240	unsigned long addr = (unsigned long)&spu_restore_code[0];
   1241	unsigned int ls_offset = 0x0;
   1242	unsigned int size = sizeof(spu_restore_code);
   1243	unsigned int tag = 0;
   1244	unsigned int rclass = 0;
   1245	unsigned int cmd = MFC_GETFS_CMD;
   1246
   1247	/* Restore, Step 37:
   1248	 *     Issue MFC DMA command to copy context
   1249	 *     restore code to local storage.
   1250	 */
   1251	send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
   1252}
   1253
   1254static inline void setup_decr(struct spu_state *csa, struct spu *spu)
   1255{
   1256	/* Restore, Step 34:
   1257	 *     If CSA.MFC_CNTL[Ds]=1 (decrementer was
   1258	 *     running) then adjust decrementer, set
   1259	 *     decrementer running status in LSCSA,
   1260	 *     and set decrementer "wrapped" status
   1261	 *     in LSCSA.
   1262	 */
   1263	if (csa->priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING) {
   1264		cycles_t resume_time = get_cycles();
   1265		cycles_t delta_time = resume_time - csa->suspend_time;
   1266
   1267		csa->lscsa->decr_status.slot[0] = SPU_DECR_STATUS_RUNNING;
   1268		if (csa->lscsa->decr.slot[0] < delta_time) {
   1269			csa->lscsa->decr_status.slot[0] |=
   1270				 SPU_DECR_STATUS_WRAPPED;
   1271		}
   1272
   1273		csa->lscsa->decr.slot[0] -= delta_time;
   1274	} else {
   1275		csa->lscsa->decr_status.slot[0] = 0;
   1276	}
   1277}
   1278
   1279static inline void setup_ppu_mb(struct spu_state *csa, struct spu *spu)
   1280{
   1281	/* Restore, Step 35:
   1282	 *     Copy the CSA.PU_MB data into the LSCSA.
   1283	 */
   1284	csa->lscsa->ppu_mb.slot[0] = csa->prob.pu_mb_R;
   1285}
   1286
   1287static inline void setup_ppuint_mb(struct spu_state *csa, struct spu *spu)
   1288{
   1289	/* Restore, Step 36:
   1290	 *     Copy the CSA.PUINT_MB data into the LSCSA.
   1291	 */
   1292	csa->lscsa->ppuint_mb.slot[0] = csa->priv2.puint_mb_R;
   1293}
   1294
   1295static inline int check_restore_status(struct spu_state *csa, struct spu *spu)
   1296{
   1297	struct spu_problem __iomem *prob = spu->problem;
   1298	u32 complete;
   1299
   1300	/* Restore, Step 40:
   1301	 *     If SPU_Status[P]=1 and SPU_Status[SC] = "success",
   1302	 *     context restore succeeded, otherwise context restore
   1303	 *     failed.
   1304	 */
   1305	complete = ((SPU_RESTORE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
   1306		    SPU_STATUS_STOPPED_BY_STOP);
   1307	return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
   1308}
   1309
   1310static inline void restore_spu_privcntl(struct spu_state *csa, struct spu *spu)
   1311{
   1312	struct spu_priv2 __iomem *priv2 = spu->priv2;
   1313
   1314	/* Restore, Step 41:
   1315	 *     Restore SPU_PrivCntl from the CSA.
   1316	 */
   1317	out_be64(&priv2->spu_privcntl_RW, csa->priv2.spu_privcntl_RW);
   1318	eieio();
   1319}
   1320
   1321static inline void restore_status_part1(struct spu_state *csa, struct spu *spu)
   1322{
   1323	struct spu_problem __iomem *prob = spu->problem;
   1324	u32 mask;
   1325
   1326	/* Restore, Step 42:
   1327	 *     If any CSA.SPU_Status[I,S,H,P]=1, then
   1328	 *     restore the error or single step state.
   1329	 */
   1330	mask = SPU_STATUS_INVALID_INSTR |
   1331	    SPU_STATUS_SINGLE_STEP |
   1332	    SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
   1333	if (csa->prob.spu_status_R & mask) {
   1334		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
   1335		eieio();
   1336		POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
   1337				SPU_STATUS_RUNNING);
   1338	}
   1339}
   1340
   1341static inline void restore_status_part2(struct spu_state *csa, struct spu *spu)
   1342{
   1343	struct spu_problem __iomem *prob = spu->problem;
   1344	u32 mask;
   1345
   1346	/* Restore, Step 43:
   1347	 *     If all CSA.SPU_Status[I,S,H,P,R]=0 then write
   1348	 *     SPU_RunCntl[R0R1]='01', wait for SPU_Status[R]=1,
   1349	 *     then write '00' to SPU_RunCntl[R0R1] and wait
   1350	 *     for SPU_Status[R]=0.
   1351	 */
   1352	mask = SPU_STATUS_INVALID_INSTR |
   1353	    SPU_STATUS_SINGLE_STEP |
   1354	    SPU_STATUS_STOPPED_BY_HALT |
   1355	    SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
   1356	if (!(csa->prob.spu_status_R & mask)) {
   1357		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
   1358		eieio();
   1359		POLL_WHILE_FALSE(in_be32(&prob->spu_status_R) &
   1360				 SPU_STATUS_RUNNING);
   1361		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
   1362		eieio();
   1363		POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
   1364				SPU_STATUS_RUNNING);
   1365	}
   1366}
   1367
   1368static inline void restore_ls_16kb(struct spu_state *csa, struct spu *spu)
   1369{
   1370	unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
   1371	unsigned int ls_offset = 0x0;
   1372	unsigned int size = 16384;
   1373	unsigned int tag = 0;
   1374	unsigned int rclass = 0;
   1375	unsigned int cmd = MFC_GET_CMD;
   1376
   1377	/* Restore, Step 44:
   1378	 *     Issue a DMA command to restore the first
   1379	 *     16kb of local storage from CSA.
   1380	 */
   1381	send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
   1382}
   1383
   1384static inline void suspend_mfc(struct spu_state *csa, struct spu *spu)
   1385{
   1386	struct spu_priv2 __iomem *priv2 = spu->priv2;
   1387
   1388	/* Restore, Step 47.
   1389	 *     Write MFC_Cntl[Sc,Sm]='1','0' to suspend
   1390	 *     the queue.
   1391	 */
   1392	out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
   1393	eieio();
   1394}
   1395
   1396static inline void clear_interrupts(struct spu_state *csa, struct spu *spu)
   1397{
   1398	/* Restore, Step 49:
   1399	 *     Write INT_MASK_class0 with value of 0.
   1400	 *     Write INT_MASK_class1 with value of 0.
   1401	 *     Write INT_MASK_class2 with value of 0.
   1402	 *     Write INT_STAT_class0 with value of -1.
   1403	 *     Write INT_STAT_class1 with value of -1.
   1404	 *     Write INT_STAT_class2 with value of -1.
   1405	 */
   1406	spin_lock_irq(&spu->register_lock);
   1407	spu_int_mask_set(spu, 0, 0ul);
   1408	spu_int_mask_set(spu, 1, 0ul);
   1409	spu_int_mask_set(spu, 2, 0ul);
   1410	spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
   1411	spu_int_stat_clear(spu, 1, CLASS1_INTR_MASK);
   1412	spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
   1413	spin_unlock_irq(&spu->register_lock);
   1414}
   1415
   1416static inline void restore_mfc_queues(struct spu_state *csa, struct spu *spu)
   1417{
   1418	struct spu_priv2 __iomem *priv2 = spu->priv2;
   1419	int i;
   1420
   1421	/* Restore, Step 50:
   1422	 *     If MFC_Cntl[Se]!=0 then restore
   1423	 *     MFC command queues.
   1424	 */
   1425	if ((csa->priv2.mfc_control_RW & MFC_CNTL_DMA_QUEUES_EMPTY_MASK) == 0) {
   1426		for (i = 0; i < 8; i++) {
   1427			out_be64(&priv2->puq[i].mfc_cq_data0_RW,
   1428				 csa->priv2.puq[i].mfc_cq_data0_RW);
   1429			out_be64(&priv2->puq[i].mfc_cq_data1_RW,
   1430				 csa->priv2.puq[i].mfc_cq_data1_RW);
   1431			out_be64(&priv2->puq[i].mfc_cq_data2_RW,
   1432				 csa->priv2.puq[i].mfc_cq_data2_RW);
   1433			out_be64(&priv2->puq[i].mfc_cq_data3_RW,
   1434				 csa->priv2.puq[i].mfc_cq_data3_RW);
   1435		}
   1436		for (i = 0; i < 16; i++) {
   1437			out_be64(&priv2->spuq[i].mfc_cq_data0_RW,
   1438				 csa->priv2.spuq[i].mfc_cq_data0_RW);
   1439			out_be64(&priv2->spuq[i].mfc_cq_data1_RW,
   1440				 csa->priv2.spuq[i].mfc_cq_data1_RW);
   1441			out_be64(&priv2->spuq[i].mfc_cq_data2_RW,
   1442				 csa->priv2.spuq[i].mfc_cq_data2_RW);
   1443			out_be64(&priv2->spuq[i].mfc_cq_data3_RW,
   1444				 csa->priv2.spuq[i].mfc_cq_data3_RW);
   1445		}
   1446	}
   1447	eieio();
   1448}
   1449
   1450static inline void restore_ppu_querymask(struct spu_state *csa, struct spu *spu)
   1451{
   1452	struct spu_problem __iomem *prob = spu->problem;
   1453
   1454	/* Restore, Step 51:
   1455	 *     Restore the PPU_QueryMask register from CSA.
   1456	 */
   1457	out_be32(&prob->dma_querymask_RW, csa->prob.dma_querymask_RW);
   1458	eieio();
   1459}
   1460
   1461static inline void restore_ppu_querytype(struct spu_state *csa, struct spu *spu)
   1462{
   1463	struct spu_problem __iomem *prob = spu->problem;
   1464
   1465	/* Restore, Step 52:
   1466	 *     Restore the PPU_QueryType register from CSA.
   1467	 */
   1468	out_be32(&prob->dma_querytype_RW, csa->prob.dma_querytype_RW);
   1469	eieio();
   1470}
   1471
   1472static inline void restore_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
   1473{
   1474	struct spu_priv2 __iomem *priv2 = spu->priv2;
   1475
   1476	/* Restore, Step 53:
   1477	 *     Restore the MFC_CSR_TSQ register from CSA.
   1478	 */
   1479	out_be64(&priv2->spu_tag_status_query_RW,
   1480		 csa->priv2.spu_tag_status_query_RW);
   1481	eieio();
   1482}
   1483
   1484static inline void restore_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
   1485{
   1486	struct spu_priv2 __iomem *priv2 = spu->priv2;
   1487
   1488	/* Restore, Step 54:
   1489	 *     Restore the MFC_CSR_CMD1 and MFC_CSR_CMD2
   1490	 *     registers from CSA.
   1491	 */
   1492	out_be64(&priv2->spu_cmd_buf1_RW, csa->priv2.spu_cmd_buf1_RW);
   1493	out_be64(&priv2->spu_cmd_buf2_RW, csa->priv2.spu_cmd_buf2_RW);
   1494	eieio();
   1495}
   1496
   1497static inline void restore_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
   1498{
   1499	struct spu_priv2 __iomem *priv2 = spu->priv2;
   1500
   1501	/* Restore, Step 55:
   1502	 *     Restore the MFC_CSR_ATO register from CSA.
   1503	 */
   1504	out_be64(&priv2->spu_atomic_status_RW, csa->priv2.spu_atomic_status_RW);
   1505}
   1506
   1507static inline void restore_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
   1508{
   1509	/* Restore, Step 56:
   1510	 *     Restore the MFC_TCLASS_ID register from CSA.
   1511	 */
   1512	spu_mfc_tclass_id_set(spu, csa->priv1.mfc_tclass_id_RW);
   1513	eieio();
   1514}
   1515
   1516static inline void set_llr_event(struct spu_state *csa, struct spu *spu)
   1517{
   1518	u64 ch0_cnt, ch0_data;
   1519	u64 ch1_data;
   1520
   1521	/* Restore, Step 57:
   1522	 *    Set the Lock Line Reservation Lost Event by:
   1523	 *      1. OR CSA.SPU_Event_Status with bit 21 (Lr) set to 1.
   1524	 *      2. If CSA.SPU_Channel_0_Count=0 and
   1525	 *         CSA.SPU_Wr_Event_Mask[Lr]=1 and
   1526	 *         CSA.SPU_Event_Status[Lr]=0 then set
   1527	 *         CSA.SPU_Event_Status_Count=1.
   1528	 */
   1529	ch0_cnt = csa->spu_chnlcnt_RW[0];
   1530	ch0_data = csa->spu_chnldata_RW[0];
   1531	ch1_data = csa->spu_chnldata_RW[1];
   1532	csa->spu_chnldata_RW[0] |= MFC_LLR_LOST_EVENT;
   1533	if ((ch0_cnt == 0) && !(ch0_data & MFC_LLR_LOST_EVENT) &&
   1534	    (ch1_data & MFC_LLR_LOST_EVENT)) {
   1535		csa->spu_chnlcnt_RW[0] = 1;
   1536	}
   1537}
   1538
   1539static inline void restore_decr_wrapped(struct spu_state *csa, struct spu *spu)
   1540{
   1541	/* Restore, Step 58:
   1542	 *     If the status of the CSA software decrementer
   1543	 *     "wrapped" flag is set, OR in a '1' to
   1544	 *     CSA.SPU_Event_Status[Tm].
   1545	 */
   1546	if (!(csa->lscsa->decr_status.slot[0] & SPU_DECR_STATUS_WRAPPED))
   1547		return;
   1548
   1549	if ((csa->spu_chnlcnt_RW[0] == 0) &&
   1550	    (csa->spu_chnldata_RW[1] & 0x20) &&
   1551	    !(csa->spu_chnldata_RW[0] & 0x20))
   1552		csa->spu_chnlcnt_RW[0] = 1;
   1553
   1554	csa->spu_chnldata_RW[0] |= 0x20;
   1555}
   1556
   1557static inline void restore_ch_part1(struct spu_state *csa, struct spu *spu)
   1558{
   1559	struct spu_priv2 __iomem *priv2 = spu->priv2;
   1560	u64 idx, ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
   1561	int i;
   1562
   1563	/* Restore, Step 59:
   1564	 *	Restore the following CH: [0,3,4,24,25,27]
   1565	 */
   1566	for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
   1567		idx = ch_indices[i];
   1568		out_be64(&priv2->spu_chnlcntptr_RW, idx);
   1569		eieio();
   1570		out_be64(&priv2->spu_chnldata_RW, csa->spu_chnldata_RW[idx]);
   1571		out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[idx]);
   1572		eieio();
   1573	}
   1574}
   1575
   1576static inline void restore_ch_part2(struct spu_state *csa, struct spu *spu)
   1577{
   1578	struct spu_priv2 __iomem *priv2 = spu->priv2;
   1579	u64 ch_indices[3] = { 9UL, 21UL, 23UL };
   1580	u64 ch_counts[3] = { 1UL, 16UL, 1UL };
   1581	u64 idx;
   1582	int i;
   1583
   1584	/* Restore, Step 60:
   1585	 *     Restore the following CH: [9,21,23].
   1586	 */
   1587	ch_counts[0] = 1UL;
   1588	ch_counts[1] = csa->spu_chnlcnt_RW[21];
   1589	ch_counts[2] = 1UL;
   1590	for (i = 0; i < 3; i++) {
   1591		idx = ch_indices[i];
   1592		out_be64(&priv2->spu_chnlcntptr_RW, idx);
   1593		eieio();
   1594		out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
   1595		eieio();
   1596	}
   1597}
   1598
   1599static inline void restore_spu_lslr(struct spu_state *csa, struct spu *spu)
   1600{
   1601	struct spu_priv2 __iomem *priv2 = spu->priv2;
   1602
   1603	/* Restore, Step 61:
   1604	 *     Restore the SPU_LSLR register from CSA.
   1605	 */
   1606	out_be64(&priv2->spu_lslr_RW, csa->priv2.spu_lslr_RW);
   1607	eieio();
   1608}
   1609
   1610static inline void restore_spu_cfg(struct spu_state *csa, struct spu *spu)
   1611{
   1612	struct spu_priv2 __iomem *priv2 = spu->priv2;
   1613
   1614	/* Restore, Step 62:
   1615	 *     Restore the SPU_Cfg register from CSA.
   1616	 */
   1617	out_be64(&priv2->spu_cfg_RW, csa->priv2.spu_cfg_RW);
   1618	eieio();
   1619}
   1620
   1621static inline void restore_pm_trace(struct spu_state *csa, struct spu *spu)
   1622{
   1623	/* Restore, Step 63:
   1624	 *     Restore PM_Trace_Tag_Wait_Mask from CSA.
   1625	 *     Not performed by this implementation.
   1626	 */
   1627}
   1628
   1629static inline void restore_spu_npc(struct spu_state *csa, struct spu *spu)
   1630{
   1631	struct spu_problem __iomem *prob = spu->problem;
   1632
   1633	/* Restore, Step 64:
   1634	 *     Restore SPU_NPC from CSA.
   1635	 */
   1636	out_be32(&prob->spu_npc_RW, csa->prob.spu_npc_RW);
   1637	eieio();
   1638}
   1639
   1640static inline void restore_spu_mb(struct spu_state *csa, struct spu *spu)
   1641{
   1642	struct spu_priv2 __iomem *priv2 = spu->priv2;
   1643	int i;
   1644
   1645	/* Restore, Step 65:
   1646	 *     Restore MFC_RdSPU_MB from CSA.
   1647	 */
   1648	out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
   1649	eieio();
   1650	out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[29]);
   1651	for (i = 0; i < 4; i++) {
   1652		out_be64(&priv2->spu_chnldata_RW, csa->spu_mailbox_data[i]);
   1653	}
   1654	eieio();
   1655}
   1656
   1657static inline void check_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
   1658{
   1659	struct spu_problem __iomem *prob = spu->problem;
   1660
   1661	/* Restore, Step 66:
   1662	 *     If CSA.MB_Stat[P]=0 (mailbox empty) then
   1663	 *     read from the PPU_MB register.
   1664	 */
   1665	if ((csa->prob.mb_stat_R & 0xFF) == 0) {
   1666		in_be32(&prob->pu_mb_R);
   1667		eieio();
   1668	}
   1669}
   1670
   1671static inline void check_ppuint_mb_stat(struct spu_state *csa, struct spu *spu)
   1672{
   1673	struct spu_priv2 __iomem *priv2 = spu->priv2;
   1674
   1675	/* Restore, Step 66:
   1676	 *     If CSA.MB_Stat[I]=0 (mailbox empty) then
   1677	 *     read from the PPUINT_MB register.
   1678	 */
   1679	if ((csa->prob.mb_stat_R & 0xFF0000) == 0) {
   1680		in_be64(&priv2->puint_mb_R);
   1681		eieio();
   1682		spu_int_stat_clear(spu, 2, CLASS2_ENABLE_MAILBOX_INTR);
   1683		eieio();
   1684	}
   1685}
   1686
   1687static inline void restore_mfc_sr1(struct spu_state *csa, struct spu *spu)
   1688{
   1689	/* Restore, Step 69:
   1690	 *     Restore the MFC_SR1 register from CSA.
   1691	 */
   1692	spu_mfc_sr1_set(spu, csa->priv1.mfc_sr1_RW);
   1693	eieio();
   1694}
   1695
   1696static inline void set_int_route(struct spu_state *csa, struct spu *spu)
   1697{
   1698	struct spu_context *ctx = spu->ctx;
   1699
   1700	spu_cpu_affinity_set(spu, ctx->last_ran);
   1701}
   1702
   1703static inline void restore_other_spu_access(struct spu_state *csa,
   1704					    struct spu *spu)
   1705{
   1706	/* Restore, Step 70:
   1707	 *     Restore other SPU mappings to this SPU. TBD.
   1708	 */
   1709}
   1710
   1711static inline void restore_spu_runcntl(struct spu_state *csa, struct spu *spu)
   1712{
   1713	struct spu_problem __iomem *prob = spu->problem;
   1714
   1715	/* Restore, Step 71:
   1716	 *     If CSA.SPU_Status[R]=1 then write
   1717	 *     SPU_RunCntl[R0R1]='01'.
   1718	 */
   1719	if (csa->prob.spu_status_R & SPU_STATUS_RUNNING) {
   1720		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
   1721		eieio();
   1722	}
   1723}
   1724
   1725static inline void restore_mfc_cntl(struct spu_state *csa, struct spu *spu)
   1726{
   1727	struct spu_priv2 __iomem *priv2 = spu->priv2;
   1728
   1729	/* Restore, Step 72:
   1730	 *    Restore the MFC_CNTL register for the CSA.
   1731	 */
   1732	out_be64(&priv2->mfc_control_RW, csa->priv2.mfc_control_RW);
   1733	eieio();
   1734
   1735	/*
   1736	 * The queue is put back into the same state that was evident prior to
   1737	 * the context switch. The suspend flag is added to the saved state in
   1738	 * the csa, if the operational state was suspending or suspended. In
   1739	 * this case, the code that suspended the mfc is responsible for
   1740	 * continuing it. Note that SPE faults do not change the operational
   1741	 * state of the spu.
   1742	 */
   1743}
   1744
   1745static inline void enable_user_access(struct spu_state *csa, struct spu *spu)
   1746{
   1747	/* Restore, Step 73:
   1748	 *     Enable user-space access (if provided) to this
   1749	 *     SPU by mapping the virtual pages assigned to
   1750	 *     the SPU memory-mapped I/O (MMIO) for problem
   1751	 *     state. TBD.
   1752	 */
   1753}
   1754
   1755static inline void reset_switch_active(struct spu_state *csa, struct spu *spu)
   1756{
   1757	/* Restore, Step 74:
   1758	 *     Reset the "context switch active" flag.
   1759	 *     Not performed by this implementation.
   1760	 */
   1761}
   1762
   1763static inline void reenable_interrupts(struct spu_state *csa, struct spu *spu)
   1764{
   1765	/* Restore, Step 75:
   1766	 *     Re-enable SPU interrupts.
   1767	 */
   1768	spin_lock_irq(&spu->register_lock);
   1769	spu_int_mask_set(spu, 0, csa->priv1.int_mask_class0_RW);
   1770	spu_int_mask_set(spu, 1, csa->priv1.int_mask_class1_RW);
   1771	spu_int_mask_set(spu, 2, csa->priv1.int_mask_class2_RW);
   1772	spin_unlock_irq(&spu->register_lock);
   1773}
   1774
   1775static int quiece_spu(struct spu_state *prev, struct spu *spu)
   1776{
   1777	/*
   1778	 * Combined steps 2-18 of SPU context save sequence, which
   1779	 * quiesce the SPU state (disable SPU execution, MFC command
   1780	 * queues, decrementer, SPU interrupts, etc.).
   1781	 *
   1782	 * Returns      0 on success.
   1783	 *              2 if failed step 2.
   1784	 *              6 if failed step 6.
   1785	 */
   1786
   1787	if (check_spu_isolate(prev, spu)) {	/* Step 2. */
   1788		return 2;
   1789	}
   1790	disable_interrupts(prev, spu);	        /* Step 3. */
   1791	set_watchdog_timer(prev, spu);	        /* Step 4. */
   1792	inhibit_user_access(prev, spu);	        /* Step 5. */
   1793	if (check_spu_isolate(prev, spu)) {	/* Step 6. */
   1794		return 6;
   1795	}
   1796	set_switch_pending(prev, spu);	        /* Step 7. */
   1797	save_mfc_cntl(prev, spu);		/* Step 8. */
   1798	save_spu_runcntl(prev, spu);	        /* Step 9. */
   1799	save_mfc_sr1(prev, spu);	        /* Step 10. */
   1800	save_spu_status(prev, spu);	        /* Step 11. */
   1801	save_mfc_stopped_status(prev, spu);     /* Step 12. */
   1802	halt_mfc_decr(prev, spu);	        /* Step 13. */
   1803	save_timebase(prev, spu);		/* Step 14. */
   1804	remove_other_spu_access(prev, spu);	/* Step 15. */
   1805	do_mfc_mssync(prev, spu);	        /* Step 16. */
   1806	issue_mfc_tlbie(prev, spu);	        /* Step 17. */
   1807	handle_pending_interrupts(prev, spu);	/* Step 18. */
   1808
   1809	return 0;
   1810}
   1811
   1812static void save_csa(struct spu_state *prev, struct spu *spu)
   1813{
   1814	/*
   1815	 * Combine steps 19-44 of SPU context save sequence, which
   1816	 * save regions of the privileged & problem state areas.
   1817	 */
   1818
   1819	save_mfc_queues(prev, spu);	/* Step 19. */
   1820	save_ppu_querymask(prev, spu);	/* Step 20. */
   1821	save_ppu_querytype(prev, spu);	/* Step 21. */
   1822	save_ppu_tagstatus(prev, spu);  /* NEW.     */
   1823	save_mfc_csr_tsq(prev, spu);	/* Step 22. */
   1824	save_mfc_csr_cmd(prev, spu);	/* Step 23. */
   1825	save_mfc_csr_ato(prev, spu);	/* Step 24. */
   1826	save_mfc_tclass_id(prev, spu);	/* Step 25. */
   1827	set_mfc_tclass_id(prev, spu);	/* Step 26. */
   1828	save_mfc_cmd(prev, spu);	/* Step 26a - moved from 44. */
   1829	purge_mfc_queue(prev, spu);	/* Step 27. */
   1830	wait_purge_complete(prev, spu);	/* Step 28. */
   1831	setup_mfc_sr1(prev, spu);	/* Step 30. */
   1832	save_spu_npc(prev, spu);	/* Step 31. */
   1833	save_spu_privcntl(prev, spu);	/* Step 32. */
   1834	reset_spu_privcntl(prev, spu);	/* Step 33. */
   1835	save_spu_lslr(prev, spu);	/* Step 34. */
   1836	reset_spu_lslr(prev, spu);	/* Step 35. */
   1837	save_spu_cfg(prev, spu);	/* Step 36. */
   1838	save_pm_trace(prev, spu);	/* Step 37. */
   1839	save_mfc_rag(prev, spu);	/* Step 38. */
   1840	save_ppu_mb_stat(prev, spu);	/* Step 39. */
   1841	save_ppu_mb(prev, spu);	        /* Step 40. */
   1842	save_ppuint_mb(prev, spu);	/* Step 41. */
   1843	save_ch_part1(prev, spu);	/* Step 42. */
   1844	save_spu_mb(prev, spu);	        /* Step 43. */
   1845	reset_ch(prev, spu);	        /* Step 45. */
   1846}
   1847
   1848static void save_lscsa(struct spu_state *prev, struct spu *spu)
   1849{
   1850	/*
   1851	 * Perform steps 46-57 of SPU context save sequence,
   1852	 * which save regions of the local store and register
   1853	 * file.
   1854	 */
   1855
   1856	resume_mfc_queue(prev, spu);	/* Step 46. */
   1857	/* Step 47. */
   1858	setup_mfc_slbs(prev, spu, spu_save_code, sizeof(spu_save_code));
   1859	set_switch_active(prev, spu);	/* Step 48. */
   1860	enable_interrupts(prev, spu);	/* Step 49. */
   1861	save_ls_16kb(prev, spu);	/* Step 50. */
   1862	set_spu_npc(prev, spu);	        /* Step 51. */
   1863	set_signot1(prev, spu);		/* Step 52. */
   1864	set_signot2(prev, spu);		/* Step 53. */
   1865	send_save_code(prev, spu);	/* Step 54. */
   1866	set_ppu_querymask(prev, spu);	/* Step 55. */
   1867	wait_tag_complete(prev, spu);	/* Step 56. */
   1868	wait_spu_stopped(prev, spu);	/* Step 57. */
   1869}
   1870
   1871static void force_spu_isolate_exit(struct spu *spu)
   1872{
   1873	struct spu_problem __iomem *prob = spu->problem;
   1874	struct spu_priv2 __iomem *priv2 = spu->priv2;
   1875
   1876	/* Stop SPE execution and wait for completion. */
   1877	out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
   1878	iobarrier_rw();
   1879	POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
   1880
   1881	/* Restart SPE master runcntl. */
   1882	spu_mfc_sr1_set(spu, MFC_STATE1_MASTER_RUN_CONTROL_MASK);
   1883	iobarrier_w();
   1884
   1885	/* Initiate isolate exit request and wait for completion. */
   1886	out_be64(&priv2->spu_privcntl_RW, 4LL);
   1887	iobarrier_w();
   1888	out_be32(&prob->spu_runcntl_RW, 2);
   1889	iobarrier_rw();
   1890	POLL_WHILE_FALSE((in_be32(&prob->spu_status_R)
   1891				& SPU_STATUS_STOPPED_BY_STOP));
   1892
   1893	/* Reset load request to normal. */
   1894	out_be64(&priv2->spu_privcntl_RW, SPU_PRIVCNT_LOAD_REQUEST_NORMAL);
   1895	iobarrier_w();
   1896}
   1897
   1898/**
   1899 * stop_spu_isolate
   1900 *	Check SPU run-control state and force isolated
   1901 *	exit function as necessary.
   1902 */
   1903static void stop_spu_isolate(struct spu *spu)
   1904{
   1905	struct spu_problem __iomem *prob = spu->problem;
   1906
   1907	if (in_be32(&prob->spu_status_R) & SPU_STATUS_ISOLATED_STATE) {
   1908		/* The SPU is in isolated state; the only way
   1909		 * to get it out is to perform an isolated
   1910		 * exit (clean) operation.
   1911		 */
   1912		force_spu_isolate_exit(spu);
   1913	}
   1914}
   1915
   1916static void harvest(struct spu_state *prev, struct spu *spu)
   1917{
   1918	/*
   1919	 * Perform steps 2-25 of SPU context restore sequence,
   1920	 * which resets an SPU either after a failed save, or
   1921	 * when using SPU for first time.
   1922	 */
   1923
   1924	disable_interrupts(prev, spu);	        /* Step 2.  */
   1925	inhibit_user_access(prev, spu);	        /* Step 3.  */
   1926	terminate_spu_app(prev, spu);	        /* Step 4.  */
   1927	set_switch_pending(prev, spu);	        /* Step 5.  */
   1928	stop_spu_isolate(spu);			/* NEW.     */
   1929	remove_other_spu_access(prev, spu);	/* Step 6.  */
   1930	suspend_mfc_and_halt_decr(prev, spu);	/* Step 7.  */
   1931	wait_suspend_mfc_complete(prev, spu);	/* Step 8.  */
   1932	if (!suspend_spe(prev, spu))	        /* Step 9.  */
   1933		clear_spu_status(prev, spu);	/* Step 10. */
   1934	do_mfc_mssync(prev, spu);	        /* Step 11. */
   1935	issue_mfc_tlbie(prev, spu);	        /* Step 12. */
   1936	handle_pending_interrupts(prev, spu);	/* Step 13. */
   1937	purge_mfc_queue(prev, spu);	        /* Step 14. */
   1938	wait_purge_complete(prev, spu);	        /* Step 15. */
   1939	reset_spu_privcntl(prev, spu);	        /* Step 16. */
   1940	reset_spu_lslr(prev, spu);              /* Step 17. */
   1941	setup_mfc_sr1(prev, spu);	        /* Step 18. */
   1942	spu_invalidate_slbs(spu);		/* Step 19. */
   1943	reset_ch_part1(prev, spu);	        /* Step 20. */
   1944	reset_ch_part2(prev, spu);	        /* Step 21. */
   1945	enable_interrupts(prev, spu);	        /* Step 22. */
   1946	set_switch_active(prev, spu);	        /* Step 23. */
   1947	set_mfc_tclass_id(prev, spu);	        /* Step 24. */
   1948	resume_mfc_queue(prev, spu);	        /* Step 25. */
   1949}
   1950
   1951static void restore_lscsa(struct spu_state *next, struct spu *spu)
   1952{
   1953	/*
   1954	 * Perform steps 26-40 of SPU context restore sequence,
   1955	 * which restores regions of the local store and register
   1956	 * file.
   1957	 */
   1958
   1959	set_watchdog_timer(next, spu);	        /* Step 26. */
   1960	setup_spu_status_part1(next, spu);	/* Step 27. */
   1961	setup_spu_status_part2(next, spu);	/* Step 28. */
   1962	restore_mfc_rag(next, spu);	        /* Step 29. */
   1963	/* Step 30. */
   1964	setup_mfc_slbs(next, spu, spu_restore_code, sizeof(spu_restore_code));
   1965	set_spu_npc(next, spu);	                /* Step 31. */
   1966	set_signot1(next, spu);	                /* Step 32. */
   1967	set_signot2(next, spu);	                /* Step 33. */
   1968	setup_decr(next, spu);	                /* Step 34. */
   1969	setup_ppu_mb(next, spu);	        /* Step 35. */
   1970	setup_ppuint_mb(next, spu);	        /* Step 36. */
   1971	send_restore_code(next, spu);	        /* Step 37. */
   1972	set_ppu_querymask(next, spu);	        /* Step 38. */
   1973	wait_tag_complete(next, spu);	        /* Step 39. */
   1974	wait_spu_stopped(next, spu);	        /* Step 40. */
   1975}
   1976
   1977static void restore_csa(struct spu_state *next, struct spu *spu)
   1978{
   1979	/*
   1980	 * Combine steps 41-76 of SPU context restore sequence, which
   1981	 * restore regions of the privileged & problem state areas.
   1982	 */
   1983
   1984	restore_spu_privcntl(next, spu);	/* Step 41. */
   1985	restore_status_part1(next, spu);	/* Step 42. */
   1986	restore_status_part2(next, spu);	/* Step 43. */
   1987	restore_ls_16kb(next, spu);	        /* Step 44. */
   1988	wait_tag_complete(next, spu);	        /* Step 45. */
   1989	suspend_mfc(next, spu);	                /* Step 46. */
   1990	wait_suspend_mfc_complete(next, spu);	/* Step 47. */
   1991	issue_mfc_tlbie(next, spu);	        /* Step 48. */
   1992	clear_interrupts(next, spu);	        /* Step 49. */
   1993	restore_mfc_queues(next, spu);	        /* Step 50. */
   1994	restore_ppu_querymask(next, spu);	/* Step 51. */
   1995	restore_ppu_querytype(next, spu);	/* Step 52. */
   1996	restore_mfc_csr_tsq(next, spu);	        /* Step 53. */
   1997	restore_mfc_csr_cmd(next, spu);	        /* Step 54. */
   1998	restore_mfc_csr_ato(next, spu);	        /* Step 55. */
   1999	restore_mfc_tclass_id(next, spu);	/* Step 56. */
   2000	set_llr_event(next, spu);	        /* Step 57. */
   2001	restore_decr_wrapped(next, spu);	/* Step 58. */
   2002	restore_ch_part1(next, spu);	        /* Step 59. */
   2003	restore_ch_part2(next, spu);	        /* Step 60. */
   2004	restore_spu_lslr(next, spu);	        /* Step 61. */
   2005	restore_spu_cfg(next, spu);	        /* Step 62. */
   2006	restore_pm_trace(next, spu);	        /* Step 63. */
   2007	restore_spu_npc(next, spu);	        /* Step 64. */
   2008	restore_spu_mb(next, spu);	        /* Step 65. */
   2009	check_ppu_mb_stat(next, spu);	        /* Step 66. */
   2010	check_ppuint_mb_stat(next, spu);	/* Step 67. */
   2011	spu_invalidate_slbs(spu);		/* Modified Step 68. */
   2012	restore_mfc_sr1(next, spu);	        /* Step 69. */
   2013	set_int_route(next, spu);		/* NEW      */
   2014	restore_other_spu_access(next, spu);	/* Step 70. */
   2015	restore_spu_runcntl(next, spu);	        /* Step 71. */
   2016	restore_mfc_cntl(next, spu);	        /* Step 72. */
   2017	enable_user_access(next, spu);	        /* Step 73. */
   2018	reset_switch_active(next, spu);	        /* Step 74. */
   2019	reenable_interrupts(next, spu);	        /* Step 75. */
   2020}
   2021
   2022static int __do_spu_save(struct spu_state *prev, struct spu *spu)
   2023{
   2024	int rc;
   2025
   2026	/*
   2027	 * SPU context save can be broken into three phases:
   2028	 *
   2029	 *     (a) quiesce [steps 2-16].
   2030	 *     (b) save of CSA, performed by PPE [steps 17-42]
   2031	 *     (c) save of LSCSA, mostly performed by SPU [steps 43-52].
   2032	 *
   2033	 * Returns      0 on success.
   2034	 *              2,6 if failed to quiece SPU
   2035	 *              53 if SPU-side of save failed.
   2036	 */
   2037
   2038	rc = quiece_spu(prev, spu);	        /* Steps 2-16. */
   2039	switch (rc) {
   2040	default:
   2041	case 2:
   2042	case 6:
   2043		harvest(prev, spu);
   2044		return rc;
   2045		break;
   2046	case 0:
   2047		break;
   2048	}
   2049	save_csa(prev, spu);	                /* Steps 17-43. */
   2050	save_lscsa(prev, spu);	                /* Steps 44-53. */
   2051	return check_save_status(prev, spu);	/* Step 54.     */
   2052}
   2053
   2054static int __do_spu_restore(struct spu_state *next, struct spu *spu)
   2055{
   2056	int rc;
   2057
   2058	/*
   2059	 * SPU context restore can be broken into three phases:
   2060	 *
   2061	 *    (a) harvest (or reset) SPU [steps 2-24].
   2062	 *    (b) restore LSCSA [steps 25-40], mostly performed by SPU.
   2063	 *    (c) restore CSA [steps 41-76], performed by PPE.
   2064	 *
   2065	 * The 'harvest' step is not performed here, but rather
   2066	 * as needed below.
   2067	 */
   2068
   2069	restore_lscsa(next, spu);	        /* Steps 24-39. */
   2070	rc = check_restore_status(next, spu);	/* Step 40.     */
   2071	switch (rc) {
   2072	default:
   2073		/* Failed. Return now. */
   2074		return rc;
   2075		break;
   2076	case 0:
   2077		/* Fall through to next step. */
   2078		break;
   2079	}
   2080	restore_csa(next, spu);
   2081
   2082	return 0;
   2083}
   2084
   2085/**
   2086 * spu_save - SPU context save, with locking.
   2087 * @prev: pointer to SPU context save area, to be saved.
   2088 * @spu: pointer to SPU iomem structure.
   2089 *
   2090 * Acquire locks, perform the save operation then return.
   2091 */
   2092int spu_save(struct spu_state *prev, struct spu *spu)
   2093{
   2094	int rc;
   2095
   2096	acquire_spu_lock(spu);	        /* Step 1.     */
   2097	rc = __do_spu_save(prev, spu);	/* Steps 2-53. */
   2098	release_spu_lock(spu);
   2099	if (rc != 0 && rc != 2 && rc != 6) {
   2100		panic("%s failed on SPU[%d], rc=%d.\n",
   2101		      __func__, spu->number, rc);
   2102	}
   2103	return 0;
   2104}
   2105EXPORT_SYMBOL_GPL(spu_save);
   2106
   2107/**
   2108 * spu_restore - SPU context restore, with harvest and locking.
   2109 * @new: pointer to SPU context save area, to be restored.
   2110 * @spu: pointer to SPU iomem structure.
   2111 *
   2112 * Perform harvest + restore, as we may not be coming
   2113 * from a previous successful save operation, and the
   2114 * hardware state is unknown.
   2115 */
   2116int spu_restore(struct spu_state *new, struct spu *spu)
   2117{
   2118	int rc;
   2119
   2120	acquire_spu_lock(spu);
   2121	harvest(NULL, spu);
   2122	spu->slb_replace = 0;
   2123	rc = __do_spu_restore(new, spu);
   2124	release_spu_lock(spu);
   2125	if (rc) {
   2126		panic("%s failed on SPU[%d] rc=%d.\n",
   2127		       __func__, spu->number, rc);
   2128	}
   2129	return rc;
   2130}
   2131EXPORT_SYMBOL_GPL(spu_restore);
   2132
   2133static void init_prob(struct spu_state *csa)
   2134{
   2135	csa->spu_chnlcnt_RW[9] = 1;
   2136	csa->spu_chnlcnt_RW[21] = 16;
   2137	csa->spu_chnlcnt_RW[23] = 1;
   2138	csa->spu_chnlcnt_RW[28] = 1;
   2139	csa->spu_chnlcnt_RW[30] = 1;
   2140	csa->prob.spu_runcntl_RW = SPU_RUNCNTL_STOP;
   2141	csa->prob.mb_stat_R = 0x000400;
   2142}
   2143
   2144static void init_priv1(struct spu_state *csa)
   2145{
   2146	/* Enable decode, relocate, tlbie response, master runcntl. */
   2147	csa->priv1.mfc_sr1_RW = MFC_STATE1_LOCAL_STORAGE_DECODE_MASK |
   2148	    MFC_STATE1_MASTER_RUN_CONTROL_MASK |
   2149	    MFC_STATE1_PROBLEM_STATE_MASK |
   2150	    MFC_STATE1_RELOCATE_MASK | MFC_STATE1_BUS_TLBIE_MASK;
   2151
   2152	/* Enable OS-specific set of interrupts. */
   2153	csa->priv1.int_mask_class0_RW = CLASS0_ENABLE_DMA_ALIGNMENT_INTR |
   2154	    CLASS0_ENABLE_INVALID_DMA_COMMAND_INTR |
   2155	    CLASS0_ENABLE_SPU_ERROR_INTR;
   2156	csa->priv1.int_mask_class1_RW = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
   2157	    CLASS1_ENABLE_STORAGE_FAULT_INTR;
   2158	csa->priv1.int_mask_class2_RW = CLASS2_ENABLE_SPU_STOP_INTR |
   2159	    CLASS2_ENABLE_SPU_HALT_INTR |
   2160	    CLASS2_ENABLE_SPU_DMA_TAG_GROUP_COMPLETE_INTR;
   2161}
   2162
   2163static void init_priv2(struct spu_state *csa)
   2164{
   2165	csa->priv2.spu_lslr_RW = LS_ADDR_MASK;
   2166	csa->priv2.mfc_control_RW = MFC_CNTL_RESUME_DMA_QUEUE |
   2167	    MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION |
   2168	    MFC_CNTL_DMA_QUEUES_EMPTY_MASK;
   2169}
   2170
   2171/**
   2172 * spu_alloc_csa - allocate and initialize an SPU context save area.
   2173 *
   2174 * Allocate and initialize the contents of an SPU context save area.
   2175 * This includes enabling address translation, interrupt masks, etc.,
   2176 * as appropriate for the given OS environment.
   2177 *
   2178 * Note that storage for the 'lscsa' is allocated separately,
   2179 * as it is by far the largest of the context save regions,
   2180 * and may need to be pinned or otherwise specially aligned.
   2181 */
   2182int spu_init_csa(struct spu_state *csa)
   2183{
   2184	int rc;
   2185
   2186	if (!csa)
   2187		return -EINVAL;
   2188	memset(csa, 0, sizeof(struct spu_state));
   2189
   2190	rc = spu_alloc_lscsa(csa);
   2191	if (rc)
   2192		return rc;
   2193
   2194	spin_lock_init(&csa->register_lock);
   2195
   2196	init_prob(csa);
   2197	init_priv1(csa);
   2198	init_priv2(csa);
   2199
   2200	return 0;
   2201}
   2202
   2203void spu_fini_csa(struct spu_state *csa)
   2204{
   2205	spu_free_lscsa(csa);
   2206}