cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

pci.h (10444B)


      1/* SPDX-License-Identifier: GPL-2.0 */
      2#ifndef __POWERNV_PCI_H
      3#define __POWERNV_PCI_H
      4
      5#include <linux/compiler.h>		/* for __printf */
      6#include <linux/iommu.h>
      7#include <asm/iommu.h>
      8#include <asm/msi_bitmap.h>
      9
     10struct pci_dn;
     11
     12enum pnv_phb_type {
     13	PNV_PHB_IODA1,
     14	PNV_PHB_IODA2,
     15	PNV_PHB_NPU_OCAPI,
     16};
     17
     18/* Precise PHB model for error management */
     19enum pnv_phb_model {
     20	PNV_PHB_MODEL_UNKNOWN,
     21	PNV_PHB_MODEL_P7IOC,
     22	PNV_PHB_MODEL_PHB3,
     23};
     24
     25#define PNV_PCI_DIAG_BUF_SIZE	8192
     26#define PNV_IODA_PE_DEV		(1 << 0)	/* PE has single PCI device	*/
     27#define PNV_IODA_PE_BUS		(1 << 1)	/* PE has primary PCI bus	*/
     28#define PNV_IODA_PE_BUS_ALL	(1 << 2)	/* PE has subordinate buses	*/
     29#define PNV_IODA_PE_MASTER	(1 << 3)	/* Master PE in compound case	*/
     30#define PNV_IODA_PE_SLAVE	(1 << 4)	/* Slave PE in compound case	*/
     31#define PNV_IODA_PE_VF		(1 << 5)	/* PE for one VF 		*/
     32
     33/*
     34 * A brief note on PNV_IODA_PE_BUS_ALL
     35 *
     36 * This is needed because of the behaviour of PCIe-to-PCI bridges. The PHB uses
     37 * the Requester ID field of the PCIe request header to determine the device
     38 * (and PE) that initiated a DMA. In legacy PCI individual memory read/write
     39 * requests aren't tagged with the RID. To work around this the PCIe-to-PCI
     40 * bridge will use (secondary_bus_no << 8) | 0x00 as the RID on the PCIe side.
     41 *
     42 * PCIe-to-X bridges have a similar issue even though PCI-X requests also have
     43 * a RID in the transaction header. The PCIe-to-X bridge is permitted to "take
     44 * ownership" of a transaction by a PCI-X device when forwarding it to the PCIe
     45 * side of the bridge.
     46 *
     47 * To work around these problems we use the BUS_ALL flag since every subordinate
     48 * bus of the bridge should go into the same PE.
     49 */
     50
     51/* Indicates operations are frozen for a PE: MMIO in PESTA & DMA in PESTB. */
     52#define PNV_IODA_STOPPED_STATE	0x8000000000000000
     53
     54/* Data associated with a PE, including IOMMU tracking etc.. */
     55struct pnv_phb;
     56struct pnv_ioda_pe {
     57	unsigned long		flags;
     58	struct pnv_phb		*phb;
     59	int			device_count;
     60
     61	/* A PE can be associated with a single device or an
     62	 * entire bus (& children). In the former case, pdev
     63	 * is populated, in the later case, pbus is.
     64	 */
     65#ifdef CONFIG_PCI_IOV
     66	struct pci_dev          *parent_dev;
     67#endif
     68	struct pci_dev		*pdev;
     69	struct pci_bus		*pbus;
     70
     71	/* Effective RID (device RID for a device PE and base bus
     72	 * RID with devfn 0 for a bus PE)
     73	 */
     74	unsigned int		rid;
     75
     76	/* PE number */
     77	unsigned int		pe_number;
     78
     79	/* "Base" iommu table, ie, 4K TCEs, 32-bit DMA */
     80	struct iommu_table_group table_group;
     81
     82	/* 64-bit TCE bypass region */
     83	bool			tce_bypass_enabled;
     84	uint64_t		tce_bypass_base;
     85
     86	/*
     87	 * Used to track whether we've done DMA setup for this PE or not. We
     88	 * want to defer allocating TCE tables, etc until we've added a
     89	 * non-bridge device to the PE.
     90	 */
     91	bool			dma_setup_done;
     92
     93	/* MSIs. MVE index is identical for 32 and 64 bit MSI
     94	 * and -1 if not supported. (It's actually identical to the
     95	 * PE number)
     96	 */
     97	int			mve_number;
     98
     99	/* PEs in compound case */
    100	struct pnv_ioda_pe	*master;
    101	struct list_head	slaves;
    102
    103	/* Link in list of PE#s */
    104	struct list_head	list;
    105};
    106
    107#define PNV_PHB_FLAG_EEH	(1 << 0)
    108
    109struct pnv_phb {
    110	struct pci_controller	*hose;
    111	enum pnv_phb_type	type;
    112	enum pnv_phb_model	model;
    113	u64			hub_id;
    114	u64			opal_id;
    115	int			flags;
    116	void __iomem		*regs;
    117	u64			regs_phys;
    118	spinlock_t		lock;
    119
    120#ifdef CONFIG_DEBUG_FS
    121	int			has_dbgfs;
    122	struct dentry		*dbgfs;
    123#endif
    124
    125	unsigned int		msi_base;
    126	struct msi_bitmap	msi_bmp;
    127	int (*init_m64)(struct pnv_phb *phb);
    128	int (*get_pe_state)(struct pnv_phb *phb, int pe_no);
    129	void (*freeze_pe)(struct pnv_phb *phb, int pe_no);
    130	int (*unfreeze_pe)(struct pnv_phb *phb, int pe_no, int opt);
    131
    132	struct {
    133		/* Global bridge info */
    134		unsigned int		total_pe_num;
    135		unsigned int		reserved_pe_idx;
    136		unsigned int		root_pe_idx;
    137
    138		/* 32-bit MMIO window */
    139		unsigned int		m32_size;
    140		unsigned int		m32_segsize;
    141		unsigned int		m32_pci_base;
    142
    143		/* 64-bit MMIO window */
    144		unsigned int		m64_bar_idx;
    145		unsigned long		m64_size;
    146		unsigned long		m64_segsize;
    147		unsigned long		m64_base;
    148#define MAX_M64_BARS 64
    149		unsigned long		m64_bar_alloc;
    150
    151		/* IO ports */
    152		unsigned int		io_size;
    153		unsigned int		io_segsize;
    154		unsigned int		io_pci_base;
    155
    156		/* PE allocation */
    157		struct mutex		pe_alloc_mutex;
    158		unsigned long		*pe_alloc;
    159		struct pnv_ioda_pe	*pe_array;
    160
    161		/* M32 & IO segment maps */
    162		unsigned int		*m64_segmap;
    163		unsigned int		*m32_segmap;
    164		unsigned int		*io_segmap;
    165
    166		/* DMA32 segment maps - IODA1 only */
    167		unsigned int		dma32_count;
    168		unsigned int		*dma32_segmap;
    169
    170		/* IRQ chip */
    171		int			irq_chip_init;
    172		struct irq_chip		irq_chip;
    173
    174		/* Sorted list of used PE's based
    175		 * on the sequence of creation
    176		 */
    177		struct list_head	pe_list;
    178		struct mutex            pe_list_mutex;
    179
    180		/* Reverse map of PEs, indexed by {bus, devfn} */
    181		unsigned int		pe_rmap[0x10000];
    182	} ioda;
    183
    184	/* PHB and hub diagnostics */
    185	unsigned int		diag_data_size;
    186	u8			*diag_data;
    187};
    188
    189
    190/* IODA PE management */
    191
    192static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r)
    193{
    194	/*
    195	 * WARNING: We cannot rely on the resource flags. The Linux PCI
    196	 * allocation code sometimes decides to put a 64-bit prefetchable
    197	 * BAR in the 32-bit window, so we have to compare the addresses.
    198	 *
    199	 * For simplicity we only test resource start.
    200	 */
    201	return (r->start >= phb->ioda.m64_base &&
    202		r->start < (phb->ioda.m64_base + phb->ioda.m64_size));
    203}
    204
    205static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags)
    206{
    207	unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
    208
    209	return (resource_flags & flags) == flags;
    210}
    211
    212int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe);
    213int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe);
    214
    215void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe);
    216void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe);
    217
    218struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb, int count);
    219void pnv_ioda_free_pe(struct pnv_ioda_pe *pe);
    220
    221#ifdef CONFIG_PCI_IOV
    222/*
    223 * For SR-IOV we want to put each VF's MMIO resource in to a separate PE.
    224 * This requires a bit of acrobatics with the MMIO -> PE configuration
    225 * and this structure is used to keep track of it all.
    226 */
    227struct pnv_iov_data {
    228	/* number of VFs enabled */
    229	u16     num_vfs;
    230
    231	/* pointer to the array of VF PEs. num_vfs long*/
    232	struct pnv_ioda_pe *vf_pe_arr;
    233
    234	/* Did we map the VF BAR with single-PE IODA BARs? */
    235	bool    m64_single_mode[PCI_SRIOV_NUM_BARS];
    236
    237	/*
    238	 * True if we're using any segmented windows. In that case we need
    239	 * shift the start of the IOV resource the segment corresponding to
    240	 * the allocated PE.
    241	 */
    242	bool    need_shift;
    243
    244	/*
    245	 * Bit mask used to track which m64 windows are used to map the
    246	 * SR-IOV BARs for this device.
    247	 */
    248	DECLARE_BITMAP(used_m64_bar_mask, MAX_M64_BARS);
    249
    250	/*
    251	 * If we map the SR-IOV BARs with a segmented window then
    252	 * parts of that window will be "claimed" by other PEs.
    253	 *
    254	 * "holes" here is used to reserve the leading portion
    255	 * of the window that is used by other (non VF) PEs.
    256	 */
    257	struct resource holes[PCI_SRIOV_NUM_BARS];
    258};
    259
    260static inline struct pnv_iov_data *pnv_iov_get(struct pci_dev *pdev)
    261{
    262	return pdev->dev.archdata.iov_data;
    263}
    264
    265void pnv_pci_ioda_fixup_iov(struct pci_dev *pdev);
    266resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev, int resno);
    267
    268int pnv_pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs);
    269int pnv_pcibios_sriov_disable(struct pci_dev *pdev);
    270#endif /* CONFIG_PCI_IOV */
    271
    272extern struct pci_ops pnv_pci_ops;
    273
    274void pnv_pci_dump_phb_diag_data(struct pci_controller *hose,
    275				unsigned char *log_buff);
    276int pnv_pci_cfg_read(struct pci_dn *pdn,
    277		     int where, int size, u32 *val);
    278int pnv_pci_cfg_write(struct pci_dn *pdn,
    279		      int where, int size, u32 val);
    280extern struct iommu_table *pnv_pci_table_alloc(int nid);
    281
    282extern void pnv_pci_init_ioda_hub(struct device_node *np);
    283extern void pnv_pci_init_ioda2_phb(struct device_node *np);
    284extern void pnv_pci_init_npu2_opencapi_phb(struct device_node *np);
    285extern void pnv_pci_reset_secondary_bus(struct pci_dev *dev);
    286extern int pnv_eeh_phb_reset(struct pci_controller *hose, int option);
    287
    288extern struct pnv_ioda_pe *pnv_pci_bdfn_to_pe(struct pnv_phb *phb, u16 bdfn);
    289extern struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev);
    290extern void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq);
    291extern unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
    292		__u64 window_size, __u32 levels);
    293extern int pnv_eeh_post_init(void);
    294
    295__printf(3, 4)
    296extern void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
    297			    const char *fmt, ...);
    298#define pe_err(pe, fmt, ...)					\
    299	pe_level_printk(pe, KERN_ERR, fmt, ##__VA_ARGS__)
    300#define pe_warn(pe, fmt, ...)					\
    301	pe_level_printk(pe, KERN_WARNING, fmt, ##__VA_ARGS__)
    302#define pe_info(pe, fmt, ...)					\
    303	pe_level_printk(pe, KERN_INFO, fmt, ##__VA_ARGS__)
    304
    305/* pci-ioda-tce.c */
    306#define POWERNV_IOMMU_DEFAULT_LEVELS	2
    307#define POWERNV_IOMMU_MAX_LEVELS	5
    308
    309extern int pnv_tce_build(struct iommu_table *tbl, long index, long npages,
    310		unsigned long uaddr, enum dma_data_direction direction,
    311		unsigned long attrs);
    312extern void pnv_tce_free(struct iommu_table *tbl, long index, long npages);
    313extern int pnv_tce_xchg(struct iommu_table *tbl, long index,
    314		unsigned long *hpa, enum dma_data_direction *direction);
    315extern __be64 *pnv_tce_useraddrptr(struct iommu_table *tbl, long index,
    316		bool alloc);
    317extern unsigned long pnv_tce_get(struct iommu_table *tbl, long index);
    318
    319extern long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
    320		__u32 page_shift, __u64 window_size, __u32 levels,
    321		bool alloc_userspace_copy, struct iommu_table *tbl);
    322extern void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);
    323
    324extern long pnv_pci_link_table_and_group(int node, int num,
    325		struct iommu_table *tbl,
    326		struct iommu_table_group *table_group);
    327extern void pnv_pci_unlink_table_and_group(struct iommu_table *tbl,
    328		struct iommu_table_group *table_group);
    329extern void pnv_pci_setup_iommu_table(struct iommu_table *tbl,
    330		void *tce_mem, u64 tce_size,
    331		u64 dma_offset, unsigned int page_shift);
    332
    333extern unsigned long pnv_ioda_parse_tce_sizes(struct pnv_phb *phb);
    334
    335static inline struct pnv_phb *pci_bus_to_pnvhb(struct pci_bus *bus)
    336{
    337	struct pci_controller *hose = bus->sysdata;
    338
    339	if (hose)
    340		return hose->private_data;
    341
    342	return NULL;
    343}
    344
    345#endif /* __POWERNV_PCI_H */