cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

ras.c (24501B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * Copyright (C) 2001 Dave Engebretsen IBM Corporation
      4 */
      5
      6#include <linux/sched.h>
      7#include <linux/interrupt.h>
      8#include <linux/irq.h>
      9#include <linux/of.h>
     10#include <linux/fs.h>
     11#include <linux/reboot.h>
     12#include <linux/irq_work.h>
     13
     14#include <asm/machdep.h>
     15#include <asm/rtas.h>
     16#include <asm/firmware.h>
     17#include <asm/mce.h>
     18
     19#include "pseries.h"
     20
     21static unsigned char ras_log_buf[RTAS_ERROR_LOG_MAX];
     22static DEFINE_SPINLOCK(ras_log_buf_lock);
     23
     24static int ras_check_exception_token;
     25
     26#define EPOW_SENSOR_TOKEN	9
     27#define EPOW_SENSOR_INDEX	0
     28
     29/* EPOW events counter variable */
     30static int num_epow_events;
     31
     32static irqreturn_t ras_hotplug_interrupt(int irq, void *dev_id);
     33static irqreturn_t ras_epow_interrupt(int irq, void *dev_id);
     34static irqreturn_t ras_error_interrupt(int irq, void *dev_id);
     35
     36/* RTAS pseries MCE errorlog section. */
     37struct pseries_mc_errorlog {
     38	__be32	fru_id;
     39	__be32	proc_id;
     40	u8	error_type;
     41	/*
     42	 * sub_err_type (1 byte). Bit fields depends on error_type
     43	 *
     44	 *   MSB0
     45	 *   |
     46	 *   V
     47	 *   01234567
     48	 *   XXXXXXXX
     49	 *
     50	 * For error_type == MC_ERROR_TYPE_UE
     51	 *   XXXXXXXX
     52	 *   X		1: Permanent or Transient UE.
     53	 *    X		1: Effective address provided.
     54	 *     X	1: Logical address provided.
     55	 *      XX	2: Reserved.
     56	 *        XXX	3: Type of UE error.
     57	 *
     58	 * For error_type == MC_ERROR_TYPE_SLB/ERAT/TLB
     59	 *   XXXXXXXX
     60	 *   X		1: Effective address provided.
     61	 *    XXXXX	5: Reserved.
     62	 *         XX	2: Type of SLB/ERAT/TLB error.
     63	 *
     64	 * For error_type == MC_ERROR_TYPE_CTRL_MEM_ACCESS
     65	 *   XXXXXXXX
     66	 *   X		1: Error causing address provided.
     67	 *    XXX	3: Type of error.
     68	 *       XXXX	4: Reserved.
     69	 */
     70	u8	sub_err_type;
     71	u8	reserved_1[6];
     72	__be64	effective_address;
     73	__be64	logical_address;
     74} __packed;
     75
     76/* RTAS pseries MCE error types */
     77#define MC_ERROR_TYPE_UE		0x00
     78#define MC_ERROR_TYPE_SLB		0x01
     79#define MC_ERROR_TYPE_ERAT		0x02
     80#define MC_ERROR_TYPE_UNKNOWN		0x03
     81#define MC_ERROR_TYPE_TLB		0x04
     82#define MC_ERROR_TYPE_D_CACHE		0x05
     83#define MC_ERROR_TYPE_I_CACHE		0x07
     84#define MC_ERROR_TYPE_CTRL_MEM_ACCESS	0x08
     85
     86/* RTAS pseries MCE error sub types */
     87#define MC_ERROR_UE_INDETERMINATE		0
     88#define MC_ERROR_UE_IFETCH			1
     89#define MC_ERROR_UE_PAGE_TABLE_WALK_IFETCH	2
     90#define MC_ERROR_UE_LOAD_STORE			3
     91#define MC_ERROR_UE_PAGE_TABLE_WALK_LOAD_STORE	4
     92
     93#define UE_EFFECTIVE_ADDR_PROVIDED		0x40
     94#define UE_LOGICAL_ADDR_PROVIDED		0x20
     95#define MC_EFFECTIVE_ADDR_PROVIDED		0x80
     96
     97#define MC_ERROR_SLB_PARITY		0
     98#define MC_ERROR_SLB_MULTIHIT		1
     99#define MC_ERROR_SLB_INDETERMINATE	2
    100
    101#define MC_ERROR_ERAT_PARITY		1
    102#define MC_ERROR_ERAT_MULTIHIT		2
    103#define MC_ERROR_ERAT_INDETERMINATE	3
    104
    105#define MC_ERROR_TLB_PARITY		1
    106#define MC_ERROR_TLB_MULTIHIT		2
    107#define MC_ERROR_TLB_INDETERMINATE	3
    108
    109#define MC_ERROR_CTRL_MEM_ACCESS_PTABLE_WALK	0
    110#define MC_ERROR_CTRL_MEM_ACCESS_OP_ACCESS	1
    111
    112static inline u8 rtas_mc_error_sub_type(const struct pseries_mc_errorlog *mlog)
    113{
    114	switch (mlog->error_type) {
    115	case	MC_ERROR_TYPE_UE:
    116		return (mlog->sub_err_type & 0x07);
    117	case	MC_ERROR_TYPE_SLB:
    118	case	MC_ERROR_TYPE_ERAT:
    119	case	MC_ERROR_TYPE_TLB:
    120		return (mlog->sub_err_type & 0x03);
    121	case	MC_ERROR_TYPE_CTRL_MEM_ACCESS:
    122		return (mlog->sub_err_type & 0x70) >> 4;
    123	default:
    124		return 0;
    125	}
    126}
    127
    128/*
    129 * Enable the hotplug interrupt late because processing them may touch other
    130 * devices or systems (e.g. hugepages) that have not been initialized at the
    131 * subsys stage.
    132 */
    133static int __init init_ras_hotplug_IRQ(void)
    134{
    135	struct device_node *np;
    136
    137	/* Hotplug Events */
    138	np = of_find_node_by_path("/event-sources/hot-plug-events");
    139	if (np != NULL) {
    140		if (dlpar_workqueue_init() == 0)
    141			request_event_sources_irqs(np, ras_hotplug_interrupt,
    142						   "RAS_HOTPLUG");
    143		of_node_put(np);
    144	}
    145
    146	return 0;
    147}
    148machine_late_initcall(pseries, init_ras_hotplug_IRQ);
    149
    150/*
    151 * Initialize handlers for the set of interrupts caused by hardware errors
    152 * and power system events.
    153 */
    154static int __init init_ras_IRQ(void)
    155{
    156	struct device_node *np;
    157
    158	ras_check_exception_token = rtas_token("check-exception");
    159
    160	/* Internal Errors */
    161	np = of_find_node_by_path("/event-sources/internal-errors");
    162	if (np != NULL) {
    163		request_event_sources_irqs(np, ras_error_interrupt,
    164					   "RAS_ERROR");
    165		of_node_put(np);
    166	}
    167
    168	/* EPOW Events */
    169	np = of_find_node_by_path("/event-sources/epow-events");
    170	if (np != NULL) {
    171		request_event_sources_irqs(np, ras_epow_interrupt, "RAS_EPOW");
    172		of_node_put(np);
    173	}
    174
    175	return 0;
    176}
    177machine_subsys_initcall(pseries, init_ras_IRQ);
    178
    179#define EPOW_SHUTDOWN_NORMAL				1
    180#define EPOW_SHUTDOWN_ON_UPS				2
    181#define EPOW_SHUTDOWN_LOSS_OF_CRITICAL_FUNCTIONS	3
    182#define EPOW_SHUTDOWN_AMBIENT_TEMPERATURE_TOO_HIGH	4
    183
    184static void handle_system_shutdown(char event_modifier)
    185{
    186	switch (event_modifier) {
    187	case EPOW_SHUTDOWN_NORMAL:
    188		pr_emerg("Power off requested\n");
    189		orderly_poweroff(true);
    190		break;
    191
    192	case EPOW_SHUTDOWN_ON_UPS:
    193		pr_emerg("Loss of system power detected. System is running on"
    194			 " UPS/battery. Check RTAS error log for details\n");
    195		break;
    196
    197	case EPOW_SHUTDOWN_LOSS_OF_CRITICAL_FUNCTIONS:
    198		pr_emerg("Loss of system critical functions detected. Check"
    199			 " RTAS error log for details\n");
    200		orderly_poweroff(true);
    201		break;
    202
    203	case EPOW_SHUTDOWN_AMBIENT_TEMPERATURE_TOO_HIGH:
    204		pr_emerg("High ambient temperature detected. Check RTAS"
    205			 " error log for details\n");
    206		orderly_poweroff(true);
    207		break;
    208
    209	default:
    210		pr_err("Unknown power/cooling shutdown event (modifier = %d)\n",
    211			event_modifier);
    212	}
    213}
    214
    215struct epow_errorlog {
    216	unsigned char sensor_value;
    217	unsigned char event_modifier;
    218	unsigned char extended_modifier;
    219	unsigned char reserved;
    220	unsigned char platform_reason;
    221};
    222
    223#define EPOW_RESET			0
    224#define EPOW_WARN_COOLING		1
    225#define EPOW_WARN_POWER			2
    226#define EPOW_SYSTEM_SHUTDOWN		3
    227#define EPOW_SYSTEM_HALT		4
    228#define EPOW_MAIN_ENCLOSURE		5
    229#define EPOW_POWER_OFF			7
    230
    231static void rtas_parse_epow_errlog(struct rtas_error_log *log)
    232{
    233	struct pseries_errorlog *pseries_log;
    234	struct epow_errorlog *epow_log;
    235	char action_code;
    236	char modifier;
    237
    238	pseries_log = get_pseries_errorlog(log, PSERIES_ELOG_SECT_ID_EPOW);
    239	if (pseries_log == NULL)
    240		return;
    241
    242	epow_log = (struct epow_errorlog *)pseries_log->data;
    243	action_code = epow_log->sensor_value & 0xF;	/* bottom 4 bits */
    244	modifier = epow_log->event_modifier & 0xF;	/* bottom 4 bits */
    245
    246	switch (action_code) {
    247	case EPOW_RESET:
    248		if (num_epow_events) {
    249			pr_info("Non critical power/cooling issue cleared\n");
    250			num_epow_events--;
    251		}
    252		break;
    253
    254	case EPOW_WARN_COOLING:
    255		pr_info("Non-critical cooling issue detected. Check RTAS error"
    256			" log for details\n");
    257		break;
    258
    259	case EPOW_WARN_POWER:
    260		pr_info("Non-critical power issue detected. Check RTAS error"
    261			" log for details\n");
    262		break;
    263
    264	case EPOW_SYSTEM_SHUTDOWN:
    265		handle_system_shutdown(modifier);
    266		break;
    267
    268	case EPOW_SYSTEM_HALT:
    269		pr_emerg("Critical power/cooling issue detected. Check RTAS"
    270			 " error log for details. Powering off.\n");
    271		orderly_poweroff(true);
    272		break;
    273
    274	case EPOW_MAIN_ENCLOSURE:
    275	case EPOW_POWER_OFF:
    276		pr_emerg("System about to lose power. Check RTAS error log "
    277			 " for details. Powering off immediately.\n");
    278		emergency_sync();
    279		kernel_power_off();
    280		break;
    281
    282	default:
    283		pr_err("Unknown power/cooling event (action code  = %d)\n",
    284			action_code);
    285	}
    286
    287	/* Increment epow events counter variable */
    288	if (action_code != EPOW_RESET)
    289		num_epow_events++;
    290}
    291
    292static irqreturn_t ras_hotplug_interrupt(int irq, void *dev_id)
    293{
    294	struct pseries_errorlog *pseries_log;
    295	struct pseries_hp_errorlog *hp_elog;
    296
    297	spin_lock(&ras_log_buf_lock);
    298
    299	rtas_call(ras_check_exception_token, 6, 1, NULL,
    300		  RTAS_VECTOR_EXTERNAL_INTERRUPT, virq_to_hw(irq),
    301		  RTAS_HOTPLUG_EVENTS, 0, __pa(&ras_log_buf),
    302		  rtas_get_error_log_max());
    303
    304	pseries_log = get_pseries_errorlog((struct rtas_error_log *)ras_log_buf,
    305					   PSERIES_ELOG_SECT_ID_HOTPLUG);
    306	hp_elog = (struct pseries_hp_errorlog *)pseries_log->data;
    307
    308	/*
    309	 * Since PCI hotplug is not currently supported on pseries, put PCI
    310	 * hotplug events on the ras_log_buf to be handled by rtas_errd.
    311	 */
    312	if (hp_elog->resource == PSERIES_HP_ELOG_RESOURCE_MEM ||
    313	    hp_elog->resource == PSERIES_HP_ELOG_RESOURCE_CPU ||
    314	    hp_elog->resource == PSERIES_HP_ELOG_RESOURCE_PMEM)
    315		queue_hotplug_event(hp_elog);
    316	else
    317		log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0);
    318
    319	spin_unlock(&ras_log_buf_lock);
    320	return IRQ_HANDLED;
    321}
    322
    323/* Handle environmental and power warning (EPOW) interrupts. */
    324static irqreturn_t ras_epow_interrupt(int irq, void *dev_id)
    325{
    326	int state;
    327	int critical;
    328
    329	rtas_get_sensor_fast(EPOW_SENSOR_TOKEN, EPOW_SENSOR_INDEX, &state);
    330
    331	if (state > 3)
    332		critical = 1;		/* Time Critical */
    333	else
    334		critical = 0;
    335
    336	spin_lock(&ras_log_buf_lock);
    337
    338	rtas_call(ras_check_exception_token, 6, 1, NULL, RTAS_VECTOR_EXTERNAL_INTERRUPT,
    339		  virq_to_hw(irq), RTAS_EPOW_WARNING, critical, __pa(&ras_log_buf),
    340		  rtas_get_error_log_max());
    341
    342	log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0);
    343
    344	rtas_parse_epow_errlog((struct rtas_error_log *)ras_log_buf);
    345
    346	spin_unlock(&ras_log_buf_lock);
    347	return IRQ_HANDLED;
    348}
    349
    350/*
    351 * Handle hardware error interrupts.
    352 *
    353 * RTAS check-exception is called to collect data on the exception.  If
    354 * the error is deemed recoverable, we log a warning and return.
    355 * For nonrecoverable errors, an error is logged and we stop all processing
    356 * as quickly as possible in order to prevent propagation of the failure.
    357 */
    358static irqreturn_t ras_error_interrupt(int irq, void *dev_id)
    359{
    360	struct rtas_error_log *rtas_elog;
    361	int status;
    362	int fatal;
    363
    364	spin_lock(&ras_log_buf_lock);
    365
    366	status = rtas_call(ras_check_exception_token, 6, 1, NULL,
    367			   RTAS_VECTOR_EXTERNAL_INTERRUPT,
    368			   virq_to_hw(irq),
    369			   RTAS_INTERNAL_ERROR, 1 /* Time Critical */,
    370			   __pa(&ras_log_buf),
    371				rtas_get_error_log_max());
    372
    373	rtas_elog = (struct rtas_error_log *)ras_log_buf;
    374
    375	if (status == 0 &&
    376	    rtas_error_severity(rtas_elog) >= RTAS_SEVERITY_ERROR_SYNC)
    377		fatal = 1;
    378	else
    379		fatal = 0;
    380
    381	/* format and print the extended information */
    382	log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, fatal);
    383
    384	if (fatal) {
    385		pr_emerg("Fatal hardware error detected. Check RTAS error"
    386			 " log for details. Powering off immediately\n");
    387		emergency_sync();
    388		kernel_power_off();
    389	} else {
    390		pr_err("Recoverable hardware error detected\n");
    391	}
    392
    393	spin_unlock(&ras_log_buf_lock);
    394	return IRQ_HANDLED;
    395}
    396
    397/*
    398 * Some versions of FWNMI place the buffer inside the 4kB page starting at
    399 * 0x7000. Other versions place it inside the rtas buffer. We check both.
    400 * Minimum size of the buffer is 16 bytes.
    401 */
    402#define VALID_FWNMI_BUFFER(A) \
    403	((((A) >= 0x7000) && ((A) <= 0x8000 - 16)) || \
    404	(((A) >= rtas.base) && ((A) <= (rtas.base + rtas.size - 16))))
    405
    406static inline struct rtas_error_log *fwnmi_get_errlog(void)
    407{
    408	return (struct rtas_error_log *)local_paca->mce_data_buf;
    409}
    410
    411static __be64 *fwnmi_get_savep(struct pt_regs *regs)
    412{
    413	unsigned long savep_ra;
    414
    415	/* Mask top two bits */
    416	savep_ra = regs->gpr[3] & ~(0x3UL << 62);
    417	if (!VALID_FWNMI_BUFFER(savep_ra)) {
    418		printk(KERN_ERR "FWNMI: corrupt r3 0x%016lx\n", regs->gpr[3]);
    419		return NULL;
    420	}
    421
    422	return __va(savep_ra);
    423}
    424
    425/*
    426 * Get the error information for errors coming through the
    427 * FWNMI vectors.  The pt_regs' r3 will be updated to reflect
    428 * the actual r3 if possible, and a ptr to the error log entry
    429 * will be returned if found.
    430 *
    431 * Use one buffer mce_data_buf per cpu to store RTAS error.
    432 *
    433 * The mce_data_buf does not have any locks or protection around it,
    434 * if a second machine check comes in, or a system reset is done
    435 * before we have logged the error, then we will get corruption in the
    436 * error log.  This is preferable over holding off on calling
    437 * ibm,nmi-interlock which would result in us checkstopping if a
    438 * second machine check did come in.
    439 */
    440static struct rtas_error_log *fwnmi_get_errinfo(struct pt_regs *regs)
    441{
    442	struct rtas_error_log *h;
    443	__be64 *savep;
    444
    445	savep = fwnmi_get_savep(regs);
    446	if (!savep)
    447		return NULL;
    448
    449	regs->gpr[3] = be64_to_cpu(savep[0]); /* restore original r3 */
    450
    451	h = (struct rtas_error_log *)&savep[1];
    452	/* Use the per cpu buffer from paca to store rtas error log */
    453	memset(local_paca->mce_data_buf, 0, RTAS_ERROR_LOG_MAX);
    454	if (!rtas_error_extended(h)) {
    455		memcpy(local_paca->mce_data_buf, h, sizeof(__u64));
    456	} else {
    457		int len, error_log_length;
    458
    459		error_log_length = 8 + rtas_error_extended_log_length(h);
    460		len = min_t(int, error_log_length, RTAS_ERROR_LOG_MAX);
    461		memcpy(local_paca->mce_data_buf, h, len);
    462	}
    463
    464	return (struct rtas_error_log *)local_paca->mce_data_buf;
    465}
    466
    467/* Call this when done with the data returned by FWNMI_get_errinfo.
    468 * It will release the saved data area for other CPUs in the
    469 * partition to receive FWNMI errors.
    470 */
    471static void fwnmi_release_errinfo(void)
    472{
    473	struct rtas_args rtas_args;
    474	int ret;
    475
    476	/*
    477	 * On pseries, the machine check stack is limited to under 4GB, so
    478	 * args can be on-stack.
    479	 */
    480	rtas_call_unlocked(&rtas_args, ibm_nmi_interlock_token, 0, 1, NULL);
    481	ret = be32_to_cpu(rtas_args.rets[0]);
    482	if (ret != 0)
    483		printk(KERN_ERR "FWNMI: nmi-interlock failed: %d\n", ret);
    484}
    485
    486int pSeries_system_reset_exception(struct pt_regs *regs)
    487{
    488#ifdef __LITTLE_ENDIAN__
    489	/*
    490	 * Some firmware byteswaps SRR registers and gives incorrect SRR1. Try
    491	 * to detect the bad SRR1 pattern here. Flip the NIP back to correct
    492	 * endian for reporting purposes. Unfortunately the MSR can't be fixed,
    493	 * so clear it. It will be missing MSR_RI so we won't try to recover.
    494	 */
    495	if ((be64_to_cpu(regs->msr) &
    496			(MSR_LE|MSR_RI|MSR_DR|MSR_IR|MSR_ME|MSR_PR|
    497			 MSR_ILE|MSR_HV|MSR_SF)) == (MSR_DR|MSR_SF)) {
    498		regs_set_return_ip(regs, be64_to_cpu((__be64)regs->nip));
    499		regs_set_return_msr(regs, 0);
    500	}
    501#endif
    502
    503	if (fwnmi_active) {
    504		__be64 *savep;
    505
    506		/*
    507		 * Firmware (PowerVM and KVM) saves r3 to a save area like
    508		 * machine check, which is not exactly what PAPR (2.9)
    509		 * suggests but there is no way to detect otherwise, so this
    510		 * is the interface now.
    511		 *
    512		 * System resets do not save any error log or require an
    513		 * "ibm,nmi-interlock" rtas call to release.
    514		 */
    515
    516		savep = fwnmi_get_savep(regs);
    517		if (savep)
    518			regs->gpr[3] = be64_to_cpu(savep[0]); /* restore original r3 */
    519	}
    520
    521	if (smp_handle_nmi_ipi(regs))
    522		return 1;
    523
    524	return 0; /* need to perform reset */
    525}
    526
    527static int mce_handle_err_realmode(int disposition, u8 error_type)
    528{
    529#ifdef CONFIG_PPC_BOOK3S_64
    530	if (disposition == RTAS_DISP_NOT_RECOVERED) {
    531		switch (error_type) {
    532		case	MC_ERROR_TYPE_ERAT:
    533			flush_erat();
    534			disposition = RTAS_DISP_FULLY_RECOVERED;
    535			break;
    536		case	MC_ERROR_TYPE_SLB:
    537#ifdef CONFIG_PPC_64S_HASH_MMU
    538			/*
    539			 * Store the old slb content in paca before flushing.
    540			 * Print this when we go to virtual mode.
    541			 * There are chances that we may hit MCE again if there
    542			 * is a parity error on the SLB entry we trying to read
    543			 * for saving. Hence limit the slb saving to single
    544			 * level of recursion.
    545			 */
    546			if (local_paca->in_mce == 1)
    547				slb_save_contents(local_paca->mce_faulty_slbs);
    548			flush_and_reload_slb();
    549			disposition = RTAS_DISP_FULLY_RECOVERED;
    550#endif
    551			break;
    552		default:
    553			break;
    554		}
    555	} else if (disposition == RTAS_DISP_LIMITED_RECOVERY) {
    556		/* Platform corrected itself but could be degraded */
    557		pr_err("MCE: limited recovery, system may be degraded\n");
    558		disposition = RTAS_DISP_FULLY_RECOVERED;
    559	}
    560#endif
    561	return disposition;
    562}
    563
    564static int mce_handle_err_virtmode(struct pt_regs *regs,
    565				   struct rtas_error_log *errp,
    566				   struct pseries_mc_errorlog *mce_log,
    567				   int disposition)
    568{
    569	struct mce_error_info mce_err = { 0 };
    570	int initiator = rtas_error_initiator(errp);
    571	int severity = rtas_error_severity(errp);
    572	unsigned long eaddr = 0, paddr = 0;
    573	u8 error_type, err_sub_type;
    574
    575	if (!mce_log)
    576		goto out;
    577
    578	error_type = mce_log->error_type;
    579	err_sub_type = rtas_mc_error_sub_type(mce_log);
    580
    581	if (initiator == RTAS_INITIATOR_UNKNOWN)
    582		mce_err.initiator = MCE_INITIATOR_UNKNOWN;
    583	else if (initiator == RTAS_INITIATOR_CPU)
    584		mce_err.initiator = MCE_INITIATOR_CPU;
    585	else if (initiator == RTAS_INITIATOR_PCI)
    586		mce_err.initiator = MCE_INITIATOR_PCI;
    587	else if (initiator == RTAS_INITIATOR_ISA)
    588		mce_err.initiator = MCE_INITIATOR_ISA;
    589	else if (initiator == RTAS_INITIATOR_MEMORY)
    590		mce_err.initiator = MCE_INITIATOR_MEMORY;
    591	else if (initiator == RTAS_INITIATOR_POWERMGM)
    592		mce_err.initiator = MCE_INITIATOR_POWERMGM;
    593	else
    594		mce_err.initiator = MCE_INITIATOR_UNKNOWN;
    595
    596	if (severity == RTAS_SEVERITY_NO_ERROR)
    597		mce_err.severity = MCE_SEV_NO_ERROR;
    598	else if (severity == RTAS_SEVERITY_EVENT)
    599		mce_err.severity = MCE_SEV_WARNING;
    600	else if (severity == RTAS_SEVERITY_WARNING)
    601		mce_err.severity = MCE_SEV_WARNING;
    602	else if (severity == RTAS_SEVERITY_ERROR_SYNC)
    603		mce_err.severity = MCE_SEV_SEVERE;
    604	else if (severity == RTAS_SEVERITY_ERROR)
    605		mce_err.severity = MCE_SEV_SEVERE;
    606	else
    607		mce_err.severity = MCE_SEV_FATAL;
    608
    609	if (severity <= RTAS_SEVERITY_ERROR_SYNC)
    610		mce_err.sync_error = true;
    611	else
    612		mce_err.sync_error = false;
    613
    614	mce_err.error_type = MCE_ERROR_TYPE_UNKNOWN;
    615	mce_err.error_class = MCE_ECLASS_UNKNOWN;
    616
    617	switch (error_type) {
    618	case MC_ERROR_TYPE_UE:
    619		mce_err.error_type = MCE_ERROR_TYPE_UE;
    620		mce_common_process_ue(regs, &mce_err);
    621		if (mce_err.ignore_event)
    622			disposition = RTAS_DISP_FULLY_RECOVERED;
    623		switch (err_sub_type) {
    624		case MC_ERROR_UE_IFETCH:
    625			mce_err.u.ue_error_type = MCE_UE_ERROR_IFETCH;
    626			break;
    627		case MC_ERROR_UE_PAGE_TABLE_WALK_IFETCH:
    628			mce_err.u.ue_error_type = MCE_UE_ERROR_PAGE_TABLE_WALK_IFETCH;
    629			break;
    630		case MC_ERROR_UE_LOAD_STORE:
    631			mce_err.u.ue_error_type = MCE_UE_ERROR_LOAD_STORE;
    632			break;
    633		case MC_ERROR_UE_PAGE_TABLE_WALK_LOAD_STORE:
    634			mce_err.u.ue_error_type = MCE_UE_ERROR_PAGE_TABLE_WALK_LOAD_STORE;
    635			break;
    636		case MC_ERROR_UE_INDETERMINATE:
    637		default:
    638			mce_err.u.ue_error_type = MCE_UE_ERROR_INDETERMINATE;
    639			break;
    640		}
    641		if (mce_log->sub_err_type & UE_EFFECTIVE_ADDR_PROVIDED)
    642			eaddr = be64_to_cpu(mce_log->effective_address);
    643
    644		if (mce_log->sub_err_type & UE_LOGICAL_ADDR_PROVIDED) {
    645			paddr = be64_to_cpu(mce_log->logical_address);
    646		} else if (mce_log->sub_err_type & UE_EFFECTIVE_ADDR_PROVIDED) {
    647			unsigned long pfn;
    648
    649			pfn = addr_to_pfn(regs, eaddr);
    650			if (pfn != ULONG_MAX)
    651				paddr = pfn << PAGE_SHIFT;
    652		}
    653
    654		break;
    655	case MC_ERROR_TYPE_SLB:
    656		mce_err.error_type = MCE_ERROR_TYPE_SLB;
    657		switch (err_sub_type) {
    658		case MC_ERROR_SLB_PARITY:
    659			mce_err.u.slb_error_type = MCE_SLB_ERROR_PARITY;
    660			break;
    661		case MC_ERROR_SLB_MULTIHIT:
    662			mce_err.u.slb_error_type = MCE_SLB_ERROR_MULTIHIT;
    663			break;
    664		case MC_ERROR_SLB_INDETERMINATE:
    665		default:
    666			mce_err.u.slb_error_type = MCE_SLB_ERROR_INDETERMINATE;
    667			break;
    668		}
    669		if (mce_log->sub_err_type & MC_EFFECTIVE_ADDR_PROVIDED)
    670			eaddr = be64_to_cpu(mce_log->effective_address);
    671		break;
    672	case MC_ERROR_TYPE_ERAT:
    673		mce_err.error_type = MCE_ERROR_TYPE_ERAT;
    674		switch (err_sub_type) {
    675		case MC_ERROR_ERAT_PARITY:
    676			mce_err.u.erat_error_type = MCE_ERAT_ERROR_PARITY;
    677			break;
    678		case MC_ERROR_ERAT_MULTIHIT:
    679			mce_err.u.erat_error_type = MCE_ERAT_ERROR_MULTIHIT;
    680			break;
    681		case MC_ERROR_ERAT_INDETERMINATE:
    682		default:
    683			mce_err.u.erat_error_type = MCE_ERAT_ERROR_INDETERMINATE;
    684			break;
    685		}
    686		if (mce_log->sub_err_type & MC_EFFECTIVE_ADDR_PROVIDED)
    687			eaddr = be64_to_cpu(mce_log->effective_address);
    688		break;
    689	case MC_ERROR_TYPE_TLB:
    690		mce_err.error_type = MCE_ERROR_TYPE_TLB;
    691		switch (err_sub_type) {
    692		case MC_ERROR_TLB_PARITY:
    693			mce_err.u.tlb_error_type = MCE_TLB_ERROR_PARITY;
    694			break;
    695		case MC_ERROR_TLB_MULTIHIT:
    696			mce_err.u.tlb_error_type = MCE_TLB_ERROR_MULTIHIT;
    697			break;
    698		case MC_ERROR_TLB_INDETERMINATE:
    699		default:
    700			mce_err.u.tlb_error_type = MCE_TLB_ERROR_INDETERMINATE;
    701			break;
    702		}
    703		if (mce_log->sub_err_type & MC_EFFECTIVE_ADDR_PROVIDED)
    704			eaddr = be64_to_cpu(mce_log->effective_address);
    705		break;
    706	case MC_ERROR_TYPE_D_CACHE:
    707		mce_err.error_type = MCE_ERROR_TYPE_DCACHE;
    708		break;
    709	case MC_ERROR_TYPE_I_CACHE:
    710		mce_err.error_type = MCE_ERROR_TYPE_ICACHE;
    711		break;
    712	case MC_ERROR_TYPE_CTRL_MEM_ACCESS:
    713		mce_err.error_type = MCE_ERROR_TYPE_RA;
    714		switch (err_sub_type) {
    715		case MC_ERROR_CTRL_MEM_ACCESS_PTABLE_WALK:
    716			mce_err.u.ra_error_type =
    717				MCE_RA_ERROR_PAGE_TABLE_WALK_LOAD_STORE_FOREIGN;
    718			break;
    719		case MC_ERROR_CTRL_MEM_ACCESS_OP_ACCESS:
    720			mce_err.u.ra_error_type =
    721				MCE_RA_ERROR_LOAD_STORE_FOREIGN;
    722			break;
    723		}
    724		if (mce_log->sub_err_type & MC_EFFECTIVE_ADDR_PROVIDED)
    725			eaddr = be64_to_cpu(mce_log->effective_address);
    726		break;
    727	case MC_ERROR_TYPE_UNKNOWN:
    728	default:
    729		mce_err.error_type = MCE_ERROR_TYPE_UNKNOWN;
    730		break;
    731	}
    732out:
    733	save_mce_event(regs, disposition == RTAS_DISP_FULLY_RECOVERED,
    734		       &mce_err, regs->nip, eaddr, paddr);
    735	return disposition;
    736}
    737
    738static int mce_handle_error(struct pt_regs *regs, struct rtas_error_log *errp)
    739{
    740	struct pseries_errorlog *pseries_log;
    741	struct pseries_mc_errorlog *mce_log = NULL;
    742	int disposition = rtas_error_disposition(errp);
    743	u8 error_type;
    744
    745	if (!rtas_error_extended(errp))
    746		goto out;
    747
    748	pseries_log = get_pseries_errorlog(errp, PSERIES_ELOG_SECT_ID_MCE);
    749	if (!pseries_log)
    750		goto out;
    751
    752	mce_log = (struct pseries_mc_errorlog *)pseries_log->data;
    753	error_type = mce_log->error_type;
    754
    755	disposition = mce_handle_err_realmode(disposition, error_type);
    756out:
    757	disposition = mce_handle_err_virtmode(regs, errp, mce_log,
    758					      disposition);
    759	return disposition;
    760}
    761
    762/*
    763 * Process MCE rtas errlog event.
    764 */
    765void pSeries_machine_check_log_err(void)
    766{
    767	struct rtas_error_log *err;
    768
    769	err = fwnmi_get_errlog();
    770	log_error((char *)err, ERR_TYPE_RTAS_LOG, 0);
    771}
    772
    773/*
    774 * See if we can recover from a machine check exception.
    775 * This is only called on power4 (or above) and only via
    776 * the Firmware Non-Maskable Interrupts (fwnmi) handler
    777 * which provides the error analysis for us.
    778 *
    779 * Return 1 if corrected (or delivered a signal).
    780 * Return 0 if there is nothing we can do.
    781 */
    782static int recover_mce(struct pt_regs *regs, struct machine_check_event *evt)
    783{
    784	int recovered = 0;
    785
    786	if (regs_is_unrecoverable(regs)) {
    787		/* If MSR_RI isn't set, we cannot recover */
    788		pr_err("Machine check interrupt unrecoverable: MSR(RI=0)\n");
    789		recovered = 0;
    790	} else if (evt->disposition == MCE_DISPOSITION_RECOVERED) {
    791		/* Platform corrected itself */
    792		recovered = 1;
    793	} else if (evt->severity == MCE_SEV_FATAL) {
    794		/* Fatal machine check */
    795		pr_err("Machine check interrupt is fatal\n");
    796		recovered = 0;
    797	}
    798
    799	if (!recovered && evt->sync_error) {
    800		/*
    801		 * Try to kill processes if we get a synchronous machine check
    802		 * (e.g., one caused by execution of this instruction). This
    803		 * will devolve into a panic if we try to kill init or are in
    804		 * an interrupt etc.
    805		 *
    806		 * TODO: Queue up this address for hwpoisioning later.
    807		 * TODO: This is not quite right for d-side machine
    808		 *       checks ->nip is not necessarily the important
    809		 *       address.
    810		 */
    811		if ((user_mode(regs))) {
    812			_exception(SIGBUS, regs, BUS_MCEERR_AR, regs->nip);
    813			recovered = 1;
    814		} else if (die_will_crash()) {
    815			/*
    816			 * die() would kill the kernel, so better to go via
    817			 * the platform reboot code that will log the
    818			 * machine check.
    819			 */
    820			recovered = 0;
    821		} else {
    822			die_mce("Machine check", regs, SIGBUS);
    823			recovered = 1;
    824		}
    825	}
    826
    827	return recovered;
    828}
    829
    830/*
    831 * Handle a machine check.
    832 *
    833 * Note that on Power 4 and beyond Firmware Non-Maskable Interrupts (fwnmi)
    834 * should be present.  If so the handler which called us tells us if the
    835 * error was recovered (never true if RI=0).
    836 *
    837 * On hardware prior to Power 4 these exceptions were asynchronous which
    838 * means we can't tell exactly where it occurred and so we can't recover.
    839 */
    840int pSeries_machine_check_exception(struct pt_regs *regs)
    841{
    842	struct machine_check_event evt;
    843
    844	if (!get_mce_event(&evt, MCE_EVENT_RELEASE))
    845		return 0;
    846
    847	/* Print things out */
    848	if (evt.version != MCE_V1) {
    849		pr_err("Machine Check Exception, Unknown event version %d !\n",
    850		       evt.version);
    851		return 0;
    852	}
    853	machine_check_print_event_info(&evt, user_mode(regs), false);
    854
    855	if (recover_mce(regs, &evt))
    856		return 1;
    857
    858	return 0;
    859}
    860
    861long pseries_machine_check_realmode(struct pt_regs *regs)
    862{
    863	struct rtas_error_log *errp;
    864	int disposition;
    865
    866	if (fwnmi_active) {
    867		errp = fwnmi_get_errinfo(regs);
    868		/*
    869		 * Call to fwnmi_release_errinfo() in real mode causes kernel
    870		 * to panic. Hence we will call it as soon as we go into
    871		 * virtual mode.
    872		 */
    873		disposition = mce_handle_error(regs, errp);
    874
    875		fwnmi_release_errinfo();
    876
    877		if (disposition == RTAS_DISP_FULLY_RECOVERED)
    878			return 1;
    879	}
    880
    881	return 0;
    882}