pgtable.h (21673B)
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* 3 * Copyright (C) 2012 Regents of the University of California 4 */ 5 6#ifndef _ASM_RISCV_PGTABLE_H 7#define _ASM_RISCV_PGTABLE_H 8 9#include <linux/mmzone.h> 10#include <linux/sizes.h> 11 12#include <asm/pgtable-bits.h> 13 14#ifndef CONFIG_MMU 15#define KERNEL_LINK_ADDR PAGE_OFFSET 16#define KERN_VIRT_SIZE (UL(-1)) 17#else 18 19#define ADDRESS_SPACE_END (UL(-1)) 20 21#ifdef CONFIG_64BIT 22/* Leave 2GB for kernel and BPF at the end of the address space */ 23#define KERNEL_LINK_ADDR (ADDRESS_SPACE_END - SZ_2G + 1) 24#else 25#define KERNEL_LINK_ADDR PAGE_OFFSET 26#endif 27 28/* Number of entries in the page global directory */ 29#define PTRS_PER_PGD (PAGE_SIZE / sizeof(pgd_t)) 30/* Number of entries in the page table */ 31#define PTRS_PER_PTE (PAGE_SIZE / sizeof(pte_t)) 32 33/* 34 * Half of the kernel address space (half of the entries of the page global 35 * directory) is for the direct mapping. 36 */ 37#define KERN_VIRT_SIZE ((PTRS_PER_PGD / 2 * PGDIR_SIZE) / 2) 38 39#define VMALLOC_SIZE (KERN_VIRT_SIZE >> 1) 40#define VMALLOC_END PAGE_OFFSET 41#define VMALLOC_START (PAGE_OFFSET - VMALLOC_SIZE) 42 43#define BPF_JIT_REGION_SIZE (SZ_128M) 44#ifdef CONFIG_64BIT 45#define BPF_JIT_REGION_START (BPF_JIT_REGION_END - BPF_JIT_REGION_SIZE) 46#define BPF_JIT_REGION_END (MODULES_END) 47#else 48#define BPF_JIT_REGION_START (PAGE_OFFSET - BPF_JIT_REGION_SIZE) 49#define BPF_JIT_REGION_END (VMALLOC_END) 50#endif 51 52/* Modules always live before the kernel */ 53#ifdef CONFIG_64BIT 54/* This is used to define the end of the KASAN shadow region */ 55#define MODULES_LOWEST_VADDR (KERNEL_LINK_ADDR - SZ_2G) 56#define MODULES_VADDR (PFN_ALIGN((unsigned long)&_end) - SZ_2G) 57#define MODULES_END (PFN_ALIGN((unsigned long)&_start)) 58#endif 59 60/* 61 * Roughly size the vmemmap space to be large enough to fit enough 62 * struct pages to map half the virtual address space. Then 63 * position vmemmap directly below the VMALLOC region. 64 */ 65#ifdef CONFIG_64BIT 66#define VA_BITS (pgtable_l5_enabled ? \ 67 57 : (pgtable_l4_enabled ? 48 : 39)) 68#else 69#define VA_BITS 32 70#endif 71 72#define VMEMMAP_SHIFT \ 73 (VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT) 74#define VMEMMAP_SIZE BIT(VMEMMAP_SHIFT) 75#define VMEMMAP_END VMALLOC_START 76#define VMEMMAP_START (VMALLOC_START - VMEMMAP_SIZE) 77 78/* 79 * Define vmemmap for pfn_to_page & page_to_pfn calls. Needed if kernel 80 * is configured with CONFIG_SPARSEMEM_VMEMMAP enabled. 81 */ 82#define vmemmap ((struct page *)VMEMMAP_START) 83 84#define PCI_IO_SIZE SZ_16M 85#define PCI_IO_END VMEMMAP_START 86#define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE) 87 88#define FIXADDR_TOP PCI_IO_START 89#ifdef CONFIG_64BIT 90#define FIXADDR_SIZE PMD_SIZE 91#else 92#define FIXADDR_SIZE PGDIR_SIZE 93#endif 94#define FIXADDR_START (FIXADDR_TOP - FIXADDR_SIZE) 95 96#endif 97 98#ifdef CONFIG_XIP_KERNEL 99#define XIP_OFFSET SZ_32M 100#define XIP_OFFSET_MASK (SZ_32M - 1) 101#else 102#define XIP_OFFSET 0 103#endif 104 105#ifndef __ASSEMBLY__ 106 107#include <asm/page.h> 108#include <asm/tlbflush.h> 109#include <linux/mm_types.h> 110 111#define __page_val_to_pfn(_val) (((_val) & _PAGE_PFN_MASK) >> _PAGE_PFN_SHIFT) 112 113#ifdef CONFIG_64BIT 114#include <asm/pgtable-64.h> 115#else 116#include <asm/pgtable-32.h> 117#endif /* CONFIG_64BIT */ 118 119#include <linux/page_table_check.h> 120 121#ifdef CONFIG_XIP_KERNEL 122#define XIP_FIXUP(addr) ({ \ 123 uintptr_t __a = (uintptr_t)(addr); \ 124 (__a >= CONFIG_XIP_PHYS_ADDR && \ 125 __a < CONFIG_XIP_PHYS_ADDR + XIP_OFFSET * 2) ? \ 126 __a - CONFIG_XIP_PHYS_ADDR + CONFIG_PHYS_RAM_BASE - XIP_OFFSET :\ 127 __a; \ 128 }) 129#else 130#define XIP_FIXUP(addr) (addr) 131#endif /* CONFIG_XIP_KERNEL */ 132 133struct pt_alloc_ops { 134 pte_t *(*get_pte_virt)(phys_addr_t pa); 135 phys_addr_t (*alloc_pte)(uintptr_t va); 136#ifndef __PAGETABLE_PMD_FOLDED 137 pmd_t *(*get_pmd_virt)(phys_addr_t pa); 138 phys_addr_t (*alloc_pmd)(uintptr_t va); 139 pud_t *(*get_pud_virt)(phys_addr_t pa); 140 phys_addr_t (*alloc_pud)(uintptr_t va); 141 p4d_t *(*get_p4d_virt)(phys_addr_t pa); 142 phys_addr_t (*alloc_p4d)(uintptr_t va); 143#endif 144}; 145 146extern struct pt_alloc_ops pt_ops __initdata; 147 148#ifdef CONFIG_MMU 149/* Number of PGD entries that a user-mode program can use */ 150#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) 151 152/* Page protection bits */ 153#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER) 154 155#define PAGE_NONE __pgprot(_PAGE_PROT_NONE | _PAGE_READ) 156#define PAGE_READ __pgprot(_PAGE_BASE | _PAGE_READ) 157#define PAGE_WRITE __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE) 158#define PAGE_EXEC __pgprot(_PAGE_BASE | _PAGE_EXEC) 159#define PAGE_READ_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC) 160#define PAGE_WRITE_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | \ 161 _PAGE_EXEC | _PAGE_WRITE) 162 163#define PAGE_COPY PAGE_READ 164#define PAGE_COPY_EXEC PAGE_EXEC 165#define PAGE_COPY_READ_EXEC PAGE_READ_EXEC 166#define PAGE_SHARED PAGE_WRITE 167#define PAGE_SHARED_EXEC PAGE_WRITE_EXEC 168 169#define _PAGE_KERNEL (_PAGE_READ \ 170 | _PAGE_WRITE \ 171 | _PAGE_PRESENT \ 172 | _PAGE_ACCESSED \ 173 | _PAGE_DIRTY \ 174 | _PAGE_GLOBAL) 175 176#define PAGE_KERNEL __pgprot(_PAGE_KERNEL) 177#define PAGE_KERNEL_READ __pgprot(_PAGE_KERNEL & ~_PAGE_WRITE) 178#define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL | _PAGE_EXEC) 179#define PAGE_KERNEL_READ_EXEC __pgprot((_PAGE_KERNEL & ~_PAGE_WRITE) \ 180 | _PAGE_EXEC) 181 182#define PAGE_TABLE __pgprot(_PAGE_TABLE) 183 184#define _PAGE_IOREMAP ((_PAGE_KERNEL & ~_PAGE_MTMASK) | _PAGE_IO) 185#define PAGE_KERNEL_IO __pgprot(_PAGE_IOREMAP) 186 187extern pgd_t swapper_pg_dir[]; 188 189/* MAP_PRIVATE permissions: xwr (copy-on-write) */ 190#define __P000 PAGE_NONE 191#define __P001 PAGE_READ 192#define __P010 PAGE_COPY 193#define __P011 PAGE_COPY 194#define __P100 PAGE_EXEC 195#define __P101 PAGE_READ_EXEC 196#define __P110 PAGE_COPY_EXEC 197#define __P111 PAGE_COPY_READ_EXEC 198 199/* MAP_SHARED permissions: xwr */ 200#define __S000 PAGE_NONE 201#define __S001 PAGE_READ 202#define __S010 PAGE_SHARED 203#define __S011 PAGE_SHARED 204#define __S100 PAGE_EXEC 205#define __S101 PAGE_READ_EXEC 206#define __S110 PAGE_SHARED_EXEC 207#define __S111 PAGE_SHARED_EXEC 208 209#ifdef CONFIG_TRANSPARENT_HUGEPAGE 210static inline int pmd_present(pmd_t pmd) 211{ 212 /* 213 * Checking for _PAGE_LEAF is needed too because: 214 * When splitting a THP, split_huge_page() will temporarily clear 215 * the present bit, in this situation, pmd_present() and 216 * pmd_trans_huge() still needs to return true. 217 */ 218 return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE | _PAGE_LEAF)); 219} 220#else 221static inline int pmd_present(pmd_t pmd) 222{ 223 return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE)); 224} 225#endif 226 227static inline int pmd_none(pmd_t pmd) 228{ 229 return (pmd_val(pmd) == 0); 230} 231 232static inline int pmd_bad(pmd_t pmd) 233{ 234 return !pmd_present(pmd) || (pmd_val(pmd) & _PAGE_LEAF); 235} 236 237#define pmd_leaf pmd_leaf 238static inline int pmd_leaf(pmd_t pmd) 239{ 240 return pmd_present(pmd) && (pmd_val(pmd) & _PAGE_LEAF); 241} 242 243static inline void set_pmd(pmd_t *pmdp, pmd_t pmd) 244{ 245 *pmdp = pmd; 246} 247 248static inline void pmd_clear(pmd_t *pmdp) 249{ 250 set_pmd(pmdp, __pmd(0)); 251} 252 253static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot) 254{ 255 unsigned long prot_val = pgprot_val(prot); 256 257 ALT_THEAD_PMA(prot_val); 258 259 return __pgd((pfn << _PAGE_PFN_SHIFT) | prot_val); 260} 261 262static inline unsigned long _pgd_pfn(pgd_t pgd) 263{ 264 return pgd_val(pgd) >> _PAGE_PFN_SHIFT; 265} 266 267static inline struct page *pmd_page(pmd_t pmd) 268{ 269 return pfn_to_page(__page_val_to_pfn(pmd_val(pmd))); 270} 271 272static inline unsigned long pmd_page_vaddr(pmd_t pmd) 273{ 274 return (unsigned long)pfn_to_virt(__page_val_to_pfn(pmd_val(pmd))); 275} 276 277static inline pte_t pmd_pte(pmd_t pmd) 278{ 279 return __pte(pmd_val(pmd)); 280} 281 282static inline pte_t pud_pte(pud_t pud) 283{ 284 return __pte(pud_val(pud)); 285} 286 287/* Yields the page frame number (PFN) of a page table entry */ 288static inline unsigned long pte_pfn(pte_t pte) 289{ 290 return __page_val_to_pfn(pte_val(pte)); 291} 292 293#define pte_page(x) pfn_to_page(pte_pfn(x)) 294 295/* Constructs a page table entry */ 296static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot) 297{ 298 unsigned long prot_val = pgprot_val(prot); 299 300 ALT_THEAD_PMA(prot_val); 301 302 return __pte((pfn << _PAGE_PFN_SHIFT) | prot_val); 303} 304 305#define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot) 306 307static inline int pte_present(pte_t pte) 308{ 309 return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)); 310} 311 312static inline int pte_none(pte_t pte) 313{ 314 return (pte_val(pte) == 0); 315} 316 317static inline int pte_write(pte_t pte) 318{ 319 return pte_val(pte) & _PAGE_WRITE; 320} 321 322static inline int pte_exec(pte_t pte) 323{ 324 return pte_val(pte) & _PAGE_EXEC; 325} 326 327static inline int pte_user(pte_t pte) 328{ 329 return pte_val(pte) & _PAGE_USER; 330} 331 332static inline int pte_huge(pte_t pte) 333{ 334 return pte_present(pte) && (pte_val(pte) & _PAGE_LEAF); 335} 336 337static inline int pte_dirty(pte_t pte) 338{ 339 return pte_val(pte) & _PAGE_DIRTY; 340} 341 342static inline int pte_young(pte_t pte) 343{ 344 return pte_val(pte) & _PAGE_ACCESSED; 345} 346 347static inline int pte_special(pte_t pte) 348{ 349 return pte_val(pte) & _PAGE_SPECIAL; 350} 351 352/* static inline pte_t pte_rdprotect(pte_t pte) */ 353 354static inline pte_t pte_wrprotect(pte_t pte) 355{ 356 return __pte(pte_val(pte) & ~(_PAGE_WRITE)); 357} 358 359/* static inline pte_t pte_mkread(pte_t pte) */ 360 361static inline pte_t pte_mkwrite(pte_t pte) 362{ 363 return __pte(pte_val(pte) | _PAGE_WRITE); 364} 365 366/* static inline pte_t pte_mkexec(pte_t pte) */ 367 368static inline pte_t pte_mkdirty(pte_t pte) 369{ 370 return __pte(pte_val(pte) | _PAGE_DIRTY); 371} 372 373static inline pte_t pte_mkclean(pte_t pte) 374{ 375 return __pte(pte_val(pte) & ~(_PAGE_DIRTY)); 376} 377 378static inline pte_t pte_mkyoung(pte_t pte) 379{ 380 return __pte(pte_val(pte) | _PAGE_ACCESSED); 381} 382 383static inline pte_t pte_mkold(pte_t pte) 384{ 385 return __pte(pte_val(pte) & ~(_PAGE_ACCESSED)); 386} 387 388static inline pte_t pte_mkspecial(pte_t pte) 389{ 390 return __pte(pte_val(pte) | _PAGE_SPECIAL); 391} 392 393static inline pte_t pte_mkhuge(pte_t pte) 394{ 395 return pte; 396} 397 398#ifdef CONFIG_NUMA_BALANCING 399/* 400 * See the comment in include/asm-generic/pgtable.h 401 */ 402static inline int pte_protnone(pte_t pte) 403{ 404 return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)) == _PAGE_PROT_NONE; 405} 406 407static inline int pmd_protnone(pmd_t pmd) 408{ 409 return pte_protnone(pmd_pte(pmd)); 410} 411#endif 412 413/* Modify page protection bits */ 414static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 415{ 416 unsigned long newprot_val = pgprot_val(newprot); 417 418 ALT_THEAD_PMA(newprot_val); 419 420 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | newprot_val); 421} 422 423#define pgd_ERROR(e) \ 424 pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e)) 425 426 427/* Commit new configuration to MMU hardware */ 428static inline void update_mmu_cache(struct vm_area_struct *vma, 429 unsigned long address, pte_t *ptep) 430{ 431 /* 432 * The kernel assumes that TLBs don't cache invalid entries, but 433 * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a 434 * cache flush; it is necessary even after writing invalid entries. 435 * Relying on flush_tlb_fix_spurious_fault would suffice, but 436 * the extra traps reduce performance. So, eagerly SFENCE.VMA. 437 */ 438 local_flush_tlb_page(address); 439} 440 441static inline void update_mmu_cache_pmd(struct vm_area_struct *vma, 442 unsigned long address, pmd_t *pmdp) 443{ 444 pte_t *ptep = (pte_t *)pmdp; 445 446 update_mmu_cache(vma, address, ptep); 447} 448 449#define __HAVE_ARCH_PTE_SAME 450static inline int pte_same(pte_t pte_a, pte_t pte_b) 451{ 452 return pte_val(pte_a) == pte_val(pte_b); 453} 454 455/* 456 * Certain architectures need to do special things when PTEs within 457 * a page table are directly modified. Thus, the following hook is 458 * made available. 459 */ 460static inline void set_pte(pte_t *ptep, pte_t pteval) 461{ 462 *ptep = pteval; 463} 464 465void flush_icache_pte(pte_t pte); 466 467static inline void __set_pte_at(struct mm_struct *mm, 468 unsigned long addr, pte_t *ptep, pte_t pteval) 469{ 470 if (pte_present(pteval) && pte_exec(pteval)) 471 flush_icache_pte(pteval); 472 473 set_pte(ptep, pteval); 474} 475 476static inline void set_pte_at(struct mm_struct *mm, 477 unsigned long addr, pte_t *ptep, pte_t pteval) 478{ 479 page_table_check_pte_set(mm, addr, ptep, pteval); 480 __set_pte_at(mm, addr, ptep, pteval); 481} 482 483static inline void pte_clear(struct mm_struct *mm, 484 unsigned long addr, pte_t *ptep) 485{ 486 __set_pte_at(mm, addr, ptep, __pte(0)); 487} 488 489#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 490static inline int ptep_set_access_flags(struct vm_area_struct *vma, 491 unsigned long address, pte_t *ptep, 492 pte_t entry, int dirty) 493{ 494 if (!pte_same(*ptep, entry)) 495 set_pte_at(vma->vm_mm, address, ptep, entry); 496 /* 497 * update_mmu_cache will unconditionally execute, handling both 498 * the case that the PTE changed and the spurious fault case. 499 */ 500 return true; 501} 502 503#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 504static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 505 unsigned long address, pte_t *ptep) 506{ 507 pte_t pte = __pte(atomic_long_xchg((atomic_long_t *)ptep, 0)); 508 509 page_table_check_pte_clear(mm, address, pte); 510 511 return pte; 512} 513 514#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 515static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 516 unsigned long address, 517 pte_t *ptep) 518{ 519 if (!pte_young(*ptep)) 520 return 0; 521 return test_and_clear_bit(_PAGE_ACCESSED_OFFSET, &pte_val(*ptep)); 522} 523 524#define __HAVE_ARCH_PTEP_SET_WRPROTECT 525static inline void ptep_set_wrprotect(struct mm_struct *mm, 526 unsigned long address, pte_t *ptep) 527{ 528 atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep); 529} 530 531#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 532static inline int ptep_clear_flush_young(struct vm_area_struct *vma, 533 unsigned long address, pte_t *ptep) 534{ 535 /* 536 * This comment is borrowed from x86, but applies equally to RISC-V: 537 * 538 * Clearing the accessed bit without a TLB flush 539 * doesn't cause data corruption. [ It could cause incorrect 540 * page aging and the (mistaken) reclaim of hot pages, but the 541 * chance of that should be relatively low. ] 542 * 543 * So as a performance optimization don't flush the TLB when 544 * clearing the accessed bit, it will eventually be flushed by 545 * a context switch or a VM operation anyway. [ In the rare 546 * event of it not getting flushed for a long time the delay 547 * shouldn't really matter because there's no real memory 548 * pressure for swapout to react to. ] 549 */ 550 return ptep_test_and_clear_young(vma, address, ptep); 551} 552 553#define pgprot_noncached pgprot_noncached 554static inline pgprot_t pgprot_noncached(pgprot_t _prot) 555{ 556 unsigned long prot = pgprot_val(_prot); 557 558 prot &= ~_PAGE_MTMASK; 559 prot |= _PAGE_IO; 560 561 return __pgprot(prot); 562} 563 564#define pgprot_writecombine pgprot_writecombine 565static inline pgprot_t pgprot_writecombine(pgprot_t _prot) 566{ 567 unsigned long prot = pgprot_val(_prot); 568 569 prot &= ~_PAGE_MTMASK; 570 prot |= _PAGE_NOCACHE; 571 572 return __pgprot(prot); 573} 574 575/* 576 * THP functions 577 */ 578static inline pmd_t pte_pmd(pte_t pte) 579{ 580 return __pmd(pte_val(pte)); 581} 582 583static inline pmd_t pmd_mkhuge(pmd_t pmd) 584{ 585 return pmd; 586} 587 588static inline pmd_t pmd_mkinvalid(pmd_t pmd) 589{ 590 return __pmd(pmd_val(pmd) & ~(_PAGE_PRESENT|_PAGE_PROT_NONE)); 591} 592 593#define __pmd_to_phys(pmd) (pmd_val(pmd) >> _PAGE_PFN_SHIFT << PAGE_SHIFT) 594 595static inline unsigned long pmd_pfn(pmd_t pmd) 596{ 597 return ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT); 598} 599 600#define __pud_to_phys(pud) (pud_val(pud) >> _PAGE_PFN_SHIFT << PAGE_SHIFT) 601 602static inline unsigned long pud_pfn(pud_t pud) 603{ 604 return ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT); 605} 606 607static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 608{ 609 return pte_pmd(pte_modify(pmd_pte(pmd), newprot)); 610} 611 612#define pmd_write pmd_write 613static inline int pmd_write(pmd_t pmd) 614{ 615 return pte_write(pmd_pte(pmd)); 616} 617 618static inline int pmd_dirty(pmd_t pmd) 619{ 620 return pte_dirty(pmd_pte(pmd)); 621} 622 623static inline int pmd_young(pmd_t pmd) 624{ 625 return pte_young(pmd_pte(pmd)); 626} 627 628static inline int pmd_user(pmd_t pmd) 629{ 630 return pte_user(pmd_pte(pmd)); 631} 632 633static inline pmd_t pmd_mkold(pmd_t pmd) 634{ 635 return pte_pmd(pte_mkold(pmd_pte(pmd))); 636} 637 638static inline pmd_t pmd_mkyoung(pmd_t pmd) 639{ 640 return pte_pmd(pte_mkyoung(pmd_pte(pmd))); 641} 642 643static inline pmd_t pmd_mkwrite(pmd_t pmd) 644{ 645 return pte_pmd(pte_mkwrite(pmd_pte(pmd))); 646} 647 648static inline pmd_t pmd_wrprotect(pmd_t pmd) 649{ 650 return pte_pmd(pte_wrprotect(pmd_pte(pmd))); 651} 652 653static inline pmd_t pmd_mkclean(pmd_t pmd) 654{ 655 return pte_pmd(pte_mkclean(pmd_pte(pmd))); 656} 657 658static inline pmd_t pmd_mkdirty(pmd_t pmd) 659{ 660 return pte_pmd(pte_mkdirty(pmd_pte(pmd))); 661} 662 663static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, 664 pmd_t *pmdp, pmd_t pmd) 665{ 666 page_table_check_pmd_set(mm, addr, pmdp, pmd); 667 return __set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd)); 668} 669 670static inline void set_pud_at(struct mm_struct *mm, unsigned long addr, 671 pud_t *pudp, pud_t pud) 672{ 673 page_table_check_pud_set(mm, addr, pudp, pud); 674 return __set_pte_at(mm, addr, (pte_t *)pudp, pud_pte(pud)); 675} 676 677#ifdef CONFIG_PAGE_TABLE_CHECK 678static inline bool pte_user_accessible_page(pte_t pte) 679{ 680 return pte_present(pte) && pte_user(pte); 681} 682 683static inline bool pmd_user_accessible_page(pmd_t pmd) 684{ 685 return pmd_leaf(pmd) && pmd_user(pmd); 686} 687 688static inline bool pud_user_accessible_page(pud_t pud) 689{ 690 return pud_leaf(pud) && pud_user(pud); 691} 692#endif 693 694#ifdef CONFIG_TRANSPARENT_HUGEPAGE 695static inline int pmd_trans_huge(pmd_t pmd) 696{ 697 return pmd_leaf(pmd); 698} 699 700#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 701static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 702 unsigned long address, pmd_t *pmdp, 703 pmd_t entry, int dirty) 704{ 705 return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty); 706} 707 708#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 709static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 710 unsigned long address, pmd_t *pmdp) 711{ 712 return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp); 713} 714 715#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 716static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 717 unsigned long address, pmd_t *pmdp) 718{ 719 pmd_t pmd = __pmd(atomic_long_xchg((atomic_long_t *)pmdp, 0)); 720 721 page_table_check_pmd_clear(mm, address, pmd); 722 723 return pmd; 724} 725 726#define __HAVE_ARCH_PMDP_SET_WRPROTECT 727static inline void pmdp_set_wrprotect(struct mm_struct *mm, 728 unsigned long address, pmd_t *pmdp) 729{ 730 ptep_set_wrprotect(mm, address, (pte_t *)pmdp); 731} 732 733#define pmdp_establish pmdp_establish 734static inline pmd_t pmdp_establish(struct vm_area_struct *vma, 735 unsigned long address, pmd_t *pmdp, pmd_t pmd) 736{ 737 page_table_check_pmd_set(vma->vm_mm, address, pmdp, pmd); 738 return __pmd(atomic_long_xchg((atomic_long_t *)pmdp, pmd_val(pmd))); 739} 740#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 741 742/* 743 * Encode and decode a swap entry 744 * 745 * Format of swap PTE: 746 * bit 0: _PAGE_PRESENT (zero) 747 * bit 1 to 3: _PAGE_LEAF (zero) 748 * bit 5: _PAGE_PROT_NONE (zero) 749 * bits 6 to 10: swap type 750 * bits 10 to XLEN-1: swap offset 751 */ 752#define __SWP_TYPE_SHIFT 6 753#define __SWP_TYPE_BITS 5 754#define __SWP_TYPE_MASK ((1UL << __SWP_TYPE_BITS) - 1) 755#define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT) 756 757#define MAX_SWAPFILES_CHECK() \ 758 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS) 759 760#define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK) 761#define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT) 762#define __swp_entry(type, offset) ((swp_entry_t) \ 763 { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) }) 764 765#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 766#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 767 768#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 769#define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) }) 770#define __swp_entry_to_pmd(swp) __pmd((swp).val) 771#endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */ 772 773/* 774 * In the RV64 Linux scheme, we give the user half of the virtual-address space 775 * and give the kernel the other (upper) half. 776 */ 777#ifdef CONFIG_64BIT 778#define KERN_VIRT_START (-(BIT(VA_BITS)) + TASK_SIZE) 779#else 780#define KERN_VIRT_START FIXADDR_START 781#endif 782 783/* 784 * Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32. 785 * Note that PGDIR_SIZE must evenly divide TASK_SIZE. 786 * Task size is: 787 * - 0x9fc00000 (~2.5GB) for RV32. 788 * - 0x4000000000 ( 256GB) for RV64 using SV39 mmu 789 * - 0x800000000000 ( 128TB) for RV64 using SV48 mmu 790 * 791 * Note that PGDIR_SIZE must evenly divide TASK_SIZE since "RISC-V 792 * Instruction Set Manual Volume II: Privileged Architecture" states that 793 * "load and store effective addresses, which are 64bits, must have bits 794 * 63–48 all equal to bit 47, or else a page-fault exception will occur." 795 */ 796#ifdef CONFIG_64BIT 797#define TASK_SIZE_64 (PGDIR_SIZE * PTRS_PER_PGD / 2) 798#define TASK_SIZE_MIN (PGDIR_SIZE_L3 * PTRS_PER_PGD / 2) 799 800#ifdef CONFIG_COMPAT 801#define TASK_SIZE_32 (_AC(0x80000000, UL) - PAGE_SIZE) 802#define TASK_SIZE (test_thread_flag(TIF_32BIT) ? \ 803 TASK_SIZE_32 : TASK_SIZE_64) 804#else 805#define TASK_SIZE TASK_SIZE_64 806#endif 807 808#else 809#define TASK_SIZE FIXADDR_START 810#define TASK_SIZE_MIN TASK_SIZE 811#endif 812 813#else /* CONFIG_MMU */ 814 815#define PAGE_SHARED __pgprot(0) 816#define PAGE_KERNEL __pgprot(0) 817#define swapper_pg_dir NULL 818#define TASK_SIZE 0xffffffffUL 819#define VMALLOC_START 0 820#define VMALLOC_END TASK_SIZE 821 822#endif /* !CONFIG_MMU */ 823 824#define kern_addr_valid(addr) (1) /* FIXME */ 825 826extern char _start[]; 827extern void *_dtb_early_va; 828extern uintptr_t _dtb_early_pa; 829#if defined(CONFIG_XIP_KERNEL) && defined(CONFIG_MMU) 830#define dtb_early_va (*(void **)XIP_FIXUP(&_dtb_early_va)) 831#define dtb_early_pa (*(uintptr_t *)XIP_FIXUP(&_dtb_early_pa)) 832#else 833#define dtb_early_va _dtb_early_va 834#define dtb_early_pa _dtb_early_pa 835#endif /* CONFIG_XIP_KERNEL */ 836extern u64 satp_mode; 837extern bool pgtable_l4_enabled; 838 839void paging_init(void); 840void misc_mem_init(void); 841 842/* 843 * ZERO_PAGE is a global shared page that is always zero, 844 * used for zero-mapped memory areas, etc. 845 */ 846extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]; 847#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 848 849#endif /* !__ASSEMBLY__ */ 850 851#endif /* _ASM_RISCV_PGTABLE_H */