cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

elf_kexec.c (12013B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Load ELF vmlinux file for the kexec_file_load syscall.
      4 *
      5 * Copyright (C) 2021 Huawei Technologies Co, Ltd.
      6 *
      7 * Author: Liao Chang (liaochang1@huawei.com)
      8 *
      9 * Based on kexec-tools' kexec-elf-riscv.c, heavily modified
     10 * for kernel.
     11 */
     12
     13#define pr_fmt(fmt)	"kexec_image: " fmt
     14
     15#include <linux/elf.h>
     16#include <linux/kexec.h>
     17#include <linux/slab.h>
     18#include <linux/of.h>
     19#include <linux/libfdt.h>
     20#include <linux/types.h>
     21#include <linux/memblock.h>
     22#include <asm/setup.h>
     23
     24static int riscv_kexec_elf_load(struct kimage *image, struct elfhdr *ehdr,
     25				struct kexec_elf_info *elf_info, unsigned long old_pbase,
     26				unsigned long new_pbase)
     27{
     28	int i;
     29	int ret = 0;
     30	size_t size;
     31	struct kexec_buf kbuf;
     32	const struct elf_phdr *phdr;
     33
     34	kbuf.image = image;
     35
     36	for (i = 0; i < ehdr->e_phnum; i++) {
     37		phdr = &elf_info->proghdrs[i];
     38		if (phdr->p_type != PT_LOAD)
     39			continue;
     40
     41		size = phdr->p_filesz;
     42		if (size > phdr->p_memsz)
     43			size = phdr->p_memsz;
     44
     45		kbuf.buffer = (void *) elf_info->buffer + phdr->p_offset;
     46		kbuf.bufsz = size;
     47		kbuf.buf_align = phdr->p_align;
     48		kbuf.mem = phdr->p_paddr - old_pbase + new_pbase;
     49		kbuf.memsz = phdr->p_memsz;
     50		kbuf.top_down = false;
     51		ret = kexec_add_buffer(&kbuf);
     52		if (ret)
     53			break;
     54	}
     55
     56	return ret;
     57}
     58
     59/*
     60 * Go through the available phsyical memory regions and find one that hold
     61 * an image of the specified size.
     62 */
     63static int elf_find_pbase(struct kimage *image, unsigned long kernel_len,
     64			  struct elfhdr *ehdr, struct kexec_elf_info *elf_info,
     65			  unsigned long *old_pbase, unsigned long *new_pbase)
     66{
     67	int i;
     68	int ret;
     69	struct kexec_buf kbuf;
     70	const struct elf_phdr *phdr;
     71	unsigned long lowest_paddr = ULONG_MAX;
     72	unsigned long lowest_vaddr = ULONG_MAX;
     73
     74	for (i = 0; i < ehdr->e_phnum; i++) {
     75		phdr = &elf_info->proghdrs[i];
     76		if (phdr->p_type != PT_LOAD)
     77			continue;
     78
     79		if (lowest_paddr > phdr->p_paddr)
     80			lowest_paddr = phdr->p_paddr;
     81
     82		if (lowest_vaddr > phdr->p_vaddr)
     83			lowest_vaddr = phdr->p_vaddr;
     84	}
     85
     86	kbuf.image = image;
     87	kbuf.buf_min = lowest_paddr;
     88	kbuf.buf_max = ULONG_MAX;
     89	kbuf.buf_align = PAGE_SIZE;
     90	kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
     91	kbuf.memsz = ALIGN(kernel_len, PAGE_SIZE);
     92	kbuf.top_down = false;
     93	ret = arch_kexec_locate_mem_hole(&kbuf);
     94	if (!ret) {
     95		*old_pbase = lowest_paddr;
     96		*new_pbase = kbuf.mem;
     97		image->start = ehdr->e_entry - lowest_vaddr + kbuf.mem;
     98	}
     99	return ret;
    100}
    101
    102static int get_nr_ram_ranges_callback(struct resource *res, void *arg)
    103{
    104	unsigned int *nr_ranges = arg;
    105
    106	(*nr_ranges)++;
    107	return 0;
    108}
    109
    110static int prepare_elf64_ram_headers_callback(struct resource *res, void *arg)
    111{
    112	struct crash_mem *cmem = arg;
    113
    114	cmem->ranges[cmem->nr_ranges].start = res->start;
    115	cmem->ranges[cmem->nr_ranges].end = res->end;
    116	cmem->nr_ranges++;
    117
    118	return 0;
    119}
    120
    121static int prepare_elf_headers(void **addr, unsigned long *sz)
    122{
    123	struct crash_mem *cmem;
    124	unsigned int nr_ranges;
    125	int ret;
    126
    127	nr_ranges = 1; /* For exclusion of crashkernel region */
    128	walk_system_ram_res(0, -1, &nr_ranges, get_nr_ram_ranges_callback);
    129
    130	cmem = kmalloc(struct_size(cmem, ranges, nr_ranges), GFP_KERNEL);
    131	if (!cmem)
    132		return -ENOMEM;
    133
    134	cmem->max_nr_ranges = nr_ranges;
    135	cmem->nr_ranges = 0;
    136	ret = walk_system_ram_res(0, -1, cmem, prepare_elf64_ram_headers_callback);
    137	if (ret)
    138		goto out;
    139
    140	/* Exclude crashkernel region */
    141	ret = crash_exclude_mem_range(cmem, crashk_res.start, crashk_res.end);
    142	if (!ret)
    143		ret = crash_prepare_elf64_headers(cmem, true, addr, sz);
    144
    145out:
    146	kfree(cmem);
    147	return ret;
    148}
    149
    150static char *setup_kdump_cmdline(struct kimage *image, char *cmdline,
    151				 unsigned long cmdline_len)
    152{
    153	int elfcorehdr_strlen;
    154	char *cmdline_ptr;
    155
    156	cmdline_ptr = kzalloc(COMMAND_LINE_SIZE, GFP_KERNEL);
    157	if (!cmdline_ptr)
    158		return NULL;
    159
    160	elfcorehdr_strlen = sprintf(cmdline_ptr, "elfcorehdr=0x%lx ",
    161		image->elf_load_addr);
    162
    163	if (elfcorehdr_strlen + cmdline_len > COMMAND_LINE_SIZE) {
    164		pr_err("Appending elfcorehdr=<addr> exceeds cmdline size\n");
    165		kfree(cmdline_ptr);
    166		return NULL;
    167	}
    168
    169	memcpy(cmdline_ptr + elfcorehdr_strlen, cmdline, cmdline_len);
    170	/* Ensure it's nul terminated */
    171	cmdline_ptr[COMMAND_LINE_SIZE - 1] = '\0';
    172	return cmdline_ptr;
    173}
    174
    175static void *elf_kexec_load(struct kimage *image, char *kernel_buf,
    176			    unsigned long kernel_len, char *initrd,
    177			    unsigned long initrd_len, char *cmdline,
    178			    unsigned long cmdline_len)
    179{
    180	int ret;
    181	unsigned long old_kernel_pbase = ULONG_MAX;
    182	unsigned long new_kernel_pbase = 0UL;
    183	unsigned long initrd_pbase = 0UL;
    184	unsigned long headers_sz;
    185	unsigned long kernel_start;
    186	void *fdt, *headers;
    187	struct elfhdr ehdr;
    188	struct kexec_buf kbuf;
    189	struct kexec_elf_info elf_info;
    190	char *modified_cmdline = NULL;
    191
    192	ret = kexec_build_elf_info(kernel_buf, kernel_len, &ehdr, &elf_info);
    193	if (ret)
    194		return ERR_PTR(ret);
    195
    196	ret = elf_find_pbase(image, kernel_len, &ehdr, &elf_info,
    197			     &old_kernel_pbase, &new_kernel_pbase);
    198	if (ret)
    199		goto out;
    200	kernel_start = image->start;
    201	pr_notice("The entry point of kernel at 0x%lx\n", image->start);
    202
    203	/* Add the kernel binary to the image */
    204	ret = riscv_kexec_elf_load(image, &ehdr, &elf_info,
    205				   old_kernel_pbase, new_kernel_pbase);
    206	if (ret)
    207		goto out;
    208
    209	kbuf.image = image;
    210	kbuf.buf_min = new_kernel_pbase + kernel_len;
    211	kbuf.buf_max = ULONG_MAX;
    212
    213	/* Add elfcorehdr */
    214	if (image->type == KEXEC_TYPE_CRASH) {
    215		ret = prepare_elf_headers(&headers, &headers_sz);
    216		if (ret) {
    217			pr_err("Preparing elf core header failed\n");
    218			goto out;
    219		}
    220
    221		kbuf.buffer = headers;
    222		kbuf.bufsz = headers_sz;
    223		kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
    224		kbuf.memsz = headers_sz;
    225		kbuf.buf_align = ELF_CORE_HEADER_ALIGN;
    226		kbuf.top_down = true;
    227
    228		ret = kexec_add_buffer(&kbuf);
    229		if (ret) {
    230			vfree(headers);
    231			goto out;
    232		}
    233		image->elf_headers = headers;
    234		image->elf_load_addr = kbuf.mem;
    235		image->elf_headers_sz = headers_sz;
    236
    237		pr_debug("Loaded elf core header at 0x%lx bufsz=0x%lx memsz=0x%lx\n",
    238			 image->elf_load_addr, kbuf.bufsz, kbuf.memsz);
    239
    240		/* Setup cmdline for kdump kernel case */
    241		modified_cmdline = setup_kdump_cmdline(image, cmdline,
    242						       cmdline_len);
    243		if (!modified_cmdline) {
    244			pr_err("Setting up cmdline for kdump kernel failed\n");
    245			ret = -EINVAL;
    246			goto out;
    247		}
    248		cmdline = modified_cmdline;
    249	}
    250
    251#ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
    252	/* Add purgatory to the image */
    253	kbuf.top_down = true;
    254	kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
    255	ret = kexec_load_purgatory(image, &kbuf);
    256	if (ret) {
    257		pr_err("Error loading purgatory ret=%d\n", ret);
    258		goto out;
    259	}
    260	ret = kexec_purgatory_get_set_symbol(image, "riscv_kernel_entry",
    261					     &kernel_start,
    262					     sizeof(kernel_start), 0);
    263	if (ret)
    264		pr_err("Error update purgatory ret=%d\n", ret);
    265#endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
    266
    267	/* Add the initrd to the image */
    268	if (initrd != NULL) {
    269		kbuf.buffer = initrd;
    270		kbuf.bufsz = kbuf.memsz = initrd_len;
    271		kbuf.buf_align = PAGE_SIZE;
    272		kbuf.top_down = false;
    273		kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
    274		ret = kexec_add_buffer(&kbuf);
    275		if (ret)
    276			goto out;
    277		initrd_pbase = kbuf.mem;
    278		pr_notice("Loaded initrd at 0x%lx\n", initrd_pbase);
    279	}
    280
    281	/* Add the DTB to the image */
    282	fdt = of_kexec_alloc_and_setup_fdt(image, initrd_pbase,
    283					   initrd_len, cmdline, 0);
    284	if (!fdt) {
    285		pr_err("Error setting up the new device tree.\n");
    286		ret = -EINVAL;
    287		goto out;
    288	}
    289
    290	fdt_pack(fdt);
    291	kbuf.buffer = fdt;
    292	kbuf.bufsz = kbuf.memsz = fdt_totalsize(fdt);
    293	kbuf.buf_align = PAGE_SIZE;
    294	kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
    295	kbuf.top_down = true;
    296	ret = kexec_add_buffer(&kbuf);
    297	if (ret) {
    298		pr_err("Error add DTB kbuf ret=%d\n", ret);
    299		goto out_free_fdt;
    300	}
    301	pr_notice("Loaded device tree at 0x%lx\n", kbuf.mem);
    302	goto out;
    303
    304out_free_fdt:
    305	kvfree(fdt);
    306out:
    307	kfree(modified_cmdline);
    308	kexec_free_elf_info(&elf_info);
    309	return ret ? ERR_PTR(ret) : NULL;
    310}
    311
    312#define RV_X(x, s, n)  (((x) >> (s)) & ((1 << (n)) - 1))
    313#define RISCV_IMM_BITS 12
    314#define RISCV_IMM_REACH (1LL << RISCV_IMM_BITS)
    315#define RISCV_CONST_HIGH_PART(x) \
    316	(((x) + (RISCV_IMM_REACH >> 1)) & ~(RISCV_IMM_REACH - 1))
    317#define RISCV_CONST_LOW_PART(x) ((x) - RISCV_CONST_HIGH_PART(x))
    318
    319#define ENCODE_ITYPE_IMM(x) \
    320	(RV_X(x, 0, 12) << 20)
    321#define ENCODE_BTYPE_IMM(x) \
    322	((RV_X(x, 1, 4) << 8) | (RV_X(x, 5, 6) << 25) | \
    323	(RV_X(x, 11, 1) << 7) | (RV_X(x, 12, 1) << 31))
    324#define ENCODE_UTYPE_IMM(x) \
    325	(RV_X(x, 12, 20) << 12)
    326#define ENCODE_JTYPE_IMM(x) \
    327	((RV_X(x, 1, 10) << 21) | (RV_X(x, 11, 1) << 20) | \
    328	(RV_X(x, 12, 8) << 12) | (RV_X(x, 20, 1) << 31))
    329#define ENCODE_CBTYPE_IMM(x) \
    330	((RV_X(x, 1, 2) << 3) | (RV_X(x, 3, 2) << 10) | (RV_X(x, 5, 1) << 2) | \
    331	(RV_X(x, 6, 2) << 5) | (RV_X(x, 8, 1) << 12))
    332#define ENCODE_CJTYPE_IMM(x) \
    333	((RV_X(x, 1, 3) << 3) | (RV_X(x, 4, 1) << 11) | (RV_X(x, 5, 1) << 2) | \
    334	(RV_X(x, 6, 1) << 7) | (RV_X(x, 7, 1) << 6) | (RV_X(x, 8, 2) << 9) | \
    335	(RV_X(x, 10, 1) << 8) | (RV_X(x, 11, 1) << 12))
    336#define ENCODE_UJTYPE_IMM(x) \
    337	(ENCODE_UTYPE_IMM(RISCV_CONST_HIGH_PART(x)) | \
    338	(ENCODE_ITYPE_IMM(RISCV_CONST_LOW_PART(x)) << 32))
    339#define ENCODE_UITYPE_IMM(x) \
    340	(ENCODE_UTYPE_IMM(x) | (ENCODE_ITYPE_IMM(x) << 32))
    341
    342#define CLEAN_IMM(type, x) \
    343	((~ENCODE_##type##_IMM((uint64_t)(-1))) & (x))
    344
    345int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
    346				     Elf_Shdr *section,
    347				     const Elf_Shdr *relsec,
    348				     const Elf_Shdr *symtab)
    349{
    350	const char *strtab, *name, *shstrtab;
    351	const Elf_Shdr *sechdrs;
    352	Elf_Rela *relas;
    353	int i, r_type;
    354
    355	/* String & section header string table */
    356	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
    357	strtab = (char *)pi->ehdr + sechdrs[symtab->sh_link].sh_offset;
    358	shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
    359
    360	relas = (void *)pi->ehdr + relsec->sh_offset;
    361
    362	for (i = 0; i < relsec->sh_size / sizeof(*relas); i++) {
    363		const Elf_Sym *sym;	/* symbol to relocate */
    364		unsigned long addr;	/* final location after relocation */
    365		unsigned long val;	/* relocated symbol value */
    366		unsigned long sec_base;	/* relocated symbol value */
    367		void *loc;		/* tmp location to modify */
    368
    369		sym = (void *)pi->ehdr + symtab->sh_offset;
    370		sym += ELF64_R_SYM(relas[i].r_info);
    371
    372		if (sym->st_name)
    373			name = strtab + sym->st_name;
    374		else
    375			name = shstrtab + sechdrs[sym->st_shndx].sh_name;
    376
    377		loc = pi->purgatory_buf;
    378		loc += section->sh_offset;
    379		loc += relas[i].r_offset;
    380
    381		if (sym->st_shndx == SHN_ABS)
    382			sec_base = 0;
    383		else if (sym->st_shndx >= pi->ehdr->e_shnum) {
    384			pr_err("Invalid section %d for symbol %s\n",
    385			       sym->st_shndx, name);
    386			return -ENOEXEC;
    387		} else
    388			sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
    389
    390		val = sym->st_value;
    391		val += sec_base;
    392		val += relas[i].r_addend;
    393
    394		addr = section->sh_addr + relas[i].r_offset;
    395
    396		r_type = ELF64_R_TYPE(relas[i].r_info);
    397
    398		switch (r_type) {
    399		case R_RISCV_BRANCH:
    400			*(u32 *)loc = CLEAN_IMM(BTYPE, *(u32 *)loc) |
    401				 ENCODE_BTYPE_IMM(val - addr);
    402			break;
    403		case R_RISCV_JAL:
    404			*(u32 *)loc = CLEAN_IMM(JTYPE, *(u32 *)loc) |
    405				 ENCODE_JTYPE_IMM(val - addr);
    406			break;
    407		/*
    408		 * With no R_RISCV_PCREL_LO12_S, R_RISCV_PCREL_LO12_I
    409		 * sym is expected to be next to R_RISCV_PCREL_HI20
    410		 * in purgatory relsec. Handle it like R_RISCV_CALL
    411		 * sym, instead of searching the whole relsec.
    412		 */
    413		case R_RISCV_PCREL_HI20:
    414		case R_RISCV_CALL:
    415			*(u64 *)loc = CLEAN_IMM(UITYPE, *(u64 *)loc) |
    416				 ENCODE_UJTYPE_IMM(val - addr);
    417			break;
    418		case R_RISCV_RVC_BRANCH:
    419			*(u32 *)loc = CLEAN_IMM(CBTYPE, *(u32 *)loc) |
    420				 ENCODE_CBTYPE_IMM(val - addr);
    421			break;
    422		case R_RISCV_RVC_JUMP:
    423			*(u32 *)loc = CLEAN_IMM(CJTYPE, *(u32 *)loc) |
    424				 ENCODE_CJTYPE_IMM(val - addr);
    425			break;
    426		case R_RISCV_ADD32:
    427			*(u32 *)loc += val;
    428			break;
    429		case R_RISCV_SUB32:
    430			*(u32 *)loc -= val;
    431			break;
    432		/* It has been applied by R_RISCV_PCREL_HI20 sym */
    433		case R_RISCV_PCREL_LO12_I:
    434		case R_RISCV_ALIGN:
    435		case R_RISCV_RELAX:
    436			break;
    437		default:
    438			pr_err("Unknown rela relocation: %d\n", r_type);
    439			return -ENOEXEC;
    440		}
    441	}
    442	return 0;
    443}
    444
    445const struct kexec_file_ops elf_kexec_ops = {
    446	.probe = kexec_elf_probe,
    447	.load  = elf_kexec_load,
    448};