cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

machine_kexec.c (5964B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Copyright (C) 2019 FORTH-ICS/CARV
      4 *  Nick Kossifidis <mick@ics.forth.gr>
      5 */
      6
      7#include <linux/kexec.h>
      8#include <asm/kexec.h>		/* For riscv_kexec_* symbol defines */
      9#include <linux/smp.h>		/* For smp_send_stop () */
     10#include <asm/cacheflush.h>	/* For local_flush_icache_all() */
     11#include <asm/barrier.h>	/* For smp_wmb() */
     12#include <asm/page.h>		/* For PAGE_MASK */
     13#include <linux/libfdt.h>	/* For fdt_check_header() */
     14#include <asm/set_memory.h>	/* For set_memory_x() */
     15#include <linux/compiler.h>	/* For unreachable() */
     16#include <linux/cpu.h>		/* For cpu_down() */
     17#include <linux/reboot.h>
     18
     19/*
     20 * kexec_image_info - Print received image details
     21 */
     22static void
     23kexec_image_info(const struct kimage *image)
     24{
     25	unsigned long i;
     26
     27	pr_debug("Kexec image info:\n");
     28	pr_debug("\ttype:        %d\n", image->type);
     29	pr_debug("\tstart:       %lx\n", image->start);
     30	pr_debug("\thead:        %lx\n", image->head);
     31	pr_debug("\tnr_segments: %lu\n", image->nr_segments);
     32
     33	for (i = 0; i < image->nr_segments; i++) {
     34		pr_debug("\t    segment[%lu]: %016lx - %016lx", i,
     35			image->segment[i].mem,
     36			image->segment[i].mem + image->segment[i].memsz);
     37		pr_debug("\t\t0x%lx bytes, %lu pages\n",
     38			(unsigned long) image->segment[i].memsz,
     39			(unsigned long) image->segment[i].memsz /  PAGE_SIZE);
     40	}
     41}
     42
     43/*
     44 * machine_kexec_prepare - Initialize kexec
     45 *
     46 * This function is called from do_kexec_load, when the user has
     47 * provided us with an image to be loaded. Its goal is to validate
     48 * the image and prepare the control code buffer as needed.
     49 * Note that kimage_alloc_init has already been called and the
     50 * control buffer has already been allocated.
     51 */
     52int
     53machine_kexec_prepare(struct kimage *image)
     54{
     55	struct kimage_arch *internal = &image->arch;
     56	struct fdt_header fdt = {0};
     57	void *control_code_buffer = NULL;
     58	unsigned int control_code_buffer_sz = 0;
     59	int i = 0;
     60
     61	kexec_image_info(image);
     62
     63	/* Find the Flattened Device Tree and save its physical address */
     64	for (i = 0; i < image->nr_segments; i++) {
     65		if (image->segment[i].memsz <= sizeof(fdt))
     66			continue;
     67
     68		if (image->file_mode)
     69			memcpy(&fdt, image->segment[i].buf, sizeof(fdt));
     70		else if (copy_from_user(&fdt, image->segment[i].buf, sizeof(fdt)))
     71			continue;
     72
     73		if (fdt_check_header(&fdt))
     74			continue;
     75
     76		internal->fdt_addr = (unsigned long) image->segment[i].mem;
     77		break;
     78	}
     79
     80	if (!internal->fdt_addr) {
     81		pr_err("Device tree not included in the provided image\n");
     82		return -EINVAL;
     83	}
     84
     85	/* Copy the assembler code for relocation to the control page */
     86	if (image->type != KEXEC_TYPE_CRASH) {
     87		control_code_buffer = page_address(image->control_code_page);
     88		control_code_buffer_sz = page_size(image->control_code_page);
     89
     90		if (unlikely(riscv_kexec_relocate_size > control_code_buffer_sz)) {
     91			pr_err("Relocation code doesn't fit within a control page\n");
     92			return -EINVAL;
     93		}
     94
     95		memcpy(control_code_buffer, riscv_kexec_relocate,
     96			riscv_kexec_relocate_size);
     97
     98		/* Mark the control page executable */
     99		set_memory_x((unsigned long) control_code_buffer, 1);
    100	}
    101
    102	return 0;
    103}
    104
    105
    106/*
    107 * machine_kexec_cleanup - Cleanup any leftovers from
    108 *			   machine_kexec_prepare
    109 *
    110 * This function is called by kimage_free to handle any arch-specific
    111 * allocations done on machine_kexec_prepare. Since we didn't do any
    112 * allocations there, this is just an empty function. Note that the
    113 * control buffer is freed by kimage_free.
    114 */
    115void
    116machine_kexec_cleanup(struct kimage *image)
    117{
    118}
    119
    120
    121/*
    122 * machine_shutdown - Prepare for a kexec reboot
    123 *
    124 * This function is called by kernel_kexec just before machine_kexec
    125 * below. Its goal is to prepare the rest of the system (the other
    126 * harts and possibly devices etc) for a kexec reboot.
    127 */
    128void machine_shutdown(void)
    129{
    130	/*
    131	 * No more interrupts on this hart
    132	 * until we are back up.
    133	 */
    134	local_irq_disable();
    135
    136#if defined(CONFIG_HOTPLUG_CPU)
    137	smp_shutdown_nonboot_cpus(smp_processor_id());
    138#endif
    139}
    140
    141/*
    142 * machine_crash_shutdown - Prepare to kexec after a kernel crash
    143 *
    144 * This function is called by crash_kexec just before machine_kexec
    145 * below and its goal is similar to machine_shutdown, but in case of
    146 * a kernel crash. Since we don't handle such cases yet, this function
    147 * is empty.
    148 */
    149void
    150machine_crash_shutdown(struct pt_regs *regs)
    151{
    152	crash_save_cpu(regs, smp_processor_id());
    153	machine_shutdown();
    154	pr_info("Starting crashdump kernel...\n");
    155}
    156
    157/*
    158 * machine_kexec - Jump to the loaded kimage
    159 *
    160 * This function is called by kernel_kexec which is called by the
    161 * reboot system call when the reboot cmd is LINUX_REBOOT_CMD_KEXEC,
    162 * or by crash_kernel which is called by the kernel's arch-specific
    163 * trap handler in case of a kernel panic. It's the final stage of
    164 * the kexec process where the pre-loaded kimage is ready to be
    165 * executed. We assume at this point that all other harts are
    166 * suspended and this hart will be the new boot hart.
    167 */
    168void __noreturn
    169machine_kexec(struct kimage *image)
    170{
    171	struct kimage_arch *internal = &image->arch;
    172	unsigned long jump_addr = (unsigned long) image->start;
    173	unsigned long first_ind_entry = (unsigned long) &image->head;
    174	unsigned long this_cpu_id = smp_processor_id();
    175	unsigned long this_hart_id = cpuid_to_hartid_map(this_cpu_id);
    176	unsigned long fdt_addr = internal->fdt_addr;
    177	void *control_code_buffer = page_address(image->control_code_page);
    178	riscv_kexec_method kexec_method = NULL;
    179
    180	if (image->type != KEXEC_TYPE_CRASH)
    181		kexec_method = control_code_buffer;
    182	else
    183		kexec_method = (riscv_kexec_method) &riscv_kexec_norelocate;
    184
    185	pr_notice("Will call new kernel at %08lx from hart id %lx\n",
    186		  jump_addr, this_hart_id);
    187	pr_notice("FDT image at %08lx\n", fdt_addr);
    188
    189	/* Make sure the relocation code is visible to the hart */
    190	local_flush_icache_all();
    191
    192	/* Jump to the relocation code */
    193	pr_notice("Bye...\n");
    194	kexec_method(first_ind_entry, jump_addr, fdt_addr,
    195		     this_hart_id, kernel_map.va_pa_offset);
    196	unreachable();
    197}