cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

mmu.c (19100B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Copyright (C) 2019 Western Digital Corporation or its affiliates.
      4 *
      5 * Authors:
      6 *     Anup Patel <anup.patel@wdc.com>
      7 */
      8
      9#include <linux/bitops.h>
     10#include <linux/errno.h>
     11#include <linux/err.h>
     12#include <linux/hugetlb.h>
     13#include <linux/module.h>
     14#include <linux/uaccess.h>
     15#include <linux/vmalloc.h>
     16#include <linux/kvm_host.h>
     17#include <linux/sched/signal.h>
     18#include <asm/csr.h>
     19#include <asm/page.h>
     20#include <asm/pgtable.h>
     21
     22#ifdef CONFIG_64BIT
     23static unsigned long gstage_mode = (HGATP_MODE_SV39X4 << HGATP_MODE_SHIFT);
     24static unsigned long gstage_pgd_levels = 3;
     25#define gstage_index_bits	9
     26#else
     27static unsigned long gstage_mode = (HGATP_MODE_SV32X4 << HGATP_MODE_SHIFT);
     28static unsigned long gstage_pgd_levels = 2;
     29#define gstage_index_bits	10
     30#endif
     31
     32#define gstage_pgd_xbits	2
     33#define gstage_pgd_size	(1UL << (HGATP_PAGE_SHIFT + gstage_pgd_xbits))
     34#define gstage_gpa_bits	(HGATP_PAGE_SHIFT + \
     35			 (gstage_pgd_levels * gstage_index_bits) + \
     36			 gstage_pgd_xbits)
     37#define gstage_gpa_size	((gpa_t)(1ULL << gstage_gpa_bits))
     38
     39#define gstage_pte_leaf(__ptep)	\
     40	(pte_val(*(__ptep)) & (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC))
     41
     42static inline unsigned long gstage_pte_index(gpa_t addr, u32 level)
     43{
     44	unsigned long mask;
     45	unsigned long shift = HGATP_PAGE_SHIFT + (gstage_index_bits * level);
     46
     47	if (level == (gstage_pgd_levels - 1))
     48		mask = (PTRS_PER_PTE * (1UL << gstage_pgd_xbits)) - 1;
     49	else
     50		mask = PTRS_PER_PTE - 1;
     51
     52	return (addr >> shift) & mask;
     53}
     54
     55static inline unsigned long gstage_pte_page_vaddr(pte_t pte)
     56{
     57	return (unsigned long)pfn_to_virt(pte_val(pte) >> _PAGE_PFN_SHIFT);
     58}
     59
     60static int gstage_page_size_to_level(unsigned long page_size, u32 *out_level)
     61{
     62	u32 i;
     63	unsigned long psz = 1UL << 12;
     64
     65	for (i = 0; i < gstage_pgd_levels; i++) {
     66		if (page_size == (psz << (i * gstage_index_bits))) {
     67			*out_level = i;
     68			return 0;
     69		}
     70	}
     71
     72	return -EINVAL;
     73}
     74
     75static int gstage_level_to_page_order(u32 level, unsigned long *out_pgorder)
     76{
     77	if (gstage_pgd_levels < level)
     78		return -EINVAL;
     79
     80	*out_pgorder = 12 + (level * gstage_index_bits);
     81	return 0;
     82}
     83
     84static int gstage_level_to_page_size(u32 level, unsigned long *out_pgsize)
     85{
     86	int rc;
     87	unsigned long page_order = PAGE_SHIFT;
     88
     89	rc = gstage_level_to_page_order(level, &page_order);
     90	if (rc)
     91		return rc;
     92
     93	*out_pgsize = BIT(page_order);
     94	return 0;
     95}
     96
     97static bool gstage_get_leaf_entry(struct kvm *kvm, gpa_t addr,
     98				  pte_t **ptepp, u32 *ptep_level)
     99{
    100	pte_t *ptep;
    101	u32 current_level = gstage_pgd_levels - 1;
    102
    103	*ptep_level = current_level;
    104	ptep = (pte_t *)kvm->arch.pgd;
    105	ptep = &ptep[gstage_pte_index(addr, current_level)];
    106	while (ptep && pte_val(*ptep)) {
    107		if (gstage_pte_leaf(ptep)) {
    108			*ptep_level = current_level;
    109			*ptepp = ptep;
    110			return true;
    111		}
    112
    113		if (current_level) {
    114			current_level--;
    115			*ptep_level = current_level;
    116			ptep = (pte_t *)gstage_pte_page_vaddr(*ptep);
    117			ptep = &ptep[gstage_pte_index(addr, current_level)];
    118		} else {
    119			ptep = NULL;
    120		}
    121	}
    122
    123	return false;
    124}
    125
    126static void gstage_remote_tlb_flush(struct kvm *kvm, u32 level, gpa_t addr)
    127{
    128	unsigned long order = PAGE_SHIFT;
    129
    130	if (gstage_level_to_page_order(level, &order))
    131		return;
    132	addr &= ~(BIT(order) - 1);
    133
    134	kvm_riscv_hfence_gvma_vmid_gpa(kvm, -1UL, 0, addr, BIT(order), order);
    135}
    136
    137static int gstage_set_pte(struct kvm *kvm, u32 level,
    138			   struct kvm_mmu_memory_cache *pcache,
    139			   gpa_t addr, const pte_t *new_pte)
    140{
    141	u32 current_level = gstage_pgd_levels - 1;
    142	pte_t *next_ptep = (pte_t *)kvm->arch.pgd;
    143	pte_t *ptep = &next_ptep[gstage_pte_index(addr, current_level)];
    144
    145	if (current_level < level)
    146		return -EINVAL;
    147
    148	while (current_level != level) {
    149		if (gstage_pte_leaf(ptep))
    150			return -EEXIST;
    151
    152		if (!pte_val(*ptep)) {
    153			if (!pcache)
    154				return -ENOMEM;
    155			next_ptep = kvm_mmu_memory_cache_alloc(pcache);
    156			if (!next_ptep)
    157				return -ENOMEM;
    158			*ptep = pfn_pte(PFN_DOWN(__pa(next_ptep)),
    159					__pgprot(_PAGE_TABLE));
    160		} else {
    161			if (gstage_pte_leaf(ptep))
    162				return -EEXIST;
    163			next_ptep = (pte_t *)gstage_pte_page_vaddr(*ptep);
    164		}
    165
    166		current_level--;
    167		ptep = &next_ptep[gstage_pte_index(addr, current_level)];
    168	}
    169
    170	*ptep = *new_pte;
    171	if (gstage_pte_leaf(ptep))
    172		gstage_remote_tlb_flush(kvm, current_level, addr);
    173
    174	return 0;
    175}
    176
    177static int gstage_map_page(struct kvm *kvm,
    178			   struct kvm_mmu_memory_cache *pcache,
    179			   gpa_t gpa, phys_addr_t hpa,
    180			   unsigned long page_size,
    181			   bool page_rdonly, bool page_exec)
    182{
    183	int ret;
    184	u32 level = 0;
    185	pte_t new_pte;
    186	pgprot_t prot;
    187
    188	ret = gstage_page_size_to_level(page_size, &level);
    189	if (ret)
    190		return ret;
    191
    192	/*
    193	 * A RISC-V implementation can choose to either:
    194	 * 1) Update 'A' and 'D' PTE bits in hardware
    195	 * 2) Generate page fault when 'A' and/or 'D' bits are not set
    196	 *    PTE so that software can update these bits.
    197	 *
    198	 * We support both options mentioned above. To achieve this, we
    199	 * always set 'A' and 'D' PTE bits at time of creating G-stage
    200	 * mapping. To support KVM dirty page logging with both options
    201	 * mentioned above, we will write-protect G-stage PTEs to track
    202	 * dirty pages.
    203	 */
    204
    205	if (page_exec) {
    206		if (page_rdonly)
    207			prot = PAGE_READ_EXEC;
    208		else
    209			prot = PAGE_WRITE_EXEC;
    210	} else {
    211		if (page_rdonly)
    212			prot = PAGE_READ;
    213		else
    214			prot = PAGE_WRITE;
    215	}
    216	new_pte = pfn_pte(PFN_DOWN(hpa), prot);
    217	new_pte = pte_mkdirty(new_pte);
    218
    219	return gstage_set_pte(kvm, level, pcache, gpa, &new_pte);
    220}
    221
    222enum gstage_op {
    223	GSTAGE_OP_NOP = 0,	/* Nothing */
    224	GSTAGE_OP_CLEAR,	/* Clear/Unmap */
    225	GSTAGE_OP_WP,		/* Write-protect */
    226};
    227
    228static void gstage_op_pte(struct kvm *kvm, gpa_t addr,
    229			  pte_t *ptep, u32 ptep_level, enum gstage_op op)
    230{
    231	int i, ret;
    232	pte_t *next_ptep;
    233	u32 next_ptep_level;
    234	unsigned long next_page_size, page_size;
    235
    236	ret = gstage_level_to_page_size(ptep_level, &page_size);
    237	if (ret)
    238		return;
    239
    240	BUG_ON(addr & (page_size - 1));
    241
    242	if (!pte_val(*ptep))
    243		return;
    244
    245	if (ptep_level && !gstage_pte_leaf(ptep)) {
    246		next_ptep = (pte_t *)gstage_pte_page_vaddr(*ptep);
    247		next_ptep_level = ptep_level - 1;
    248		ret = gstage_level_to_page_size(next_ptep_level,
    249						&next_page_size);
    250		if (ret)
    251			return;
    252
    253		if (op == GSTAGE_OP_CLEAR)
    254			set_pte(ptep, __pte(0));
    255		for (i = 0; i < PTRS_PER_PTE; i++)
    256			gstage_op_pte(kvm, addr + i * next_page_size,
    257					&next_ptep[i], next_ptep_level, op);
    258		if (op == GSTAGE_OP_CLEAR)
    259			put_page(virt_to_page(next_ptep));
    260	} else {
    261		if (op == GSTAGE_OP_CLEAR)
    262			set_pte(ptep, __pte(0));
    263		else if (op == GSTAGE_OP_WP)
    264			set_pte(ptep, __pte(pte_val(*ptep) & ~_PAGE_WRITE));
    265		gstage_remote_tlb_flush(kvm, ptep_level, addr);
    266	}
    267}
    268
    269static void gstage_unmap_range(struct kvm *kvm, gpa_t start,
    270			       gpa_t size, bool may_block)
    271{
    272	int ret;
    273	pte_t *ptep;
    274	u32 ptep_level;
    275	bool found_leaf;
    276	unsigned long page_size;
    277	gpa_t addr = start, end = start + size;
    278
    279	while (addr < end) {
    280		found_leaf = gstage_get_leaf_entry(kvm, addr,
    281						   &ptep, &ptep_level);
    282		ret = gstage_level_to_page_size(ptep_level, &page_size);
    283		if (ret)
    284			break;
    285
    286		if (!found_leaf)
    287			goto next;
    288
    289		if (!(addr & (page_size - 1)) && ((end - addr) >= page_size))
    290			gstage_op_pte(kvm, addr, ptep,
    291				      ptep_level, GSTAGE_OP_CLEAR);
    292
    293next:
    294		addr += page_size;
    295
    296		/*
    297		 * If the range is too large, release the kvm->mmu_lock
    298		 * to prevent starvation and lockup detector warnings.
    299		 */
    300		if (may_block && addr < end)
    301			cond_resched_lock(&kvm->mmu_lock);
    302	}
    303}
    304
    305static void gstage_wp_range(struct kvm *kvm, gpa_t start, gpa_t end)
    306{
    307	int ret;
    308	pte_t *ptep;
    309	u32 ptep_level;
    310	bool found_leaf;
    311	gpa_t addr = start;
    312	unsigned long page_size;
    313
    314	while (addr < end) {
    315		found_leaf = gstage_get_leaf_entry(kvm, addr,
    316						   &ptep, &ptep_level);
    317		ret = gstage_level_to_page_size(ptep_level, &page_size);
    318		if (ret)
    319			break;
    320
    321		if (!found_leaf)
    322			goto next;
    323
    324		if (!(addr & (page_size - 1)) && ((end - addr) >= page_size))
    325			gstage_op_pte(kvm, addr, ptep,
    326				      ptep_level, GSTAGE_OP_WP);
    327
    328next:
    329		addr += page_size;
    330	}
    331}
    332
    333static void gstage_wp_memory_region(struct kvm *kvm, int slot)
    334{
    335	struct kvm_memslots *slots = kvm_memslots(kvm);
    336	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
    337	phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
    338	phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
    339
    340	spin_lock(&kvm->mmu_lock);
    341	gstage_wp_range(kvm, start, end);
    342	spin_unlock(&kvm->mmu_lock);
    343	kvm_flush_remote_tlbs(kvm);
    344}
    345
    346static int gstage_ioremap(struct kvm *kvm, gpa_t gpa, phys_addr_t hpa,
    347			  unsigned long size, bool writable)
    348{
    349	pte_t pte;
    350	int ret = 0;
    351	unsigned long pfn;
    352	phys_addr_t addr, end;
    353	struct kvm_mmu_memory_cache pcache;
    354
    355	memset(&pcache, 0, sizeof(pcache));
    356	pcache.gfp_zero = __GFP_ZERO;
    357
    358	end = (gpa + size + PAGE_SIZE - 1) & PAGE_MASK;
    359	pfn = __phys_to_pfn(hpa);
    360
    361	for (addr = gpa; addr < end; addr += PAGE_SIZE) {
    362		pte = pfn_pte(pfn, PAGE_KERNEL);
    363
    364		if (!writable)
    365			pte = pte_wrprotect(pte);
    366
    367		ret = kvm_mmu_topup_memory_cache(&pcache, gstage_pgd_levels);
    368		if (ret)
    369			goto out;
    370
    371		spin_lock(&kvm->mmu_lock);
    372		ret = gstage_set_pte(kvm, 0, &pcache, addr, &pte);
    373		spin_unlock(&kvm->mmu_lock);
    374		if (ret)
    375			goto out;
    376
    377		pfn++;
    378	}
    379
    380out:
    381	kvm_mmu_free_memory_cache(&pcache);
    382	return ret;
    383}
    384
    385void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
    386					     struct kvm_memory_slot *slot,
    387					     gfn_t gfn_offset,
    388					     unsigned long mask)
    389{
    390	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
    391	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
    392	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
    393
    394	gstage_wp_range(kvm, start, end);
    395}
    396
    397void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
    398{
    399}
    400
    401void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
    402					const struct kvm_memory_slot *memslot)
    403{
    404	kvm_flush_remote_tlbs(kvm);
    405}
    406
    407void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free)
    408{
    409}
    410
    411void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
    412{
    413}
    414
    415void kvm_arch_flush_shadow_all(struct kvm *kvm)
    416{
    417	kvm_riscv_gstage_free_pgd(kvm);
    418}
    419
    420void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
    421				   struct kvm_memory_slot *slot)
    422{
    423	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
    424	phys_addr_t size = slot->npages << PAGE_SHIFT;
    425
    426	spin_lock(&kvm->mmu_lock);
    427	gstage_unmap_range(kvm, gpa, size, false);
    428	spin_unlock(&kvm->mmu_lock);
    429}
    430
    431void kvm_arch_commit_memory_region(struct kvm *kvm,
    432				struct kvm_memory_slot *old,
    433				const struct kvm_memory_slot *new,
    434				enum kvm_mr_change change)
    435{
    436	/*
    437	 * At this point memslot has been committed and there is an
    438	 * allocated dirty_bitmap[], dirty pages will be tracked while
    439	 * the memory slot is write protected.
    440	 */
    441	if (change != KVM_MR_DELETE && new->flags & KVM_MEM_LOG_DIRTY_PAGES)
    442		gstage_wp_memory_region(kvm, new->id);
    443}
    444
    445int kvm_arch_prepare_memory_region(struct kvm *kvm,
    446				const struct kvm_memory_slot *old,
    447				struct kvm_memory_slot *new,
    448				enum kvm_mr_change change)
    449{
    450	hva_t hva, reg_end, size;
    451	gpa_t base_gpa;
    452	bool writable;
    453	int ret = 0;
    454
    455	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
    456			change != KVM_MR_FLAGS_ONLY)
    457		return 0;
    458
    459	/*
    460	 * Prevent userspace from creating a memory region outside of the GPA
    461	 * space addressable by the KVM guest GPA space.
    462	 */
    463	if ((new->base_gfn + new->npages) >=
    464	    (gstage_gpa_size >> PAGE_SHIFT))
    465		return -EFAULT;
    466
    467	hva = new->userspace_addr;
    468	size = new->npages << PAGE_SHIFT;
    469	reg_end = hva + size;
    470	base_gpa = new->base_gfn << PAGE_SHIFT;
    471	writable = !(new->flags & KVM_MEM_READONLY);
    472
    473	mmap_read_lock(current->mm);
    474
    475	/*
    476	 * A memory region could potentially cover multiple VMAs, and
    477	 * any holes between them, so iterate over all of them to find
    478	 * out if we can map any of them right now.
    479	 *
    480	 *     +--------------------------------------------+
    481	 * +---------------+----------------+   +----------------+
    482	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
    483	 * +---------------+----------------+   +----------------+
    484	 *     |               memory region                |
    485	 *     +--------------------------------------------+
    486	 */
    487	do {
    488		struct vm_area_struct *vma = find_vma(current->mm, hva);
    489		hva_t vm_start, vm_end;
    490
    491		if (!vma || vma->vm_start >= reg_end)
    492			break;
    493
    494		/*
    495		 * Mapping a read-only VMA is only allowed if the
    496		 * memory region is configured as read-only.
    497		 */
    498		if (writable && !(vma->vm_flags & VM_WRITE)) {
    499			ret = -EPERM;
    500			break;
    501		}
    502
    503		/* Take the intersection of this VMA with the memory region */
    504		vm_start = max(hva, vma->vm_start);
    505		vm_end = min(reg_end, vma->vm_end);
    506
    507		if (vma->vm_flags & VM_PFNMAP) {
    508			gpa_t gpa = base_gpa + (vm_start - hva);
    509			phys_addr_t pa;
    510
    511			pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
    512			pa += vm_start - vma->vm_start;
    513
    514			/* IO region dirty page logging not allowed */
    515			if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
    516				ret = -EINVAL;
    517				goto out;
    518			}
    519
    520			ret = gstage_ioremap(kvm, gpa, pa,
    521					     vm_end - vm_start, writable);
    522			if (ret)
    523				break;
    524		}
    525		hva = vm_end;
    526	} while (hva < reg_end);
    527
    528	if (change == KVM_MR_FLAGS_ONLY)
    529		goto out;
    530
    531	spin_lock(&kvm->mmu_lock);
    532	if (ret)
    533		gstage_unmap_range(kvm, base_gpa, size, false);
    534	spin_unlock(&kvm->mmu_lock);
    535
    536out:
    537	mmap_read_unlock(current->mm);
    538	return ret;
    539}
    540
    541bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
    542{
    543	if (!kvm->arch.pgd)
    544		return false;
    545
    546	gstage_unmap_range(kvm, range->start << PAGE_SHIFT,
    547			   (range->end - range->start) << PAGE_SHIFT,
    548			   range->may_block);
    549	return false;
    550}
    551
    552bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
    553{
    554	int ret;
    555	kvm_pfn_t pfn = pte_pfn(range->pte);
    556
    557	if (!kvm->arch.pgd)
    558		return false;
    559
    560	WARN_ON(range->end - range->start != 1);
    561
    562	ret = gstage_map_page(kvm, NULL, range->start << PAGE_SHIFT,
    563			      __pfn_to_phys(pfn), PAGE_SIZE, true, true);
    564	if (ret) {
    565		kvm_debug("Failed to map G-stage page (error %d)\n", ret);
    566		return true;
    567	}
    568
    569	return false;
    570}
    571
    572bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
    573{
    574	pte_t *ptep;
    575	u32 ptep_level = 0;
    576	u64 size = (range->end - range->start) << PAGE_SHIFT;
    577
    578	if (!kvm->arch.pgd)
    579		return false;
    580
    581	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PGDIR_SIZE);
    582
    583	if (!gstage_get_leaf_entry(kvm, range->start << PAGE_SHIFT,
    584				   &ptep, &ptep_level))
    585		return false;
    586
    587	return ptep_test_and_clear_young(NULL, 0, ptep);
    588}
    589
    590bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
    591{
    592	pte_t *ptep;
    593	u32 ptep_level = 0;
    594	u64 size = (range->end - range->start) << PAGE_SHIFT;
    595
    596	if (!kvm->arch.pgd)
    597		return false;
    598
    599	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PGDIR_SIZE);
    600
    601	if (!gstage_get_leaf_entry(kvm, range->start << PAGE_SHIFT,
    602				   &ptep, &ptep_level))
    603		return false;
    604
    605	return pte_young(*ptep);
    606}
    607
    608int kvm_riscv_gstage_map(struct kvm_vcpu *vcpu,
    609			 struct kvm_memory_slot *memslot,
    610			 gpa_t gpa, unsigned long hva, bool is_write)
    611{
    612	int ret;
    613	kvm_pfn_t hfn;
    614	bool writeable;
    615	short vma_pageshift;
    616	gfn_t gfn = gpa >> PAGE_SHIFT;
    617	struct vm_area_struct *vma;
    618	struct kvm *kvm = vcpu->kvm;
    619	struct kvm_mmu_memory_cache *pcache = &vcpu->arch.mmu_page_cache;
    620	bool logging = (memslot->dirty_bitmap &&
    621			!(memslot->flags & KVM_MEM_READONLY)) ? true : false;
    622	unsigned long vma_pagesize, mmu_seq;
    623
    624	mmap_read_lock(current->mm);
    625
    626	vma = find_vma_intersection(current->mm, hva, hva + 1);
    627	if (unlikely(!vma)) {
    628		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
    629		mmap_read_unlock(current->mm);
    630		return -EFAULT;
    631	}
    632
    633	if (is_vm_hugetlb_page(vma))
    634		vma_pageshift = huge_page_shift(hstate_vma(vma));
    635	else
    636		vma_pageshift = PAGE_SHIFT;
    637	vma_pagesize = 1ULL << vma_pageshift;
    638	if (logging || (vma->vm_flags & VM_PFNMAP))
    639		vma_pagesize = PAGE_SIZE;
    640
    641	if (vma_pagesize == PMD_SIZE || vma_pagesize == PGDIR_SIZE)
    642		gfn = (gpa & huge_page_mask(hstate_vma(vma))) >> PAGE_SHIFT;
    643
    644	mmap_read_unlock(current->mm);
    645
    646	if (vma_pagesize != PGDIR_SIZE &&
    647	    vma_pagesize != PMD_SIZE &&
    648	    vma_pagesize != PAGE_SIZE) {
    649		kvm_err("Invalid VMA page size 0x%lx\n", vma_pagesize);
    650		return -EFAULT;
    651	}
    652
    653	/* We need minimum second+third level pages */
    654	ret = kvm_mmu_topup_memory_cache(pcache, gstage_pgd_levels);
    655	if (ret) {
    656		kvm_err("Failed to topup G-stage cache\n");
    657		return ret;
    658	}
    659
    660	mmu_seq = kvm->mmu_notifier_seq;
    661
    662	hfn = gfn_to_pfn_prot(kvm, gfn, is_write, &writeable);
    663	if (hfn == KVM_PFN_ERR_HWPOISON) {
    664		send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva,
    665				vma_pageshift, current);
    666		return 0;
    667	}
    668	if (is_error_noslot_pfn(hfn))
    669		return -EFAULT;
    670
    671	/*
    672	 * If logging is active then we allow writable pages only
    673	 * for write faults.
    674	 */
    675	if (logging && !is_write)
    676		writeable = false;
    677
    678	spin_lock(&kvm->mmu_lock);
    679
    680	if (mmu_notifier_retry(kvm, mmu_seq))
    681		goto out_unlock;
    682
    683	if (writeable) {
    684		kvm_set_pfn_dirty(hfn);
    685		mark_page_dirty(kvm, gfn);
    686		ret = gstage_map_page(kvm, pcache, gpa, hfn << PAGE_SHIFT,
    687				      vma_pagesize, false, true);
    688	} else {
    689		ret = gstage_map_page(kvm, pcache, gpa, hfn << PAGE_SHIFT,
    690				      vma_pagesize, true, true);
    691	}
    692
    693	if (ret)
    694		kvm_err("Failed to map in G-stage\n");
    695
    696out_unlock:
    697	spin_unlock(&kvm->mmu_lock);
    698	kvm_set_pfn_accessed(hfn);
    699	kvm_release_pfn_clean(hfn);
    700	return ret;
    701}
    702
    703int kvm_riscv_gstage_alloc_pgd(struct kvm *kvm)
    704{
    705	struct page *pgd_page;
    706
    707	if (kvm->arch.pgd != NULL) {
    708		kvm_err("kvm_arch already initialized?\n");
    709		return -EINVAL;
    710	}
    711
    712	pgd_page = alloc_pages(GFP_KERNEL | __GFP_ZERO,
    713				get_order(gstage_pgd_size));
    714	if (!pgd_page)
    715		return -ENOMEM;
    716	kvm->arch.pgd = page_to_virt(pgd_page);
    717	kvm->arch.pgd_phys = page_to_phys(pgd_page);
    718
    719	return 0;
    720}
    721
    722void kvm_riscv_gstage_free_pgd(struct kvm *kvm)
    723{
    724	void *pgd = NULL;
    725
    726	spin_lock(&kvm->mmu_lock);
    727	if (kvm->arch.pgd) {
    728		gstage_unmap_range(kvm, 0UL, gstage_gpa_size, false);
    729		pgd = READ_ONCE(kvm->arch.pgd);
    730		kvm->arch.pgd = NULL;
    731		kvm->arch.pgd_phys = 0;
    732	}
    733	spin_unlock(&kvm->mmu_lock);
    734
    735	if (pgd)
    736		free_pages((unsigned long)pgd, get_order(gstage_pgd_size));
    737}
    738
    739void kvm_riscv_gstage_update_hgatp(struct kvm_vcpu *vcpu)
    740{
    741	unsigned long hgatp = gstage_mode;
    742	struct kvm_arch *k = &vcpu->kvm->arch;
    743
    744	hgatp |= (READ_ONCE(k->vmid.vmid) << HGATP_VMID_SHIFT) &
    745		 HGATP_VMID_MASK;
    746	hgatp |= (k->pgd_phys >> PAGE_SHIFT) & HGATP_PPN;
    747
    748	csr_write(CSR_HGATP, hgatp);
    749
    750	if (!kvm_riscv_gstage_vmid_bits())
    751		kvm_riscv_local_hfence_gvma_all();
    752}
    753
    754void kvm_riscv_gstage_mode_detect(void)
    755{
    756#ifdef CONFIG_64BIT
    757	/* Try Sv57x4 G-stage mode */
    758	csr_write(CSR_HGATP, HGATP_MODE_SV57X4 << HGATP_MODE_SHIFT);
    759	if ((csr_read(CSR_HGATP) >> HGATP_MODE_SHIFT) == HGATP_MODE_SV57X4) {
    760		gstage_mode = (HGATP_MODE_SV57X4 << HGATP_MODE_SHIFT);
    761		gstage_pgd_levels = 5;
    762		goto skip_sv48x4_test;
    763	}
    764
    765	/* Try Sv48x4 G-stage mode */
    766	csr_write(CSR_HGATP, HGATP_MODE_SV48X4 << HGATP_MODE_SHIFT);
    767	if ((csr_read(CSR_HGATP) >> HGATP_MODE_SHIFT) == HGATP_MODE_SV48X4) {
    768		gstage_mode = (HGATP_MODE_SV48X4 << HGATP_MODE_SHIFT);
    769		gstage_pgd_levels = 4;
    770	}
    771skip_sv48x4_test:
    772
    773	csr_write(CSR_HGATP, 0);
    774	kvm_riscv_local_hfence_gvma_all();
    775#endif
    776}
    777
    778unsigned long kvm_riscv_gstage_mode(void)
    779{
    780	return gstage_mode >> HGATP_MODE_SHIFT;
    781}
    782
    783int kvm_riscv_gstage_gpa_bits(void)
    784{
    785	return gstage_gpa_bits;
    786}