cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

kaslr.c (6380B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Copyright IBM Corp. 2019
      4 */
      5#include <linux/pgtable.h>
      6#include <asm/mem_detect.h>
      7#include <asm/cpacf.h>
      8#include <asm/timex.h>
      9#include <asm/sclp.h>
     10#include <asm/kasan.h>
     11#include "decompressor.h"
     12#include "boot.h"
     13
     14#define PRNG_MODE_TDES	 1
     15#define PRNG_MODE_SHA512 2
     16#define PRNG_MODE_TRNG	 3
     17
     18struct prno_parm {
     19	u32 res;
     20	u32 reseed_counter;
     21	u64 stream_bytes;
     22	u8  V[112];
     23	u8  C[112];
     24};
     25
     26struct prng_parm {
     27	u8  parm_block[32];
     28	u32 reseed_counter;
     29	u64 byte_counter;
     30};
     31
     32static int check_prng(void)
     33{
     34	if (!cpacf_query_func(CPACF_KMC, CPACF_KMC_PRNG)) {
     35		sclp_early_printk("KASLR disabled: CPU has no PRNG\n");
     36		return 0;
     37	}
     38	if (cpacf_query_func(CPACF_PRNO, CPACF_PRNO_TRNG))
     39		return PRNG_MODE_TRNG;
     40	if (cpacf_query_func(CPACF_PRNO, CPACF_PRNO_SHA512_DRNG_GEN))
     41		return PRNG_MODE_SHA512;
     42	else
     43		return PRNG_MODE_TDES;
     44}
     45
     46static int get_random(unsigned long limit, unsigned long *value)
     47{
     48	struct prng_parm prng = {
     49		/* initial parameter block for tdes mode, copied from libica */
     50		.parm_block = {
     51			0x0F, 0x2B, 0x8E, 0x63, 0x8C, 0x8E, 0xD2, 0x52,
     52			0x64, 0xB7, 0xA0, 0x7B, 0x75, 0x28, 0xB8, 0xF4,
     53			0x75, 0x5F, 0xD2, 0xA6, 0x8D, 0x97, 0x11, 0xFF,
     54			0x49, 0xD8, 0x23, 0xF3, 0x7E, 0x21, 0xEC, 0xA0
     55		},
     56	};
     57	unsigned long seed, random;
     58	struct prno_parm prno;
     59	__u64 entropy[4];
     60	int mode, i;
     61
     62	mode = check_prng();
     63	seed = get_tod_clock_fast();
     64	switch (mode) {
     65	case PRNG_MODE_TRNG:
     66		cpacf_trng(NULL, 0, (u8 *) &random, sizeof(random));
     67		break;
     68	case PRNG_MODE_SHA512:
     69		cpacf_prno(CPACF_PRNO_SHA512_DRNG_SEED, &prno, NULL, 0,
     70			   (u8 *) &seed, sizeof(seed));
     71		cpacf_prno(CPACF_PRNO_SHA512_DRNG_GEN, &prno, (u8 *) &random,
     72			   sizeof(random), NULL, 0);
     73		break;
     74	case PRNG_MODE_TDES:
     75		/* add entropy */
     76		*(unsigned long *) prng.parm_block ^= seed;
     77		for (i = 0; i < 16; i++) {
     78			cpacf_kmc(CPACF_KMC_PRNG, prng.parm_block,
     79				  (u8 *) entropy, (u8 *) entropy,
     80				  sizeof(entropy));
     81			memcpy(prng.parm_block, entropy, sizeof(entropy));
     82		}
     83		random = seed;
     84		cpacf_kmc(CPACF_KMC_PRNG, prng.parm_block, (u8 *) &random,
     85			  (u8 *) &random, sizeof(random));
     86		break;
     87	default:
     88		return -1;
     89	}
     90	*value = random % limit;
     91	return 0;
     92}
     93
     94/*
     95 * To randomize kernel base address we have to consider several facts:
     96 * 1. physical online memory might not be continuous and have holes. mem_detect
     97 *    info contains list of online memory ranges we should consider.
     98 * 2. we have several memory regions which are occupied and we should not
     99 *    overlap and destroy them. Currently safe_addr tells us the border below
    100 *    which all those occupied regions are. We are safe to use anything above
    101 *    safe_addr.
    102 * 3. the upper limit might apply as well, even if memory above that limit is
    103 *    online. Currently those limitations are:
    104 *    3.1. Limit set by "mem=" kernel command line option
    105 *    3.2. memory reserved at the end for kasan initialization.
    106 * 4. kernel base address must be aligned to THREAD_SIZE (kernel stack size).
    107 *    Which is required for CONFIG_CHECK_STACK. Currently THREAD_SIZE is 4 pages
    108 *    (16 pages when the kernel is built with kasan enabled)
    109 * Assumptions:
    110 * 1. kernel size (including .bss size) and upper memory limit are page aligned.
    111 * 2. mem_detect memory region start is THREAD_SIZE aligned / end is PAGE_SIZE
    112 *    aligned (in practice memory configurations granularity on z/VM and LPAR
    113 *    is 1mb).
    114 *
    115 * To guarantee uniform distribution of kernel base address among all suitable
    116 * addresses we generate random value just once. For that we need to build a
    117 * continuous range in which every value would be suitable. We can build this
    118 * range by simply counting all suitable addresses (let's call them positions)
    119 * which would be valid as kernel base address. To count positions we iterate
    120 * over online memory ranges. For each range which is big enough for the
    121 * kernel image we count all suitable addresses we can put the kernel image at
    122 * that is
    123 * (end - start - kernel_size) / THREAD_SIZE + 1
    124 * Two functions count_valid_kernel_positions and position_to_address help
    125 * to count positions in memory range given and then convert position back
    126 * to address.
    127 */
    128static unsigned long count_valid_kernel_positions(unsigned long kernel_size,
    129						  unsigned long _min,
    130						  unsigned long _max)
    131{
    132	unsigned long start, end, pos = 0;
    133	int i;
    134
    135	for_each_mem_detect_block(i, &start, &end) {
    136		if (_min >= end)
    137			continue;
    138		if (start >= _max)
    139			break;
    140		start = max(_min, start);
    141		end = min(_max, end);
    142		if (end - start < kernel_size)
    143			continue;
    144		pos += (end - start - kernel_size) / THREAD_SIZE + 1;
    145	}
    146
    147	return pos;
    148}
    149
    150static unsigned long position_to_address(unsigned long pos, unsigned long kernel_size,
    151				 unsigned long _min, unsigned long _max)
    152{
    153	unsigned long start, end;
    154	int i;
    155
    156	for_each_mem_detect_block(i, &start, &end) {
    157		if (_min >= end)
    158			continue;
    159		if (start >= _max)
    160			break;
    161		start = max(_min, start);
    162		end = min(_max, end);
    163		if (end - start < kernel_size)
    164			continue;
    165		if ((end - start - kernel_size) / THREAD_SIZE + 1 >= pos)
    166			return start + (pos - 1) * THREAD_SIZE;
    167		pos -= (end - start - kernel_size) / THREAD_SIZE + 1;
    168	}
    169
    170	return 0;
    171}
    172
    173unsigned long get_random_base(unsigned long safe_addr)
    174{
    175	unsigned long memory_limit = get_mem_detect_end();
    176	unsigned long base_pos, max_pos, kernel_size;
    177	unsigned long kasan_needs;
    178	int i;
    179
    180	memory_limit = min(memory_limit, ident_map_size);
    181
    182	/*
    183	 * Avoid putting kernel in the end of physical memory
    184	 * which kasan will use for shadow memory and early pgtable
    185	 * mapping allocations.
    186	 */
    187	memory_limit -= kasan_estimate_memory_needs(memory_limit);
    188
    189	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && initrd_data.start && initrd_data.size) {
    190		if (safe_addr < initrd_data.start + initrd_data.size)
    191			safe_addr = initrd_data.start + initrd_data.size;
    192	}
    193	safe_addr = ALIGN(safe_addr, THREAD_SIZE);
    194
    195	kernel_size = vmlinux.image_size + vmlinux.bss_size;
    196	if (safe_addr + kernel_size > memory_limit)
    197		return 0;
    198
    199	max_pos = count_valid_kernel_positions(kernel_size, safe_addr, memory_limit);
    200	if (!max_pos) {
    201		sclp_early_printk("KASLR disabled: not enough memory\n");
    202		return 0;
    203	}
    204
    205	/* we need a value in the range [1, base_pos] inclusive */
    206	if (get_random(max_pos, &base_pos))
    207		return 0;
    208	return position_to_address(base_pos + 1, kernel_size, safe_addr, memory_limit);
    209}