cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

crc32le-vx.S (7965B)


      1/* SPDX-License-Identifier: GPL-2.0 */
      2/*
      3 * Hardware-accelerated CRC-32 variants for Linux on z Systems
      4 *
      5 * Use the z/Architecture Vector Extension Facility to accelerate the
      6 * computing of bitreflected CRC-32 checksums for IEEE 802.3 Ethernet
      7 * and Castagnoli.
      8 *
      9 * This CRC-32 implementation algorithm is bitreflected and processes
     10 * the least-significant bit first (Little-Endian).
     11 *
     12 * Copyright IBM Corp. 2015
     13 * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
     14 */
     15
     16#include <linux/linkage.h>
     17#include <asm/nospec-insn.h>
     18#include <asm/vx-insn.h>
     19
     20/* Vector register range containing CRC-32 constants */
     21#define CONST_PERM_LE2BE	%v9
     22#define CONST_R2R1		%v10
     23#define CONST_R4R3		%v11
     24#define CONST_R5		%v12
     25#define CONST_RU_POLY		%v13
     26#define CONST_CRC_POLY		%v14
     27
     28.data
     29.align 8
     30
     31/*
     32 * The CRC-32 constant block contains reduction constants to fold and
     33 * process particular chunks of the input data stream in parallel.
     34 *
     35 * For the CRC-32 variants, the constants are precomputed according to
     36 * these definitions:
     37 *
     38 *	R1 = [(x4*128+32 mod P'(x) << 32)]' << 1
     39 *	R2 = [(x4*128-32 mod P'(x) << 32)]' << 1
     40 *	R3 = [(x128+32 mod P'(x) << 32)]'   << 1
     41 *	R4 = [(x128-32 mod P'(x) << 32)]'   << 1
     42 *	R5 = [(x64 mod P'(x) << 32)]'	    << 1
     43 *	R6 = [(x32 mod P'(x) << 32)]'	    << 1
     44 *
     45 *	The bitreflected Barret reduction constant, u', is defined as
     46 *	the bit reversal of floor(x**64 / P(x)).
     47 *
     48 *	where P(x) is the polynomial in the normal domain and the P'(x) is the
     49 *	polynomial in the reversed (bitreflected) domain.
     50 *
     51 * CRC-32 (IEEE 802.3 Ethernet, ...) polynomials:
     52 *
     53 *	P(x)  = 0x04C11DB7
     54 *	P'(x) = 0xEDB88320
     55 *
     56 * CRC-32C (Castagnoli) polynomials:
     57 *
     58 *	P(x)  = 0x1EDC6F41
     59 *	P'(x) = 0x82F63B78
     60 */
     61
     62.Lconstants_CRC_32_LE:
     63	.octa		0x0F0E0D0C0B0A09080706050403020100	# BE->LE mask
     64	.quad		0x1c6e41596, 0x154442bd4		# R2, R1
     65	.quad		0x0ccaa009e, 0x1751997d0		# R4, R3
     66	.octa		0x163cd6124				# R5
     67	.octa		0x1F7011641				# u'
     68	.octa		0x1DB710641				# P'(x) << 1
     69
     70.Lconstants_CRC_32C_LE:
     71	.octa		0x0F0E0D0C0B0A09080706050403020100	# BE->LE mask
     72	.quad		0x09e4addf8, 0x740eef02			# R2, R1
     73	.quad		0x14cd00bd6, 0xf20c0dfe			# R4, R3
     74	.octa		0x0dd45aab8				# R5
     75	.octa		0x0dea713f1				# u'
     76	.octa		0x105ec76f0				# P'(x) << 1
     77
     78.previous
     79
     80	GEN_BR_THUNK %r14
     81
     82.text
     83
     84/*
     85 * The CRC-32 functions use these calling conventions:
     86 *
     87 * Parameters:
     88 *
     89 *	%r2:	Initial CRC value, typically ~0; and final CRC (return) value.
     90 *	%r3:	Input buffer pointer, performance might be improved if the
     91 *		buffer is on a doubleword boundary.
     92 *	%r4:	Length of the buffer, must be 64 bytes or greater.
     93 *
     94 * Register usage:
     95 *
     96 *	%r5:	CRC-32 constant pool base pointer.
     97 *	V0:	Initial CRC value and intermediate constants and results.
     98 *	V1..V4:	Data for CRC computation.
     99 *	V5..V8:	Next data chunks that are fetched from the input buffer.
    100 *	V9:	Constant for BE->LE conversion and shift operations
    101 *
    102 *	V10..V14: CRC-32 constants.
    103 */
    104
    105ENTRY(crc32_le_vgfm_16)
    106	larl	%r5,.Lconstants_CRC_32_LE
    107	j	crc32_le_vgfm_generic
    108ENDPROC(crc32_le_vgfm_16)
    109
    110ENTRY(crc32c_le_vgfm_16)
    111	larl	%r5,.Lconstants_CRC_32C_LE
    112	j	crc32_le_vgfm_generic
    113ENDPROC(crc32c_le_vgfm_16)
    114
    115ENTRY(crc32_le_vgfm_generic)
    116	/* Load CRC-32 constants */
    117	VLM	CONST_PERM_LE2BE,CONST_CRC_POLY,0,%r5
    118
    119	/*
    120	 * Load the initial CRC value.
    121	 *
    122	 * The CRC value is loaded into the rightmost word of the
    123	 * vector register and is later XORed with the LSB portion
    124	 * of the loaded input data.
    125	 */
    126	VZERO	%v0			/* Clear V0 */
    127	VLVGF	%v0,%r2,3		/* Load CRC into rightmost word */
    128
    129	/* Load a 64-byte data chunk and XOR with CRC */
    130	VLM	%v1,%v4,0,%r3		/* 64-bytes into V1..V4 */
    131	VPERM	%v1,%v1,%v1,CONST_PERM_LE2BE
    132	VPERM	%v2,%v2,%v2,CONST_PERM_LE2BE
    133	VPERM	%v3,%v3,%v3,CONST_PERM_LE2BE
    134	VPERM	%v4,%v4,%v4,CONST_PERM_LE2BE
    135
    136	VX	%v1,%v0,%v1		/* V1 ^= CRC */
    137	aghi	%r3,64			/* BUF = BUF + 64 */
    138	aghi	%r4,-64			/* LEN = LEN - 64 */
    139
    140	cghi	%r4,64
    141	jl	.Lless_than_64bytes
    142
    143.Lfold_64bytes_loop:
    144	/* Load the next 64-byte data chunk into V5 to V8 */
    145	VLM	%v5,%v8,0,%r3
    146	VPERM	%v5,%v5,%v5,CONST_PERM_LE2BE
    147	VPERM	%v6,%v6,%v6,CONST_PERM_LE2BE
    148	VPERM	%v7,%v7,%v7,CONST_PERM_LE2BE
    149	VPERM	%v8,%v8,%v8,CONST_PERM_LE2BE
    150
    151	/*
    152	 * Perform a GF(2) multiplication of the doublewords in V1 with
    153	 * the R1 and R2 reduction constants in V0.  The intermediate result
    154	 * is then folded (accumulated) with the next data chunk in V5 and
    155	 * stored in V1. Repeat this step for the register contents
    156	 * in V2, V3, and V4 respectively.
    157	 */
    158	VGFMAG	%v1,CONST_R2R1,%v1,%v5
    159	VGFMAG	%v2,CONST_R2R1,%v2,%v6
    160	VGFMAG	%v3,CONST_R2R1,%v3,%v7
    161	VGFMAG	%v4,CONST_R2R1,%v4,%v8
    162
    163	aghi	%r3,64			/* BUF = BUF + 64 */
    164	aghi	%r4,-64			/* LEN = LEN - 64 */
    165
    166	cghi	%r4,64
    167	jnl	.Lfold_64bytes_loop
    168
    169.Lless_than_64bytes:
    170	/*
    171	 * Fold V1 to V4 into a single 128-bit value in V1.  Multiply V1 with R3
    172	 * and R4 and accumulating the next 128-bit chunk until a single 128-bit
    173	 * value remains.
    174	 */
    175	VGFMAG	%v1,CONST_R4R3,%v1,%v2
    176	VGFMAG	%v1,CONST_R4R3,%v1,%v3
    177	VGFMAG	%v1,CONST_R4R3,%v1,%v4
    178
    179	cghi	%r4,16
    180	jl	.Lfinal_fold
    181
    182.Lfold_16bytes_loop:
    183
    184	VL	%v2,0,,%r3		/* Load next data chunk */
    185	VPERM	%v2,%v2,%v2,CONST_PERM_LE2BE
    186	VGFMAG	%v1,CONST_R4R3,%v1,%v2	/* Fold next data chunk */
    187
    188	aghi	%r3,16
    189	aghi	%r4,-16
    190
    191	cghi	%r4,16
    192	jnl	.Lfold_16bytes_loop
    193
    194.Lfinal_fold:
    195	/*
    196	 * Set up a vector register for byte shifts.  The shift value must
    197	 * be loaded in bits 1-4 in byte element 7 of a vector register.
    198	 * Shift by 8 bytes: 0x40
    199	 * Shift by 4 bytes: 0x20
    200	 */
    201	VLEIB	%v9,0x40,7
    202
    203	/*
    204	 * Prepare V0 for the next GF(2) multiplication: shift V0 by 8 bytes
    205	 * to move R4 into the rightmost doubleword and set the leftmost
    206	 * doubleword to 0x1.
    207	 */
    208	VSRLB	%v0,CONST_R4R3,%v9
    209	VLEIG	%v0,1,0
    210
    211	/*
    212	 * Compute GF(2) product of V1 and V0.	The rightmost doubleword
    213	 * of V1 is multiplied with R4.  The leftmost doubleword of V1 is
    214	 * multiplied by 0x1 and is then XORed with rightmost product.
    215	 * Implicitly, the intermediate leftmost product becomes padded
    216	 */
    217	VGFMG	%v1,%v0,%v1
    218
    219	/*
    220	 * Now do the final 32-bit fold by multiplying the rightmost word
    221	 * in V1 with R5 and XOR the result with the remaining bits in V1.
    222	 *
    223	 * To achieve this by a single VGFMAG, right shift V1 by a word
    224	 * and store the result in V2 which is then accumulated.  Use the
    225	 * vector unpack instruction to load the rightmost half of the
    226	 * doubleword into the rightmost doubleword element of V1; the other
    227	 * half is loaded in the leftmost doubleword.
    228	 * The vector register with CONST_R5 contains the R5 constant in the
    229	 * rightmost doubleword and the leftmost doubleword is zero to ignore
    230	 * the leftmost product of V1.
    231	 */
    232	VLEIB	%v9,0x20,7		  /* Shift by words */
    233	VSRLB	%v2,%v1,%v9		  /* Store remaining bits in V2 */
    234	VUPLLF	%v1,%v1			  /* Split rightmost doubleword */
    235	VGFMAG	%v1,CONST_R5,%v1,%v2	  /* V1 = (V1 * R5) XOR V2 */
    236
    237	/*
    238	 * Apply a Barret reduction to compute the final 32-bit CRC value.
    239	 *
    240	 * The input values to the Barret reduction are the degree-63 polynomial
    241	 * in V1 (R(x)), degree-32 generator polynomial, and the reduction
    242	 * constant u.	The Barret reduction result is the CRC value of R(x) mod
    243	 * P(x).
    244	 *
    245	 * The Barret reduction algorithm is defined as:
    246	 *
    247	 *    1. T1(x) = floor( R(x) / x^32 ) GF2MUL u
    248	 *    2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x)
    249	 *    3. C(x)  = R(x) XOR T2(x) mod x^32
    250	 *
    251	 *  Note: The leftmost doubleword of vector register containing
    252	 *  CONST_RU_POLY is zero and, thus, the intermediate GF(2) product
    253	 *  is zero and does not contribute to the final result.
    254	 */
    255
    256	/* T1(x) = floor( R(x) / x^32 ) GF2MUL u */
    257	VUPLLF	%v2,%v1
    258	VGFMG	%v2,CONST_RU_POLY,%v2
    259
    260	/*
    261	 * Compute the GF(2) product of the CRC polynomial with T1(x) in
    262	 * V2 and XOR the intermediate result, T2(x), with the value in V1.
    263	 * The final result is stored in word element 2 of V2.
    264	 */
    265	VUPLLF	%v2,%v2
    266	VGFMAG	%v2,CONST_CRC_POLY,%v2,%v1
    267
    268.Ldone:
    269	VLGVF	%r2,%v2,2
    270	BR_EX	%r14
    271ENDPROC(crc32_le_vgfm_generic)
    272
    273.previous