cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

crash_dump.c (17815B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * S390 kdump implementation
      4 *
      5 * Copyright IBM Corp. 2011
      6 * Author(s): Michael Holzheu <holzheu@linux.vnet.ibm.com>
      7 */
      8
      9#include <linux/crash_dump.h>
     10#include <asm/lowcore.h>
     11#include <linux/kernel.h>
     12#include <linux/init.h>
     13#include <linux/mm.h>
     14#include <linux/gfp.h>
     15#include <linux/slab.h>
     16#include <linux/memblock.h>
     17#include <linux/elf.h>
     18#include <linux/uio.h>
     19#include <asm/asm-offsets.h>
     20#include <asm/os_info.h>
     21#include <asm/elf.h>
     22#include <asm/ipl.h>
     23#include <asm/sclp.h>
     24
     25#define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y)))
     26#define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y)))
     27#define PTR_DIFF(x, y) ((unsigned long)(((char *) (x)) - ((unsigned long) (y))))
     28
     29static struct memblock_region oldmem_region;
     30
     31static struct memblock_type oldmem_type = {
     32	.cnt = 1,
     33	.max = 1,
     34	.total_size = 0,
     35	.regions = &oldmem_region,
     36	.name = "oldmem",
     37};
     38
     39struct save_area {
     40	struct list_head list;
     41	u64 psw[2];
     42	u64 ctrs[16];
     43	u64 gprs[16];
     44	u32 acrs[16];
     45	u64 fprs[16];
     46	u32 fpc;
     47	u32 prefix;
     48	u64 todpreg;
     49	u64 timer;
     50	u64 todcmp;
     51	u64 vxrs_low[16];
     52	__vector128 vxrs_high[16];
     53};
     54
     55static LIST_HEAD(dump_save_areas);
     56
     57/*
     58 * Allocate a save area
     59 */
     60struct save_area * __init save_area_alloc(bool is_boot_cpu)
     61{
     62	struct save_area *sa;
     63
     64	sa = memblock_alloc(sizeof(*sa), 8);
     65	if (!sa)
     66		panic("Failed to allocate save area\n");
     67
     68	if (is_boot_cpu)
     69		list_add(&sa->list, &dump_save_areas);
     70	else
     71		list_add_tail(&sa->list, &dump_save_areas);
     72	return sa;
     73}
     74
     75/*
     76 * Return the address of the save area for the boot CPU
     77 */
     78struct save_area * __init save_area_boot_cpu(void)
     79{
     80	return list_first_entry_or_null(&dump_save_areas, struct save_area, list);
     81}
     82
     83/*
     84 * Copy CPU registers into the save area
     85 */
     86void __init save_area_add_regs(struct save_area *sa, void *regs)
     87{
     88	struct lowcore *lc;
     89
     90	lc = (struct lowcore *)(regs - __LC_FPREGS_SAVE_AREA);
     91	memcpy(&sa->psw, &lc->psw_save_area, sizeof(sa->psw));
     92	memcpy(&sa->ctrs, &lc->cregs_save_area, sizeof(sa->ctrs));
     93	memcpy(&sa->gprs, &lc->gpregs_save_area, sizeof(sa->gprs));
     94	memcpy(&sa->acrs, &lc->access_regs_save_area, sizeof(sa->acrs));
     95	memcpy(&sa->fprs, &lc->floating_pt_save_area, sizeof(sa->fprs));
     96	memcpy(&sa->fpc, &lc->fpt_creg_save_area, sizeof(sa->fpc));
     97	memcpy(&sa->prefix, &lc->prefixreg_save_area, sizeof(sa->prefix));
     98	memcpy(&sa->todpreg, &lc->tod_progreg_save_area, sizeof(sa->todpreg));
     99	memcpy(&sa->timer, &lc->cpu_timer_save_area, sizeof(sa->timer));
    100	memcpy(&sa->todcmp, &lc->clock_comp_save_area, sizeof(sa->todcmp));
    101}
    102
    103/*
    104 * Copy vector registers into the save area
    105 */
    106void __init save_area_add_vxrs(struct save_area *sa, __vector128 *vxrs)
    107{
    108	int i;
    109
    110	/* Copy lower halves of vector registers 0-15 */
    111	for (i = 0; i < 16; i++)
    112		memcpy(&sa->vxrs_low[i], &vxrs[i].u[2], 8);
    113	/* Copy vector registers 16-31 */
    114	memcpy(sa->vxrs_high, vxrs + 16, 16 * sizeof(__vector128));
    115}
    116
    117/*
    118 * Return physical address for virtual address
    119 */
    120static inline void *load_real_addr(void *addr)
    121{
    122	unsigned long real_addr;
    123
    124	asm volatile(
    125		   "	lra     %0,0(%1)\n"
    126		   "	jz	0f\n"
    127		   "	la	%0,0\n"
    128		   "0:"
    129		   : "=a" (real_addr) : "a" (addr) : "cc");
    130	return (void *)real_addr;
    131}
    132
    133/*
    134 * Copy memory of the old, dumped system to a kernel space virtual address
    135 */
    136int copy_oldmem_kernel(void *dst, unsigned long src, size_t count)
    137{
    138	unsigned long len;
    139	void *ra;
    140	int rc;
    141
    142	while (count) {
    143		if (!oldmem_data.start && src < sclp.hsa_size) {
    144			/* Copy from zfcp/nvme dump HSA area */
    145			len = min(count, sclp.hsa_size - src);
    146			rc = memcpy_hsa_kernel(dst, src, len);
    147			if (rc)
    148				return rc;
    149		} else {
    150			/* Check for swapped kdump oldmem areas */
    151			if (oldmem_data.start && src - oldmem_data.start < oldmem_data.size) {
    152				src -= oldmem_data.start;
    153				len = min(count, oldmem_data.size - src);
    154			} else if (oldmem_data.start && src < oldmem_data.size) {
    155				len = min(count, oldmem_data.size - src);
    156				src += oldmem_data.start;
    157			} else {
    158				len = count;
    159			}
    160			if (is_vmalloc_or_module_addr(dst)) {
    161				ra = load_real_addr(dst);
    162				len = min(PAGE_SIZE - offset_in_page(ra), len);
    163			} else {
    164				ra = dst;
    165			}
    166			if (memcpy_real(ra, src, len))
    167				return -EFAULT;
    168		}
    169		dst += len;
    170		src += len;
    171		count -= len;
    172	}
    173	return 0;
    174}
    175
    176/*
    177 * Copy memory of the old, dumped system to a user space virtual address
    178 */
    179static int copy_oldmem_user(void __user *dst, unsigned long src, size_t count)
    180{
    181	unsigned long len;
    182	int rc;
    183
    184	while (count) {
    185		if (!oldmem_data.start && src < sclp.hsa_size) {
    186			/* Copy from zfcp/nvme dump HSA area */
    187			len = min(count, sclp.hsa_size - src);
    188			rc = memcpy_hsa_user(dst, src, len);
    189			if (rc)
    190				return rc;
    191		} else {
    192			/* Check for swapped kdump oldmem areas */
    193			if (oldmem_data.start && src - oldmem_data.start < oldmem_data.size) {
    194				src -= oldmem_data.start;
    195				len = min(count, oldmem_data.size - src);
    196			} else if (oldmem_data.start && src < oldmem_data.size) {
    197				len = min(count, oldmem_data.size - src);
    198				src += oldmem_data.start;
    199			} else {
    200				len = count;
    201			}
    202			rc = copy_to_user_real(dst, src, count);
    203			if (rc)
    204				return rc;
    205		}
    206		dst += len;
    207		src += len;
    208		count -= len;
    209	}
    210	return 0;
    211}
    212
    213/*
    214 * Copy one page from "oldmem"
    215 */
    216ssize_t copy_oldmem_page(struct iov_iter *iter, unsigned long pfn, size_t csize,
    217			 unsigned long offset)
    218{
    219	unsigned long src;
    220	int rc;
    221
    222	if (!(iter_is_iovec(iter) || iov_iter_is_kvec(iter)))
    223		return -EINVAL;
    224	/* Multi-segment iterators are not supported */
    225	if (iter->nr_segs > 1)
    226		return -EINVAL;
    227	if (!csize)
    228		return 0;
    229	src = pfn_to_phys(pfn) + offset;
    230
    231	/* XXX: pass the iov_iter down to a common function */
    232	if (iter_is_iovec(iter))
    233		rc = copy_oldmem_user(iter->iov->iov_base, src, csize);
    234	else
    235		rc = copy_oldmem_kernel(iter->kvec->iov_base, src, csize);
    236	if (rc < 0)
    237		return rc;
    238	iov_iter_advance(iter, csize);
    239	return csize;
    240}
    241
    242/*
    243 * Remap "oldmem" for kdump
    244 *
    245 * For the kdump reserved memory this functions performs a swap operation:
    246 * [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
    247 */
    248static int remap_oldmem_pfn_range_kdump(struct vm_area_struct *vma,
    249					unsigned long from, unsigned long pfn,
    250					unsigned long size, pgprot_t prot)
    251{
    252	unsigned long size_old;
    253	int rc;
    254
    255	if (pfn < oldmem_data.size >> PAGE_SHIFT) {
    256		size_old = min(size, oldmem_data.size - (pfn << PAGE_SHIFT));
    257		rc = remap_pfn_range(vma, from,
    258				     pfn + (oldmem_data.start >> PAGE_SHIFT),
    259				     size_old, prot);
    260		if (rc || size == size_old)
    261			return rc;
    262		size -= size_old;
    263		from += size_old;
    264		pfn += size_old >> PAGE_SHIFT;
    265	}
    266	return remap_pfn_range(vma, from, pfn, size, prot);
    267}
    268
    269/*
    270 * Remap "oldmem" for zfcp/nvme dump
    271 *
    272 * We only map available memory above HSA size. Memory below HSA size
    273 * is read on demand using the copy_oldmem_page() function.
    274 */
    275static int remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct *vma,
    276					   unsigned long from,
    277					   unsigned long pfn,
    278					   unsigned long size, pgprot_t prot)
    279{
    280	unsigned long hsa_end = sclp.hsa_size;
    281	unsigned long size_hsa;
    282
    283	if (pfn < hsa_end >> PAGE_SHIFT) {
    284		size_hsa = min(size, hsa_end - (pfn << PAGE_SHIFT));
    285		if (size == size_hsa)
    286			return 0;
    287		size -= size_hsa;
    288		from += size_hsa;
    289		pfn += size_hsa >> PAGE_SHIFT;
    290	}
    291	return remap_pfn_range(vma, from, pfn, size, prot);
    292}
    293
    294/*
    295 * Remap "oldmem" for kdump or zfcp/nvme dump
    296 */
    297int remap_oldmem_pfn_range(struct vm_area_struct *vma, unsigned long from,
    298			   unsigned long pfn, unsigned long size, pgprot_t prot)
    299{
    300	if (oldmem_data.start)
    301		return remap_oldmem_pfn_range_kdump(vma, from, pfn, size, prot);
    302	else
    303		return remap_oldmem_pfn_range_zfcpdump(vma, from, pfn, size,
    304						       prot);
    305}
    306
    307static const char *nt_name(Elf64_Word type)
    308{
    309	const char *name = "LINUX";
    310
    311	if (type == NT_PRPSINFO || type == NT_PRSTATUS || type == NT_PRFPREG)
    312		name = KEXEC_CORE_NOTE_NAME;
    313	return name;
    314}
    315
    316/*
    317 * Initialize ELF note
    318 */
    319static void *nt_init_name(void *buf, Elf64_Word type, void *desc, int d_len,
    320			  const char *name)
    321{
    322	Elf64_Nhdr *note;
    323	u64 len;
    324
    325	note = (Elf64_Nhdr *)buf;
    326	note->n_namesz = strlen(name) + 1;
    327	note->n_descsz = d_len;
    328	note->n_type = type;
    329	len = sizeof(Elf64_Nhdr);
    330
    331	memcpy(buf + len, name, note->n_namesz);
    332	len = roundup(len + note->n_namesz, 4);
    333
    334	memcpy(buf + len, desc, note->n_descsz);
    335	len = roundup(len + note->n_descsz, 4);
    336
    337	return PTR_ADD(buf, len);
    338}
    339
    340static inline void *nt_init(void *buf, Elf64_Word type, void *desc, int d_len)
    341{
    342	return nt_init_name(buf, type, desc, d_len, nt_name(type));
    343}
    344
    345/*
    346 * Calculate the size of ELF note
    347 */
    348static size_t nt_size_name(int d_len, const char *name)
    349{
    350	size_t size;
    351
    352	size = sizeof(Elf64_Nhdr);
    353	size += roundup(strlen(name) + 1, 4);
    354	size += roundup(d_len, 4);
    355
    356	return size;
    357}
    358
    359static inline size_t nt_size(Elf64_Word type, int d_len)
    360{
    361	return nt_size_name(d_len, nt_name(type));
    362}
    363
    364/*
    365 * Fill ELF notes for one CPU with save area registers
    366 */
    367static void *fill_cpu_elf_notes(void *ptr, int cpu, struct save_area *sa)
    368{
    369	struct elf_prstatus nt_prstatus;
    370	elf_fpregset_t nt_fpregset;
    371
    372	/* Prepare prstatus note */
    373	memset(&nt_prstatus, 0, sizeof(nt_prstatus));
    374	memcpy(&nt_prstatus.pr_reg.gprs, sa->gprs, sizeof(sa->gprs));
    375	memcpy(&nt_prstatus.pr_reg.psw, sa->psw, sizeof(sa->psw));
    376	memcpy(&nt_prstatus.pr_reg.acrs, sa->acrs, sizeof(sa->acrs));
    377	nt_prstatus.common.pr_pid = cpu;
    378	/* Prepare fpregset (floating point) note */
    379	memset(&nt_fpregset, 0, sizeof(nt_fpregset));
    380	memcpy(&nt_fpregset.fpc, &sa->fpc, sizeof(sa->fpc));
    381	memcpy(&nt_fpregset.fprs, &sa->fprs, sizeof(sa->fprs));
    382	/* Create ELF notes for the CPU */
    383	ptr = nt_init(ptr, NT_PRSTATUS, &nt_prstatus, sizeof(nt_prstatus));
    384	ptr = nt_init(ptr, NT_PRFPREG, &nt_fpregset, sizeof(nt_fpregset));
    385	ptr = nt_init(ptr, NT_S390_TIMER, &sa->timer, sizeof(sa->timer));
    386	ptr = nt_init(ptr, NT_S390_TODCMP, &sa->todcmp, sizeof(sa->todcmp));
    387	ptr = nt_init(ptr, NT_S390_TODPREG, &sa->todpreg, sizeof(sa->todpreg));
    388	ptr = nt_init(ptr, NT_S390_CTRS, &sa->ctrs, sizeof(sa->ctrs));
    389	ptr = nt_init(ptr, NT_S390_PREFIX, &sa->prefix, sizeof(sa->prefix));
    390	if (MACHINE_HAS_VX) {
    391		ptr = nt_init(ptr, NT_S390_VXRS_HIGH,
    392			      &sa->vxrs_high, sizeof(sa->vxrs_high));
    393		ptr = nt_init(ptr, NT_S390_VXRS_LOW,
    394			      &sa->vxrs_low, sizeof(sa->vxrs_low));
    395	}
    396	return ptr;
    397}
    398
    399/*
    400 * Calculate size of ELF notes per cpu
    401 */
    402static size_t get_cpu_elf_notes_size(void)
    403{
    404	struct save_area *sa = NULL;
    405	size_t size;
    406
    407	size =	nt_size(NT_PRSTATUS, sizeof(struct elf_prstatus));
    408	size +=  nt_size(NT_PRFPREG, sizeof(elf_fpregset_t));
    409	size +=  nt_size(NT_S390_TIMER, sizeof(sa->timer));
    410	size +=  nt_size(NT_S390_TODCMP, sizeof(sa->todcmp));
    411	size +=  nt_size(NT_S390_TODPREG, sizeof(sa->todpreg));
    412	size +=  nt_size(NT_S390_CTRS, sizeof(sa->ctrs));
    413	size +=  nt_size(NT_S390_PREFIX, sizeof(sa->prefix));
    414	if (MACHINE_HAS_VX) {
    415		size += nt_size(NT_S390_VXRS_HIGH, sizeof(sa->vxrs_high));
    416		size += nt_size(NT_S390_VXRS_LOW, sizeof(sa->vxrs_low));
    417	}
    418
    419	return size;
    420}
    421
    422/*
    423 * Initialize prpsinfo note (new kernel)
    424 */
    425static void *nt_prpsinfo(void *ptr)
    426{
    427	struct elf_prpsinfo prpsinfo;
    428
    429	memset(&prpsinfo, 0, sizeof(prpsinfo));
    430	prpsinfo.pr_sname = 'R';
    431	strcpy(prpsinfo.pr_fname, "vmlinux");
    432	return nt_init(ptr, NT_PRPSINFO, &prpsinfo, sizeof(prpsinfo));
    433}
    434
    435/*
    436 * Get vmcoreinfo using lowcore->vmcore_info (new kernel)
    437 */
    438static void *get_vmcoreinfo_old(unsigned long *size)
    439{
    440	char nt_name[11], *vmcoreinfo;
    441	unsigned long addr;
    442	Elf64_Nhdr note;
    443
    444	if (copy_oldmem_kernel(&addr, __LC_VMCORE_INFO, sizeof(addr)))
    445		return NULL;
    446	memset(nt_name, 0, sizeof(nt_name));
    447	if (copy_oldmem_kernel(&note, addr, sizeof(note)))
    448		return NULL;
    449	if (copy_oldmem_kernel(nt_name, addr + sizeof(note),
    450			       sizeof(nt_name) - 1))
    451		return NULL;
    452	if (strcmp(nt_name, VMCOREINFO_NOTE_NAME) != 0)
    453		return NULL;
    454	vmcoreinfo = kzalloc(note.n_descsz, GFP_KERNEL);
    455	if (!vmcoreinfo)
    456		return NULL;
    457	if (copy_oldmem_kernel(vmcoreinfo, addr + 24, note.n_descsz)) {
    458		kfree(vmcoreinfo);
    459		return NULL;
    460	}
    461	*size = note.n_descsz;
    462	return vmcoreinfo;
    463}
    464
    465/*
    466 * Initialize vmcoreinfo note (new kernel)
    467 */
    468static void *nt_vmcoreinfo(void *ptr)
    469{
    470	const char *name = VMCOREINFO_NOTE_NAME;
    471	unsigned long size;
    472	void *vmcoreinfo;
    473
    474	vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
    475	if (vmcoreinfo)
    476		return nt_init_name(ptr, 0, vmcoreinfo, size, name);
    477
    478	vmcoreinfo = get_vmcoreinfo_old(&size);
    479	if (!vmcoreinfo)
    480		return ptr;
    481	ptr = nt_init_name(ptr, 0, vmcoreinfo, size, name);
    482	kfree(vmcoreinfo);
    483	return ptr;
    484}
    485
    486static size_t nt_vmcoreinfo_size(void)
    487{
    488	const char *name = VMCOREINFO_NOTE_NAME;
    489	unsigned long size;
    490	void *vmcoreinfo;
    491
    492	vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
    493	if (vmcoreinfo)
    494		return nt_size_name(size, name);
    495
    496	vmcoreinfo = get_vmcoreinfo_old(&size);
    497	if (!vmcoreinfo)
    498		return 0;
    499
    500	kfree(vmcoreinfo);
    501	return nt_size_name(size, name);
    502}
    503
    504/*
    505 * Initialize final note (needed for /proc/vmcore code)
    506 */
    507static void *nt_final(void *ptr)
    508{
    509	Elf64_Nhdr *note;
    510
    511	note = (Elf64_Nhdr *) ptr;
    512	note->n_namesz = 0;
    513	note->n_descsz = 0;
    514	note->n_type = 0;
    515	return PTR_ADD(ptr, sizeof(Elf64_Nhdr));
    516}
    517
    518/*
    519 * Initialize ELF header (new kernel)
    520 */
    521static void *ehdr_init(Elf64_Ehdr *ehdr, int mem_chunk_cnt)
    522{
    523	memset(ehdr, 0, sizeof(*ehdr));
    524	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
    525	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
    526	ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
    527	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
    528	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
    529	ehdr->e_type = ET_CORE;
    530	ehdr->e_machine = EM_S390;
    531	ehdr->e_version = EV_CURRENT;
    532	ehdr->e_phoff = sizeof(Elf64_Ehdr);
    533	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
    534	ehdr->e_phentsize = sizeof(Elf64_Phdr);
    535	ehdr->e_phnum = mem_chunk_cnt + 1;
    536	return ehdr + 1;
    537}
    538
    539/*
    540 * Return CPU count for ELF header (new kernel)
    541 */
    542static int get_cpu_cnt(void)
    543{
    544	struct save_area *sa;
    545	int cpus = 0;
    546
    547	list_for_each_entry(sa, &dump_save_areas, list)
    548		if (sa->prefix != 0)
    549			cpus++;
    550	return cpus;
    551}
    552
    553/*
    554 * Return memory chunk count for ELF header (new kernel)
    555 */
    556static int get_mem_chunk_cnt(void)
    557{
    558	int cnt = 0;
    559	u64 idx;
    560
    561	for_each_physmem_range(idx, &oldmem_type, NULL, NULL)
    562		cnt++;
    563	return cnt;
    564}
    565
    566/*
    567 * Initialize ELF loads (new kernel)
    568 */
    569static void loads_init(Elf64_Phdr *phdr, u64 loads_offset)
    570{
    571	phys_addr_t start, end;
    572	u64 idx;
    573
    574	for_each_physmem_range(idx, &oldmem_type, &start, &end) {
    575		phdr->p_filesz = end - start;
    576		phdr->p_type = PT_LOAD;
    577		phdr->p_offset = start;
    578		phdr->p_vaddr = start;
    579		phdr->p_paddr = start;
    580		phdr->p_memsz = end - start;
    581		phdr->p_flags = PF_R | PF_W | PF_X;
    582		phdr->p_align = PAGE_SIZE;
    583		phdr++;
    584	}
    585}
    586
    587/*
    588 * Initialize notes (new kernel)
    589 */
    590static void *notes_init(Elf64_Phdr *phdr, void *ptr, u64 notes_offset)
    591{
    592	struct save_area *sa;
    593	void *ptr_start = ptr;
    594	int cpu;
    595
    596	ptr = nt_prpsinfo(ptr);
    597
    598	cpu = 1;
    599	list_for_each_entry(sa, &dump_save_areas, list)
    600		if (sa->prefix != 0)
    601			ptr = fill_cpu_elf_notes(ptr, cpu++, sa);
    602	ptr = nt_vmcoreinfo(ptr);
    603	ptr = nt_final(ptr);
    604	memset(phdr, 0, sizeof(*phdr));
    605	phdr->p_type = PT_NOTE;
    606	phdr->p_offset = notes_offset;
    607	phdr->p_filesz = (unsigned long) PTR_SUB(ptr, ptr_start);
    608	phdr->p_memsz = phdr->p_filesz;
    609	return ptr;
    610}
    611
    612static size_t get_elfcorehdr_size(int mem_chunk_cnt)
    613{
    614	size_t size;
    615
    616	size = sizeof(Elf64_Ehdr);
    617	/* PT_NOTES */
    618	size += sizeof(Elf64_Phdr);
    619	/* nt_prpsinfo */
    620	size += nt_size(NT_PRPSINFO, sizeof(struct elf_prpsinfo));
    621	/* regsets */
    622	size += get_cpu_cnt() * get_cpu_elf_notes_size();
    623	/* nt_vmcoreinfo */
    624	size += nt_vmcoreinfo_size();
    625	/* nt_final */
    626	size += sizeof(Elf64_Nhdr);
    627	/* PT_LOADS */
    628	size += mem_chunk_cnt * sizeof(Elf64_Phdr);
    629
    630	return size;
    631}
    632
    633/*
    634 * Create ELF core header (new kernel)
    635 */
    636int elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size)
    637{
    638	Elf64_Phdr *phdr_notes, *phdr_loads;
    639	int mem_chunk_cnt;
    640	void *ptr, *hdr;
    641	u32 alloc_size;
    642	u64 hdr_off;
    643
    644	/* If we are not in kdump or zfcp/nvme dump mode return */
    645	if (!oldmem_data.start && !is_ipl_type_dump())
    646		return 0;
    647	/* If we cannot get HSA size for zfcp/nvme dump return error */
    648	if (is_ipl_type_dump() && !sclp.hsa_size)
    649		return -ENODEV;
    650
    651	/* For kdump, exclude previous crashkernel memory */
    652	if (oldmem_data.start) {
    653		oldmem_region.base = oldmem_data.start;
    654		oldmem_region.size = oldmem_data.size;
    655		oldmem_type.total_size = oldmem_data.size;
    656	}
    657
    658	mem_chunk_cnt = get_mem_chunk_cnt();
    659
    660	alloc_size = get_elfcorehdr_size(mem_chunk_cnt);
    661
    662	hdr = kzalloc(alloc_size, GFP_KERNEL);
    663
    664	/* Without elfcorehdr /proc/vmcore cannot be created. Thus creating
    665	 * a dump with this crash kernel will fail. Panic now to allow other
    666	 * dump mechanisms to take over.
    667	 */
    668	if (!hdr)
    669		panic("s390 kdump allocating elfcorehdr failed");
    670
    671	/* Init elf header */
    672	ptr = ehdr_init(hdr, mem_chunk_cnt);
    673	/* Init program headers */
    674	phdr_notes = ptr;
    675	ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr));
    676	phdr_loads = ptr;
    677	ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr) * mem_chunk_cnt);
    678	/* Init notes */
    679	hdr_off = PTR_DIFF(ptr, hdr);
    680	ptr = notes_init(phdr_notes, ptr, ((unsigned long) hdr) + hdr_off);
    681	/* Init loads */
    682	hdr_off = PTR_DIFF(ptr, hdr);
    683	loads_init(phdr_loads, hdr_off);
    684	*addr = (unsigned long long) hdr;
    685	*size = (unsigned long long) hdr_off;
    686	BUG_ON(elfcorehdr_size > alloc_size);
    687	return 0;
    688}
    689
    690/*
    691 * Free ELF core header (new kernel)
    692 */
    693void elfcorehdr_free(unsigned long long addr)
    694{
    695	kfree((void *)(unsigned long)addr);
    696}
    697
    698/*
    699 * Read from ELF header
    700 */
    701ssize_t elfcorehdr_read(char *buf, size_t count, u64 *ppos)
    702{
    703	void *src = (void *)(unsigned long)*ppos;
    704
    705	memcpy(buf, src, count);
    706	*ppos += count;
    707	return count;
    708}
    709
    710/*
    711 * Read from ELF notes data
    712 */
    713ssize_t elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos)
    714{
    715	void *src = (void *)(unsigned long)*ppos;
    716
    717	memcpy(buf, src, count);
    718	*ppos += count;
    719	return count;
    720}