cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

perf_cpum_sf.c (64294B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Performance event support for the System z CPU-measurement Sampling Facility
      4 *
      5 * Copyright IBM Corp. 2013, 2018
      6 * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
      7 */
      8#define KMSG_COMPONENT	"cpum_sf"
      9#define pr_fmt(fmt)	KMSG_COMPONENT ": " fmt
     10
     11#include <linux/kernel.h>
     12#include <linux/kernel_stat.h>
     13#include <linux/perf_event.h>
     14#include <linux/percpu.h>
     15#include <linux/pid.h>
     16#include <linux/notifier.h>
     17#include <linux/export.h>
     18#include <linux/slab.h>
     19#include <linux/mm.h>
     20#include <linux/moduleparam.h>
     21#include <asm/cpu_mf.h>
     22#include <asm/irq.h>
     23#include <asm/debug.h>
     24#include <asm/timex.h>
     25
     26/* Minimum number of sample-data-block-tables:
     27 * At least one table is required for the sampling buffer structure.
     28 * A single table contains up to 511 pointers to sample-data-blocks.
     29 */
     30#define CPUM_SF_MIN_SDBT	1
     31
     32/* Number of sample-data-blocks per sample-data-block-table (SDBT):
     33 * A table contains SDB pointers (8 bytes) and one table-link entry
     34 * that points to the origin of the next SDBT.
     35 */
     36#define CPUM_SF_SDB_PER_TABLE	((PAGE_SIZE - 8) / 8)
     37
     38/* Maximum page offset for an SDBT table-link entry:
     39 * If this page offset is reached, a table-link entry to the next SDBT
     40 * must be added.
     41 */
     42#define CPUM_SF_SDBT_TL_OFFSET	(CPUM_SF_SDB_PER_TABLE * 8)
     43static inline int require_table_link(const void *sdbt)
     44{
     45	return ((unsigned long) sdbt & ~PAGE_MASK) == CPUM_SF_SDBT_TL_OFFSET;
     46}
     47
     48/* Minimum and maximum sampling buffer sizes:
     49 *
     50 * This number represents the maximum size of the sampling buffer taking
     51 * the number of sample-data-block-tables into account.  Note that these
     52 * numbers apply to the basic-sampling function only.
     53 * The maximum number of SDBs is increased by CPUM_SF_SDB_DIAG_FACTOR if
     54 * the diagnostic-sampling function is active.
     55 *
     56 * Sampling buffer size		Buffer characteristics
     57 * ---------------------------------------------------
     58 *	 64KB		    ==	  16 pages (4KB per page)
     59 *				   1 page  for SDB-tables
     60 *				  15 pages for SDBs
     61 *
     62 *  32MB		    ==	8192 pages (4KB per page)
     63 *				  16 pages for SDB-tables
     64 *				8176 pages for SDBs
     65 */
     66static unsigned long __read_mostly CPUM_SF_MIN_SDB = 15;
     67static unsigned long __read_mostly CPUM_SF_MAX_SDB = 8176;
     68static unsigned long __read_mostly CPUM_SF_SDB_DIAG_FACTOR = 1;
     69
     70struct sf_buffer {
     71	unsigned long	 *sdbt;	    /* Sample-data-block-table origin */
     72	/* buffer characteristics (required for buffer increments) */
     73	unsigned long  num_sdb;	    /* Number of sample-data-blocks */
     74	unsigned long num_sdbt;	    /* Number of sample-data-block-tables */
     75	unsigned long	 *tail;	    /* last sample-data-block-table */
     76};
     77
     78struct aux_buffer {
     79	struct sf_buffer sfb;
     80	unsigned long head;	   /* index of SDB of buffer head */
     81	unsigned long alert_mark;  /* index of SDB of alert request position */
     82	unsigned long empty_mark;  /* mark of SDB not marked full */
     83	unsigned long *sdb_index;  /* SDB address for fast lookup */
     84	unsigned long *sdbt_index; /* SDBT address for fast lookup */
     85};
     86
     87struct cpu_hw_sf {
     88	/* CPU-measurement sampling information block */
     89	struct hws_qsi_info_block qsi;
     90	/* CPU-measurement sampling control block */
     91	struct hws_lsctl_request_block lsctl;
     92	struct sf_buffer sfb;	    /* Sampling buffer */
     93	unsigned int flags;	    /* Status flags */
     94	struct perf_event *event;   /* Scheduled perf event */
     95	struct perf_output_handle handle; /* AUX buffer output handle */
     96};
     97static DEFINE_PER_CPU(struct cpu_hw_sf, cpu_hw_sf);
     98
     99/* Debug feature */
    100static debug_info_t *sfdbg;
    101
    102/*
    103 * sf_disable() - Switch off sampling facility
    104 */
    105static int sf_disable(void)
    106{
    107	struct hws_lsctl_request_block sreq;
    108
    109	memset(&sreq, 0, sizeof(sreq));
    110	return lsctl(&sreq);
    111}
    112
    113/*
    114 * sf_buffer_available() - Check for an allocated sampling buffer
    115 */
    116static int sf_buffer_available(struct cpu_hw_sf *cpuhw)
    117{
    118	return !!cpuhw->sfb.sdbt;
    119}
    120
    121/*
    122 * deallocate sampling facility buffer
    123 */
    124static void free_sampling_buffer(struct sf_buffer *sfb)
    125{
    126	unsigned long *sdbt, *curr;
    127
    128	if (!sfb->sdbt)
    129		return;
    130
    131	sdbt = sfb->sdbt;
    132	curr = sdbt;
    133
    134	/* Free the SDBT after all SDBs are processed... */
    135	while (1) {
    136		if (!*curr || !sdbt)
    137			break;
    138
    139		/* Process table-link entries */
    140		if (is_link_entry(curr)) {
    141			curr = get_next_sdbt(curr);
    142			if (sdbt)
    143				free_page((unsigned long) sdbt);
    144
    145			/* If the origin is reached, sampling buffer is freed */
    146			if (curr == sfb->sdbt)
    147				break;
    148			else
    149				sdbt = curr;
    150		} else {
    151			/* Process SDB pointer */
    152			if (*curr) {
    153				free_page(*curr);
    154				curr++;
    155			}
    156		}
    157	}
    158
    159	debug_sprintf_event(sfdbg, 5, "%s: freed sdbt %#lx\n", __func__,
    160			    (unsigned long)sfb->sdbt);
    161	memset(sfb, 0, sizeof(*sfb));
    162}
    163
    164static int alloc_sample_data_block(unsigned long *sdbt, gfp_t gfp_flags)
    165{
    166	unsigned long sdb, *trailer;
    167
    168	/* Allocate and initialize sample-data-block */
    169	sdb = get_zeroed_page(gfp_flags);
    170	if (!sdb)
    171		return -ENOMEM;
    172	trailer = trailer_entry_ptr(sdb);
    173	*trailer = SDB_TE_ALERT_REQ_MASK;
    174
    175	/* Link SDB into the sample-data-block-table */
    176	*sdbt = sdb;
    177
    178	return 0;
    179}
    180
    181/*
    182 * realloc_sampling_buffer() - extend sampler memory
    183 *
    184 * Allocates new sample-data-blocks and adds them to the specified sampling
    185 * buffer memory.
    186 *
    187 * Important: This modifies the sampling buffer and must be called when the
    188 *	      sampling facility is disabled.
    189 *
    190 * Returns zero on success, non-zero otherwise.
    191 */
    192static int realloc_sampling_buffer(struct sf_buffer *sfb,
    193				   unsigned long num_sdb, gfp_t gfp_flags)
    194{
    195	int i, rc;
    196	unsigned long *new, *tail, *tail_prev = NULL;
    197
    198	if (!sfb->sdbt || !sfb->tail)
    199		return -EINVAL;
    200
    201	if (!is_link_entry(sfb->tail))
    202		return -EINVAL;
    203
    204	/* Append to the existing sampling buffer, overwriting the table-link
    205	 * register.
    206	 * The tail variables always points to the "tail" (last and table-link)
    207	 * entry in an SDB-table.
    208	 */
    209	tail = sfb->tail;
    210
    211	/* Do a sanity check whether the table-link entry points to
    212	 * the sampling buffer origin.
    213	 */
    214	if (sfb->sdbt != get_next_sdbt(tail)) {
    215		debug_sprintf_event(sfdbg, 3, "%s: "
    216				    "sampling buffer is not linked: origin %#lx"
    217				    " tail %#lx\n", __func__,
    218				    (unsigned long)sfb->sdbt,
    219				    (unsigned long)tail);
    220		return -EINVAL;
    221	}
    222
    223	/* Allocate remaining SDBs */
    224	rc = 0;
    225	for (i = 0; i < num_sdb; i++) {
    226		/* Allocate a new SDB-table if it is full. */
    227		if (require_table_link(tail)) {
    228			new = (unsigned long *) get_zeroed_page(gfp_flags);
    229			if (!new) {
    230				rc = -ENOMEM;
    231				break;
    232			}
    233			sfb->num_sdbt++;
    234			/* Link current page to tail of chain */
    235			*tail = (unsigned long)(void *) new + 1;
    236			tail_prev = tail;
    237			tail = new;
    238		}
    239
    240		/* Allocate a new sample-data-block.
    241		 * If there is not enough memory, stop the realloc process
    242		 * and simply use what was allocated.  If this is a temporary
    243		 * issue, a new realloc call (if required) might succeed.
    244		 */
    245		rc = alloc_sample_data_block(tail, gfp_flags);
    246		if (rc) {
    247			/* Undo last SDBT. An SDBT with no SDB at its first
    248			 * entry but with an SDBT entry instead can not be
    249			 * handled by the interrupt handler code.
    250			 * Avoid this situation.
    251			 */
    252			if (tail_prev) {
    253				sfb->num_sdbt--;
    254				free_page((unsigned long) new);
    255				tail = tail_prev;
    256			}
    257			break;
    258		}
    259		sfb->num_sdb++;
    260		tail++;
    261		tail_prev = new = NULL;	/* Allocated at least one SBD */
    262	}
    263
    264	/* Link sampling buffer to its origin */
    265	*tail = (unsigned long) sfb->sdbt + 1;
    266	sfb->tail = tail;
    267
    268	debug_sprintf_event(sfdbg, 4, "%s: new buffer"
    269			    " settings: sdbt %lu sdb %lu\n", __func__,
    270			    sfb->num_sdbt, sfb->num_sdb);
    271	return rc;
    272}
    273
    274/*
    275 * allocate_sampling_buffer() - allocate sampler memory
    276 *
    277 * Allocates and initializes a sampling buffer structure using the
    278 * specified number of sample-data-blocks (SDB).  For each allocation,
    279 * a 4K page is used.  The number of sample-data-block-tables (SDBT)
    280 * are calculated from SDBs.
    281 * Also set the ALERT_REQ mask in each SDBs trailer.
    282 *
    283 * Returns zero on success, non-zero otherwise.
    284 */
    285static int alloc_sampling_buffer(struct sf_buffer *sfb, unsigned long num_sdb)
    286{
    287	int rc;
    288
    289	if (sfb->sdbt)
    290		return -EINVAL;
    291
    292	/* Allocate the sample-data-block-table origin */
    293	sfb->sdbt = (unsigned long *) get_zeroed_page(GFP_KERNEL);
    294	if (!sfb->sdbt)
    295		return -ENOMEM;
    296	sfb->num_sdb = 0;
    297	sfb->num_sdbt = 1;
    298
    299	/* Link the table origin to point to itself to prepare for
    300	 * realloc_sampling_buffer() invocation.
    301	 */
    302	sfb->tail = sfb->sdbt;
    303	*sfb->tail = (unsigned long)(void *) sfb->sdbt + 1;
    304
    305	/* Allocate requested number of sample-data-blocks */
    306	rc = realloc_sampling_buffer(sfb, num_sdb, GFP_KERNEL);
    307	if (rc) {
    308		free_sampling_buffer(sfb);
    309		debug_sprintf_event(sfdbg, 4, "%s: "
    310			"realloc_sampling_buffer failed with rc %i\n",
    311			__func__, rc);
    312	} else
    313		debug_sprintf_event(sfdbg, 4,
    314			"%s: tear %#lx dear %#lx\n", __func__,
    315			(unsigned long)sfb->sdbt, (unsigned long)*sfb->sdbt);
    316	return rc;
    317}
    318
    319static void sfb_set_limits(unsigned long min, unsigned long max)
    320{
    321	struct hws_qsi_info_block si;
    322
    323	CPUM_SF_MIN_SDB = min;
    324	CPUM_SF_MAX_SDB = max;
    325
    326	memset(&si, 0, sizeof(si));
    327	if (!qsi(&si))
    328		CPUM_SF_SDB_DIAG_FACTOR = DIV_ROUND_UP(si.dsdes, si.bsdes);
    329}
    330
    331static unsigned long sfb_max_limit(struct hw_perf_event *hwc)
    332{
    333	return SAMPL_DIAG_MODE(hwc) ? CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR
    334				    : CPUM_SF_MAX_SDB;
    335}
    336
    337static unsigned long sfb_pending_allocs(struct sf_buffer *sfb,
    338					struct hw_perf_event *hwc)
    339{
    340	if (!sfb->sdbt)
    341		return SFB_ALLOC_REG(hwc);
    342	if (SFB_ALLOC_REG(hwc) > sfb->num_sdb)
    343		return SFB_ALLOC_REG(hwc) - sfb->num_sdb;
    344	return 0;
    345}
    346
    347static int sfb_has_pending_allocs(struct sf_buffer *sfb,
    348				   struct hw_perf_event *hwc)
    349{
    350	return sfb_pending_allocs(sfb, hwc) > 0;
    351}
    352
    353static void sfb_account_allocs(unsigned long num, struct hw_perf_event *hwc)
    354{
    355	/* Limit the number of SDBs to not exceed the maximum */
    356	num = min_t(unsigned long, num, sfb_max_limit(hwc) - SFB_ALLOC_REG(hwc));
    357	if (num)
    358		SFB_ALLOC_REG(hwc) += num;
    359}
    360
    361static void sfb_init_allocs(unsigned long num, struct hw_perf_event *hwc)
    362{
    363	SFB_ALLOC_REG(hwc) = 0;
    364	sfb_account_allocs(num, hwc);
    365}
    366
    367static void deallocate_buffers(struct cpu_hw_sf *cpuhw)
    368{
    369	if (cpuhw->sfb.sdbt)
    370		free_sampling_buffer(&cpuhw->sfb);
    371}
    372
    373static int allocate_buffers(struct cpu_hw_sf *cpuhw, struct hw_perf_event *hwc)
    374{
    375	unsigned long n_sdb, freq;
    376	size_t sample_size;
    377
    378	/* Calculate sampling buffers using 4K pages
    379	 *
    380	 *    1. The sampling size is 32 bytes for basic sampling. This size
    381	 *	 is the same for all machine types. Diagnostic
    382	 *	 sampling uses auxlilary data buffer setup which provides the
    383	 *	 memory for SDBs using linux common code auxiliary trace
    384	 *	 setup.
    385	 *
    386	 *    2. Function alloc_sampling_buffer() sets the Alert Request
    387	 *	 Control indicator to trigger a measurement-alert to harvest
    388	 *	 sample-data-blocks (SDB). This is done per SDB. This
    389	 *	 measurement alert interrupt fires quick enough to handle
    390	 *	 one SDB, on very high frequency and work loads there might
    391	 *	 be 2 to 3 SBDs available for sample processing.
    392	 *	 Currently there is no need for setup alert request on every
    393	 *	 n-th page. This is counterproductive as one IRQ triggers
    394	 *	 a very high number of samples to be processed at one IRQ.
    395	 *
    396	 *    3. Use the sampling frequency as input.
    397	 *	 Compute the number of SDBs and ensure a minimum
    398	 *	 of CPUM_SF_MIN_SDB.  Depending on frequency add some more
    399	 *	 SDBs to handle a higher sampling rate.
    400	 *	 Use a minimum of CPUM_SF_MIN_SDB and allow for 100 samples
    401	 *	 (one SDB) for every 10000 HZ frequency increment.
    402	 *
    403	 *    4. Compute the number of sample-data-block-tables (SDBT) and
    404	 *	 ensure a minimum of CPUM_SF_MIN_SDBT (one table can manage up
    405	 *	 to 511 SDBs).
    406	 */
    407	sample_size = sizeof(struct hws_basic_entry);
    408	freq = sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc));
    409	n_sdb = CPUM_SF_MIN_SDB + DIV_ROUND_UP(freq, 10000);
    410
    411	/* If there is already a sampling buffer allocated, it is very likely
    412	 * that the sampling facility is enabled too.  If the event to be
    413	 * initialized requires a greater sampling buffer, the allocation must
    414	 * be postponed.  Changing the sampling buffer requires the sampling
    415	 * facility to be in the disabled state.  So, account the number of
    416	 * required SDBs and let cpumsf_pmu_enable() resize the buffer just
    417	 * before the event is started.
    418	 */
    419	sfb_init_allocs(n_sdb, hwc);
    420	if (sf_buffer_available(cpuhw))
    421		return 0;
    422
    423	debug_sprintf_event(sfdbg, 3,
    424			    "%s: rate %lu f %lu sdb %lu/%lu"
    425			    " sample_size %lu cpuhw %p\n", __func__,
    426			    SAMPL_RATE(hwc), freq, n_sdb, sfb_max_limit(hwc),
    427			    sample_size, cpuhw);
    428
    429	return alloc_sampling_buffer(&cpuhw->sfb,
    430				     sfb_pending_allocs(&cpuhw->sfb, hwc));
    431}
    432
    433static unsigned long min_percent(unsigned int percent, unsigned long base,
    434				 unsigned long min)
    435{
    436	return min_t(unsigned long, min, DIV_ROUND_UP(percent * base, 100));
    437}
    438
    439static unsigned long compute_sfb_extent(unsigned long ratio, unsigned long base)
    440{
    441	/* Use a percentage-based approach to extend the sampling facility
    442	 * buffer.  Accept up to 5% sample data loss.
    443	 * Vary the extents between 1% to 5% of the current number of
    444	 * sample-data-blocks.
    445	 */
    446	if (ratio <= 5)
    447		return 0;
    448	if (ratio <= 25)
    449		return min_percent(1, base, 1);
    450	if (ratio <= 50)
    451		return min_percent(1, base, 1);
    452	if (ratio <= 75)
    453		return min_percent(2, base, 2);
    454	if (ratio <= 100)
    455		return min_percent(3, base, 3);
    456	if (ratio <= 250)
    457		return min_percent(4, base, 4);
    458
    459	return min_percent(5, base, 8);
    460}
    461
    462static void sfb_account_overflows(struct cpu_hw_sf *cpuhw,
    463				  struct hw_perf_event *hwc)
    464{
    465	unsigned long ratio, num;
    466
    467	if (!OVERFLOW_REG(hwc))
    468		return;
    469
    470	/* The sample_overflow contains the average number of sample data
    471	 * that has been lost because sample-data-blocks were full.
    472	 *
    473	 * Calculate the total number of sample data entries that has been
    474	 * discarded.  Then calculate the ratio of lost samples to total samples
    475	 * per second in percent.
    476	 */
    477	ratio = DIV_ROUND_UP(100 * OVERFLOW_REG(hwc) * cpuhw->sfb.num_sdb,
    478			     sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc)));
    479
    480	/* Compute number of sample-data-blocks */
    481	num = compute_sfb_extent(ratio, cpuhw->sfb.num_sdb);
    482	if (num)
    483		sfb_account_allocs(num, hwc);
    484
    485	debug_sprintf_event(sfdbg, 5, "%s: overflow %llu ratio %lu num %lu\n",
    486			    __func__, OVERFLOW_REG(hwc), ratio, num);
    487	OVERFLOW_REG(hwc) = 0;
    488}
    489
    490/* extend_sampling_buffer() - Extend sampling buffer
    491 * @sfb:	Sampling buffer structure (for local CPU)
    492 * @hwc:	Perf event hardware structure
    493 *
    494 * Use this function to extend the sampling buffer based on the overflow counter
    495 * and postponed allocation extents stored in the specified Perf event hardware.
    496 *
    497 * Important: This function disables the sampling facility in order to safely
    498 *	      change the sampling buffer structure.  Do not call this function
    499 *	      when the PMU is active.
    500 */
    501static void extend_sampling_buffer(struct sf_buffer *sfb,
    502				   struct hw_perf_event *hwc)
    503{
    504	unsigned long num, num_old;
    505	int rc;
    506
    507	num = sfb_pending_allocs(sfb, hwc);
    508	if (!num)
    509		return;
    510	num_old = sfb->num_sdb;
    511
    512	/* Disable the sampling facility to reset any states and also
    513	 * clear pending measurement alerts.
    514	 */
    515	sf_disable();
    516
    517	/* Extend the sampling buffer.
    518	 * This memory allocation typically happens in an atomic context when
    519	 * called by perf.  Because this is a reallocation, it is fine if the
    520	 * new SDB-request cannot be satisfied immediately.
    521	 */
    522	rc = realloc_sampling_buffer(sfb, num, GFP_ATOMIC);
    523	if (rc)
    524		debug_sprintf_event(sfdbg, 5, "%s: realloc failed with rc %i\n",
    525				    __func__, rc);
    526
    527	if (sfb_has_pending_allocs(sfb, hwc))
    528		debug_sprintf_event(sfdbg, 5, "%s: "
    529				    "req %lu alloc %lu remaining %lu\n",
    530				    __func__, num, sfb->num_sdb - num_old,
    531				    sfb_pending_allocs(sfb, hwc));
    532}
    533
    534/* Number of perf events counting hardware events */
    535static atomic_t num_events;
    536/* Used to avoid races in calling reserve/release_cpumf_hardware */
    537static DEFINE_MUTEX(pmc_reserve_mutex);
    538
    539#define PMC_INIT      0
    540#define PMC_RELEASE   1
    541#define PMC_FAILURE   2
    542static void setup_pmc_cpu(void *flags)
    543{
    544	int err;
    545	struct cpu_hw_sf *cpusf = this_cpu_ptr(&cpu_hw_sf);
    546
    547	err = 0;
    548	switch (*((int *) flags)) {
    549	case PMC_INIT:
    550		memset(cpusf, 0, sizeof(*cpusf));
    551		err = qsi(&cpusf->qsi);
    552		if (err)
    553			break;
    554		cpusf->flags |= PMU_F_RESERVED;
    555		err = sf_disable();
    556		if (err)
    557			pr_err("Switching off the sampling facility failed "
    558			       "with rc %i\n", err);
    559		debug_sprintf_event(sfdbg, 5,
    560				    "%s: initialized: cpuhw %p\n", __func__,
    561				    cpusf);
    562		break;
    563	case PMC_RELEASE:
    564		cpusf->flags &= ~PMU_F_RESERVED;
    565		err = sf_disable();
    566		if (err) {
    567			pr_err("Switching off the sampling facility failed "
    568			       "with rc %i\n", err);
    569		} else
    570			deallocate_buffers(cpusf);
    571		debug_sprintf_event(sfdbg, 5,
    572				    "%s: released: cpuhw %p\n", __func__,
    573				    cpusf);
    574		break;
    575	}
    576	if (err)
    577		*((int *) flags) |= PMC_FAILURE;
    578}
    579
    580static void release_pmc_hardware(void)
    581{
    582	int flags = PMC_RELEASE;
    583
    584	irq_subclass_unregister(IRQ_SUBCLASS_MEASUREMENT_ALERT);
    585	on_each_cpu(setup_pmc_cpu, &flags, 1);
    586}
    587
    588static int reserve_pmc_hardware(void)
    589{
    590	int flags = PMC_INIT;
    591
    592	on_each_cpu(setup_pmc_cpu, &flags, 1);
    593	if (flags & PMC_FAILURE) {
    594		release_pmc_hardware();
    595		return -ENODEV;
    596	}
    597	irq_subclass_register(IRQ_SUBCLASS_MEASUREMENT_ALERT);
    598
    599	return 0;
    600}
    601
    602static void hw_perf_event_destroy(struct perf_event *event)
    603{
    604	/* Release PMC if this is the last perf event */
    605	if (!atomic_add_unless(&num_events, -1, 1)) {
    606		mutex_lock(&pmc_reserve_mutex);
    607		if (atomic_dec_return(&num_events) == 0)
    608			release_pmc_hardware();
    609		mutex_unlock(&pmc_reserve_mutex);
    610	}
    611}
    612
    613static void hw_init_period(struct hw_perf_event *hwc, u64 period)
    614{
    615	hwc->sample_period = period;
    616	hwc->last_period = hwc->sample_period;
    617	local64_set(&hwc->period_left, hwc->sample_period);
    618}
    619
    620static unsigned long hw_limit_rate(const struct hws_qsi_info_block *si,
    621				   unsigned long rate)
    622{
    623	return clamp_t(unsigned long, rate,
    624		       si->min_sampl_rate, si->max_sampl_rate);
    625}
    626
    627static u32 cpumsf_pid_type(struct perf_event *event,
    628			   u32 pid, enum pid_type type)
    629{
    630	struct task_struct *tsk;
    631
    632	/* Idle process */
    633	if (!pid)
    634		goto out;
    635
    636	tsk = find_task_by_pid_ns(pid, &init_pid_ns);
    637	pid = -1;
    638	if (tsk) {
    639		/*
    640		 * Only top level events contain the pid namespace in which
    641		 * they are created.
    642		 */
    643		if (event->parent)
    644			event = event->parent;
    645		pid = __task_pid_nr_ns(tsk, type, event->ns);
    646		/*
    647		 * See also 1d953111b648
    648		 * "perf/core: Don't report zero PIDs for exiting tasks".
    649		 */
    650		if (!pid && !pid_alive(tsk))
    651			pid = -1;
    652	}
    653out:
    654	return pid;
    655}
    656
    657static void cpumsf_output_event_pid(struct perf_event *event,
    658				    struct perf_sample_data *data,
    659				    struct pt_regs *regs)
    660{
    661	u32 pid;
    662	struct perf_event_header header;
    663	struct perf_output_handle handle;
    664
    665	/*
    666	 * Obtain the PID from the basic-sampling data entry and
    667	 * correct the data->tid_entry.pid value.
    668	 */
    669	pid = data->tid_entry.pid;
    670
    671	/* Protect callchain buffers, tasks */
    672	rcu_read_lock();
    673
    674	perf_prepare_sample(&header, data, event, regs);
    675	if (perf_output_begin(&handle, data, event, header.size))
    676		goto out;
    677
    678	/* Update the process ID (see also kernel/events/core.c) */
    679	data->tid_entry.pid = cpumsf_pid_type(event, pid, PIDTYPE_TGID);
    680	data->tid_entry.tid = cpumsf_pid_type(event, pid, PIDTYPE_PID);
    681
    682	perf_output_sample(&handle, &header, data, event);
    683	perf_output_end(&handle);
    684out:
    685	rcu_read_unlock();
    686}
    687
    688static unsigned long getrate(bool freq, unsigned long sample,
    689			     struct hws_qsi_info_block *si)
    690{
    691	unsigned long rate;
    692
    693	if (freq) {
    694		rate = freq_to_sample_rate(si, sample);
    695		rate = hw_limit_rate(si, rate);
    696	} else {
    697		/* The min/max sampling rates specifies the valid range
    698		 * of sample periods.  If the specified sample period is
    699		 * out of range, limit the period to the range boundary.
    700		 */
    701		rate = hw_limit_rate(si, sample);
    702
    703		/* The perf core maintains a maximum sample rate that is
    704		 * configurable through the sysctl interface.  Ensure the
    705		 * sampling rate does not exceed this value.  This also helps
    706		 * to avoid throttling when pushing samples with
    707		 * perf_event_overflow().
    708		 */
    709		if (sample_rate_to_freq(si, rate) >
    710		    sysctl_perf_event_sample_rate) {
    711			debug_sprintf_event(sfdbg, 1, "%s: "
    712					    "Sampling rate exceeds maximum "
    713					    "perf sample rate\n", __func__);
    714			rate = 0;
    715		}
    716	}
    717	return rate;
    718}
    719
    720/* The sampling information (si) contains information about the
    721 * min/max sampling intervals and the CPU speed.  So calculate the
    722 * correct sampling interval and avoid the whole period adjust
    723 * feedback loop.
    724 *
    725 * Since the CPU Measurement sampling facility can not handle frequency
    726 * calculate the sampling interval when frequency is specified using
    727 * this formula:
    728 *	interval := cpu_speed * 1000000 / sample_freq
    729 *
    730 * Returns errno on bad input and zero on success with parameter interval
    731 * set to the correct sampling rate.
    732 *
    733 * Note: This function turns off freq bit to avoid calling function
    734 * perf_adjust_period(). This causes frequency adjustment in the common
    735 * code part which causes tremendous variations in the counter values.
    736 */
    737static int __hw_perf_event_init_rate(struct perf_event *event,
    738				     struct hws_qsi_info_block *si)
    739{
    740	struct perf_event_attr *attr = &event->attr;
    741	struct hw_perf_event *hwc = &event->hw;
    742	unsigned long rate;
    743
    744	if (attr->freq) {
    745		if (!attr->sample_freq)
    746			return -EINVAL;
    747		rate = getrate(attr->freq, attr->sample_freq, si);
    748		attr->freq = 0;		/* Don't call  perf_adjust_period() */
    749		SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_FREQ_MODE;
    750	} else {
    751		rate = getrate(attr->freq, attr->sample_period, si);
    752		if (!rate)
    753			return -EINVAL;
    754	}
    755	attr->sample_period = rate;
    756	SAMPL_RATE(hwc) = rate;
    757	hw_init_period(hwc, SAMPL_RATE(hwc));
    758	debug_sprintf_event(sfdbg, 4, "%s: cpu %d period %#llx freq %d,%#lx\n",
    759			    __func__, event->cpu, event->attr.sample_period,
    760			    event->attr.freq, SAMPLE_FREQ_MODE(hwc));
    761	return 0;
    762}
    763
    764static int __hw_perf_event_init(struct perf_event *event)
    765{
    766	struct cpu_hw_sf *cpuhw;
    767	struct hws_qsi_info_block si;
    768	struct perf_event_attr *attr = &event->attr;
    769	struct hw_perf_event *hwc = &event->hw;
    770	int cpu, err;
    771
    772	/* Reserve CPU-measurement sampling facility */
    773	err = 0;
    774	if (!atomic_inc_not_zero(&num_events)) {
    775		mutex_lock(&pmc_reserve_mutex);
    776		if (atomic_read(&num_events) == 0 && reserve_pmc_hardware())
    777			err = -EBUSY;
    778		else
    779			atomic_inc(&num_events);
    780		mutex_unlock(&pmc_reserve_mutex);
    781	}
    782	event->destroy = hw_perf_event_destroy;
    783
    784	if (err)
    785		goto out;
    786
    787	/* Access per-CPU sampling information (query sampling info) */
    788	/*
    789	 * The event->cpu value can be -1 to count on every CPU, for example,
    790	 * when attaching to a task.  If this is specified, use the query
    791	 * sampling info from the current CPU, otherwise use event->cpu to
    792	 * retrieve the per-CPU information.
    793	 * Later, cpuhw indicates whether to allocate sampling buffers for a
    794	 * particular CPU (cpuhw!=NULL) or each online CPU (cpuw==NULL).
    795	 */
    796	memset(&si, 0, sizeof(si));
    797	cpuhw = NULL;
    798	if (event->cpu == -1)
    799		qsi(&si);
    800	else {
    801		/* Event is pinned to a particular CPU, retrieve the per-CPU
    802		 * sampling structure for accessing the CPU-specific QSI.
    803		 */
    804		cpuhw = &per_cpu(cpu_hw_sf, event->cpu);
    805		si = cpuhw->qsi;
    806	}
    807
    808	/* Check sampling facility authorization and, if not authorized,
    809	 * fall back to other PMUs.  It is safe to check any CPU because
    810	 * the authorization is identical for all configured CPUs.
    811	 */
    812	if (!si.as) {
    813		err = -ENOENT;
    814		goto out;
    815	}
    816
    817	if (si.ribm & CPU_MF_SF_RIBM_NOTAV) {
    818		pr_warn("CPU Measurement Facility sampling is temporarily not available\n");
    819		err = -EBUSY;
    820		goto out;
    821	}
    822
    823	/* Always enable basic sampling */
    824	SAMPL_FLAGS(hwc) = PERF_CPUM_SF_BASIC_MODE;
    825
    826	/* Check if diagnostic sampling is requested.  Deny if the required
    827	 * sampling authorization is missing.
    828	 */
    829	if (attr->config == PERF_EVENT_CPUM_SF_DIAG) {
    830		if (!si.ad) {
    831			err = -EPERM;
    832			goto out;
    833		}
    834		SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_DIAG_MODE;
    835	}
    836
    837	/* Check and set other sampling flags */
    838	if (attr->config1 & PERF_CPUM_SF_FULL_BLOCKS)
    839		SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_FULL_BLOCKS;
    840
    841	err =  __hw_perf_event_init_rate(event, &si);
    842	if (err)
    843		goto out;
    844
    845	/* Initialize sample data overflow accounting */
    846	hwc->extra_reg.reg = REG_OVERFLOW;
    847	OVERFLOW_REG(hwc) = 0;
    848
    849	/* Use AUX buffer. No need to allocate it by ourself */
    850	if (attr->config == PERF_EVENT_CPUM_SF_DIAG)
    851		return 0;
    852
    853	/* Allocate the per-CPU sampling buffer using the CPU information
    854	 * from the event.  If the event is not pinned to a particular
    855	 * CPU (event->cpu == -1; or cpuhw == NULL), allocate sampling
    856	 * buffers for each online CPU.
    857	 */
    858	if (cpuhw)
    859		/* Event is pinned to a particular CPU */
    860		err = allocate_buffers(cpuhw, hwc);
    861	else {
    862		/* Event is not pinned, allocate sampling buffer on
    863		 * each online CPU
    864		 */
    865		for_each_online_cpu(cpu) {
    866			cpuhw = &per_cpu(cpu_hw_sf, cpu);
    867			err = allocate_buffers(cpuhw, hwc);
    868			if (err)
    869				break;
    870		}
    871	}
    872
    873	/* If PID/TID sampling is active, replace the default overflow
    874	 * handler to extract and resolve the PIDs from the basic-sampling
    875	 * data entries.
    876	 */
    877	if (event->attr.sample_type & PERF_SAMPLE_TID)
    878		if (is_default_overflow_handler(event))
    879			event->overflow_handler = cpumsf_output_event_pid;
    880out:
    881	return err;
    882}
    883
    884static bool is_callchain_event(struct perf_event *event)
    885{
    886	u64 sample_type = event->attr.sample_type;
    887
    888	return sample_type & (PERF_SAMPLE_CALLCHAIN | PERF_SAMPLE_REGS_USER |
    889			      PERF_SAMPLE_STACK_USER);
    890}
    891
    892static int cpumsf_pmu_event_init(struct perf_event *event)
    893{
    894	int err;
    895
    896	/* No support for taken branch sampling */
    897	/* No support for callchain, stacks and registers */
    898	if (has_branch_stack(event) || is_callchain_event(event))
    899		return -EOPNOTSUPP;
    900
    901	switch (event->attr.type) {
    902	case PERF_TYPE_RAW:
    903		if ((event->attr.config != PERF_EVENT_CPUM_SF) &&
    904		    (event->attr.config != PERF_EVENT_CPUM_SF_DIAG))
    905			return -ENOENT;
    906		break;
    907	case PERF_TYPE_HARDWARE:
    908		/* Support sampling of CPU cycles in addition to the
    909		 * counter facility.  However, the counter facility
    910		 * is more precise and, hence, restrict this PMU to
    911		 * sampling events only.
    912		 */
    913		if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES)
    914			return -ENOENT;
    915		if (!is_sampling_event(event))
    916			return -ENOENT;
    917		break;
    918	default:
    919		return -ENOENT;
    920	}
    921
    922	/* Check online status of the CPU to which the event is pinned */
    923	if (event->cpu >= 0 && !cpu_online(event->cpu))
    924		return -ENODEV;
    925
    926	/* Force reset of idle/hv excludes regardless of what the
    927	 * user requested.
    928	 */
    929	if (event->attr.exclude_hv)
    930		event->attr.exclude_hv = 0;
    931	if (event->attr.exclude_idle)
    932		event->attr.exclude_idle = 0;
    933
    934	err = __hw_perf_event_init(event);
    935	if (unlikely(err))
    936		if (event->destroy)
    937			event->destroy(event);
    938	return err;
    939}
    940
    941static void cpumsf_pmu_enable(struct pmu *pmu)
    942{
    943	struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
    944	struct hw_perf_event *hwc;
    945	int err;
    946
    947	if (cpuhw->flags & PMU_F_ENABLED)
    948		return;
    949
    950	if (cpuhw->flags & PMU_F_ERR_MASK)
    951		return;
    952
    953	/* Check whether to extent the sampling buffer.
    954	 *
    955	 * Two conditions trigger an increase of the sampling buffer for a
    956	 * perf event:
    957	 *    1. Postponed buffer allocations from the event initialization.
    958	 *    2. Sampling overflows that contribute to pending allocations.
    959	 *
    960	 * Note that the extend_sampling_buffer() function disables the sampling
    961	 * facility, but it can be fully re-enabled using sampling controls that
    962	 * have been saved in cpumsf_pmu_disable().
    963	 */
    964	if (cpuhw->event) {
    965		hwc = &cpuhw->event->hw;
    966		if (!(SAMPL_DIAG_MODE(hwc))) {
    967			/*
    968			 * Account number of overflow-designated
    969			 * buffer extents
    970			 */
    971			sfb_account_overflows(cpuhw, hwc);
    972			extend_sampling_buffer(&cpuhw->sfb, hwc);
    973		}
    974		/* Rate may be adjusted with ioctl() */
    975		cpuhw->lsctl.interval = SAMPL_RATE(&cpuhw->event->hw);
    976	}
    977
    978	/* (Re)enable the PMU and sampling facility */
    979	cpuhw->flags |= PMU_F_ENABLED;
    980	barrier();
    981
    982	err = lsctl(&cpuhw->lsctl);
    983	if (err) {
    984		cpuhw->flags &= ~PMU_F_ENABLED;
    985		pr_err("Loading sampling controls failed: op %i err %i\n",
    986			1, err);
    987		return;
    988	}
    989
    990	/* Load current program parameter */
    991	lpp(&S390_lowcore.lpp);
    992
    993	debug_sprintf_event(sfdbg, 6, "%s: es %i cs %i ed %i cd %i "
    994			    "interval %#lx tear %#lx dear %#lx\n", __func__,
    995			    cpuhw->lsctl.es, cpuhw->lsctl.cs, cpuhw->lsctl.ed,
    996			    cpuhw->lsctl.cd, cpuhw->lsctl.interval,
    997			    cpuhw->lsctl.tear, cpuhw->lsctl.dear);
    998}
    999
   1000static void cpumsf_pmu_disable(struct pmu *pmu)
   1001{
   1002	struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
   1003	struct hws_lsctl_request_block inactive;
   1004	struct hws_qsi_info_block si;
   1005	int err;
   1006
   1007	if (!(cpuhw->flags & PMU_F_ENABLED))
   1008		return;
   1009
   1010	if (cpuhw->flags & PMU_F_ERR_MASK)
   1011		return;
   1012
   1013	/* Switch off sampling activation control */
   1014	inactive = cpuhw->lsctl;
   1015	inactive.cs = 0;
   1016	inactive.cd = 0;
   1017
   1018	err = lsctl(&inactive);
   1019	if (err) {
   1020		pr_err("Loading sampling controls failed: op %i err %i\n",
   1021			2, err);
   1022		return;
   1023	}
   1024
   1025	/* Save state of TEAR and DEAR register contents */
   1026	err = qsi(&si);
   1027	if (!err) {
   1028		/* TEAR/DEAR values are valid only if the sampling facility is
   1029		 * enabled.  Note that cpumsf_pmu_disable() might be called even
   1030		 * for a disabled sampling facility because cpumsf_pmu_enable()
   1031		 * controls the enable/disable state.
   1032		 */
   1033		if (si.es) {
   1034			cpuhw->lsctl.tear = si.tear;
   1035			cpuhw->lsctl.dear = si.dear;
   1036		}
   1037	} else
   1038		debug_sprintf_event(sfdbg, 3, "%s: qsi() failed with err %i\n",
   1039				    __func__, err);
   1040
   1041	cpuhw->flags &= ~PMU_F_ENABLED;
   1042}
   1043
   1044/* perf_exclude_event() - Filter event
   1045 * @event:	The perf event
   1046 * @regs:	pt_regs structure
   1047 * @sde_regs:	Sample-data-entry (sde) regs structure
   1048 *
   1049 * Filter perf events according to their exclude specification.
   1050 *
   1051 * Return non-zero if the event shall be excluded.
   1052 */
   1053static int perf_exclude_event(struct perf_event *event, struct pt_regs *regs,
   1054			      struct perf_sf_sde_regs *sde_regs)
   1055{
   1056	if (event->attr.exclude_user && user_mode(regs))
   1057		return 1;
   1058	if (event->attr.exclude_kernel && !user_mode(regs))
   1059		return 1;
   1060	if (event->attr.exclude_guest && sde_regs->in_guest)
   1061		return 1;
   1062	if (event->attr.exclude_host && !sde_regs->in_guest)
   1063		return 1;
   1064	return 0;
   1065}
   1066
   1067/* perf_push_sample() - Push samples to perf
   1068 * @event:	The perf event
   1069 * @sample:	Hardware sample data
   1070 *
   1071 * Use the hardware sample data to create perf event sample.  The sample
   1072 * is the pushed to the event subsystem and the function checks for
   1073 * possible event overflows.  If an event overflow occurs, the PMU is
   1074 * stopped.
   1075 *
   1076 * Return non-zero if an event overflow occurred.
   1077 */
   1078static int perf_push_sample(struct perf_event *event,
   1079			    struct hws_basic_entry *basic)
   1080{
   1081	int overflow;
   1082	struct pt_regs regs;
   1083	struct perf_sf_sde_regs *sde_regs;
   1084	struct perf_sample_data data;
   1085
   1086	/* Setup perf sample */
   1087	perf_sample_data_init(&data, 0, event->hw.last_period);
   1088
   1089	/* Setup pt_regs to look like an CPU-measurement external interrupt
   1090	 * using the Program Request Alert code.  The regs.int_parm_long
   1091	 * field which is unused contains additional sample-data-entry related
   1092	 * indicators.
   1093	 */
   1094	memset(&regs, 0, sizeof(regs));
   1095	regs.int_code = 0x1407;
   1096	regs.int_parm = CPU_MF_INT_SF_PRA;
   1097	sde_regs = (struct perf_sf_sde_regs *) &regs.int_parm_long;
   1098
   1099	psw_bits(regs.psw).ia	= basic->ia;
   1100	psw_bits(regs.psw).dat	= basic->T;
   1101	psw_bits(regs.psw).wait = basic->W;
   1102	psw_bits(regs.psw).pstate = basic->P;
   1103	psw_bits(regs.psw).as	= basic->AS;
   1104
   1105	/*
   1106	 * Use the hardware provided configuration level to decide if the
   1107	 * sample belongs to a guest or host. If that is not available,
   1108	 * fall back to the following heuristics:
   1109	 * A non-zero guest program parameter always indicates a guest
   1110	 * sample. Some early samples or samples from guests without
   1111	 * lpp usage would be misaccounted to the host. We use the asn
   1112	 * value as an addon heuristic to detect most of these guest samples.
   1113	 * If the value differs from 0xffff (the host value), we assume to
   1114	 * be a KVM guest.
   1115	 */
   1116	switch (basic->CL) {
   1117	case 1: /* logical partition */
   1118		sde_regs->in_guest = 0;
   1119		break;
   1120	case 2: /* virtual machine */
   1121		sde_regs->in_guest = 1;
   1122		break;
   1123	default: /* old machine, use heuristics */
   1124		if (basic->gpp || basic->prim_asn != 0xffff)
   1125			sde_regs->in_guest = 1;
   1126		break;
   1127	}
   1128
   1129	/*
   1130	 * Store the PID value from the sample-data-entry to be
   1131	 * processed and resolved by cpumsf_output_event_pid().
   1132	 */
   1133	data.tid_entry.pid = basic->hpp & LPP_PID_MASK;
   1134
   1135	overflow = 0;
   1136	if (perf_exclude_event(event, &regs, sde_regs))
   1137		goto out;
   1138	if (perf_event_overflow(event, &data, &regs)) {
   1139		overflow = 1;
   1140		event->pmu->stop(event, 0);
   1141	}
   1142	perf_event_update_userpage(event);
   1143out:
   1144	return overflow;
   1145}
   1146
   1147static void perf_event_count_update(struct perf_event *event, u64 count)
   1148{
   1149	local64_add(count, &event->count);
   1150}
   1151
   1152/* hw_collect_samples() - Walk through a sample-data-block and collect samples
   1153 * @event:	The perf event
   1154 * @sdbt:	Sample-data-block table
   1155 * @overflow:	Event overflow counter
   1156 *
   1157 * Walks through a sample-data-block and collects sampling data entries that are
   1158 * then pushed to the perf event subsystem.  Depending on the sampling function,
   1159 * there can be either basic-sampling or combined-sampling data entries.  A
   1160 * combined-sampling data entry consists of a basic- and a diagnostic-sampling
   1161 * data entry.	The sampling function is determined by the flags in the perf
   1162 * event hardware structure.  The function always works with a combined-sampling
   1163 * data entry but ignores the the diagnostic portion if it is not available.
   1164 *
   1165 * Note that the implementation focuses on basic-sampling data entries and, if
   1166 * such an entry is not valid, the entire combined-sampling data entry is
   1167 * ignored.
   1168 *
   1169 * The overflow variables counts the number of samples that has been discarded
   1170 * due to a perf event overflow.
   1171 */
   1172static void hw_collect_samples(struct perf_event *event, unsigned long *sdbt,
   1173			       unsigned long long *overflow)
   1174{
   1175	struct hws_trailer_entry *te;
   1176	struct hws_basic_entry *sample;
   1177
   1178	te = (struct hws_trailer_entry *) trailer_entry_ptr(*sdbt);
   1179	sample = (struct hws_basic_entry *) *sdbt;
   1180	while ((unsigned long *) sample < (unsigned long *) te) {
   1181		/* Check for an empty sample */
   1182		if (!sample->def || sample->LS)
   1183			break;
   1184
   1185		/* Update perf event period */
   1186		perf_event_count_update(event, SAMPL_RATE(&event->hw));
   1187
   1188		/* Check whether sample is valid */
   1189		if (sample->def == 0x0001) {
   1190			/* If an event overflow occurred, the PMU is stopped to
   1191			 * throttle event delivery.  Remaining sample data is
   1192			 * discarded.
   1193			 */
   1194			if (!*overflow) {
   1195				/* Check whether sample is consistent */
   1196				if (sample->I == 0 && sample->W == 0) {
   1197					/* Deliver sample data to perf */
   1198					*overflow = perf_push_sample(event,
   1199								     sample);
   1200				}
   1201			} else
   1202				/* Count discarded samples */
   1203				*overflow += 1;
   1204		} else {
   1205			debug_sprintf_event(sfdbg, 4,
   1206					    "%s: Found unknown"
   1207					    " sampling data entry: te->f %i"
   1208					    " basic.def %#4x (%p)\n", __func__,
   1209					    te->f, sample->def, sample);
   1210			/* Sample slot is not yet written or other record.
   1211			 *
   1212			 * This condition can occur if the buffer was reused
   1213			 * from a combined basic- and diagnostic-sampling.
   1214			 * If only basic-sampling is then active, entries are
   1215			 * written into the larger diagnostic entries.
   1216			 * This is typically the case for sample-data-blocks
   1217			 * that are not full.  Stop processing if the first
   1218			 * invalid format was detected.
   1219			 */
   1220			if (!te->f)
   1221				break;
   1222		}
   1223
   1224		/* Reset sample slot and advance to next sample */
   1225		sample->def = 0;
   1226		sample++;
   1227	}
   1228}
   1229
   1230/* hw_perf_event_update() - Process sampling buffer
   1231 * @event:	The perf event
   1232 * @flush_all:	Flag to also flush partially filled sample-data-blocks
   1233 *
   1234 * Processes the sampling buffer and create perf event samples.
   1235 * The sampling buffer position are retrieved and saved in the TEAR_REG
   1236 * register of the specified perf event.
   1237 *
   1238 * Only full sample-data-blocks are processed.	Specify the flash_all flag
   1239 * to also walk through partially filled sample-data-blocks.  It is ignored
   1240 * if PERF_CPUM_SF_FULL_BLOCKS is set.	The PERF_CPUM_SF_FULL_BLOCKS flag
   1241 * enforces the processing of full sample-data-blocks only (trailer entries
   1242 * with the block-full-indicator bit set).
   1243 */
   1244static void hw_perf_event_update(struct perf_event *event, int flush_all)
   1245{
   1246	struct hw_perf_event *hwc = &event->hw;
   1247	struct hws_trailer_entry *te;
   1248	unsigned long *sdbt;
   1249	unsigned long long event_overflow, sampl_overflow, num_sdb, te_flags;
   1250	int done;
   1251
   1252	/*
   1253	 * AUX buffer is used when in diagnostic sampling mode.
   1254	 * No perf events/samples are created.
   1255	 */
   1256	if (SAMPL_DIAG_MODE(&event->hw))
   1257		return;
   1258
   1259	if (flush_all && SDB_FULL_BLOCKS(hwc))
   1260		flush_all = 0;
   1261
   1262	sdbt = (unsigned long *) TEAR_REG(hwc);
   1263	done = event_overflow = sampl_overflow = num_sdb = 0;
   1264	while (!done) {
   1265		/* Get the trailer entry of the sample-data-block */
   1266		te = (struct hws_trailer_entry *) trailer_entry_ptr(*sdbt);
   1267
   1268		/* Leave loop if no more work to do (block full indicator) */
   1269		if (!te->f) {
   1270			done = 1;
   1271			if (!flush_all)
   1272				break;
   1273		}
   1274
   1275		/* Check the sample overflow count */
   1276		if (te->overflow)
   1277			/* Account sample overflows and, if a particular limit
   1278			 * is reached, extend the sampling buffer.
   1279			 * For details, see sfb_account_overflows().
   1280			 */
   1281			sampl_overflow += te->overflow;
   1282
   1283		/* Timestamps are valid for full sample-data-blocks only */
   1284		debug_sprintf_event(sfdbg, 6, "%s: sdbt %#lx "
   1285				    "overflow %llu timestamp %#llx\n",
   1286				    __func__, (unsigned long)sdbt, te->overflow,
   1287				    (te->f) ? trailer_timestamp(te) : 0ULL);
   1288
   1289		/* Collect all samples from a single sample-data-block and
   1290		 * flag if an (perf) event overflow happened.  If so, the PMU
   1291		 * is stopped and remaining samples will be discarded.
   1292		 */
   1293		hw_collect_samples(event, sdbt, &event_overflow);
   1294		num_sdb++;
   1295
   1296		/* Reset trailer (using compare-double-and-swap) */
   1297		do {
   1298			te_flags = te->flags & ~SDB_TE_BUFFER_FULL_MASK;
   1299			te_flags |= SDB_TE_ALERT_REQ_MASK;
   1300		} while (!cmpxchg_double(&te->flags, &te->overflow,
   1301					 te->flags, te->overflow,
   1302					 te_flags, 0ULL));
   1303
   1304		/* Advance to next sample-data-block */
   1305		sdbt++;
   1306		if (is_link_entry(sdbt))
   1307			sdbt = get_next_sdbt(sdbt);
   1308
   1309		/* Update event hardware registers */
   1310		TEAR_REG(hwc) = (unsigned long) sdbt;
   1311
   1312		/* Stop processing sample-data if all samples of the current
   1313		 * sample-data-block were flushed even if it was not full.
   1314		 */
   1315		if (flush_all && done)
   1316			break;
   1317	}
   1318
   1319	/* Account sample overflows in the event hardware structure */
   1320	if (sampl_overflow)
   1321		OVERFLOW_REG(hwc) = DIV_ROUND_UP(OVERFLOW_REG(hwc) +
   1322						 sampl_overflow, 1 + num_sdb);
   1323
   1324	/* Perf_event_overflow() and perf_event_account_interrupt() limit
   1325	 * the interrupt rate to an upper limit. Roughly 1000 samples per
   1326	 * task tick.
   1327	 * Hitting this limit results in a large number
   1328	 * of throttled REF_REPORT_THROTTLE entries and the samples
   1329	 * are dropped.
   1330	 * Slightly increase the interval to avoid hitting this limit.
   1331	 */
   1332	if (event_overflow) {
   1333		SAMPL_RATE(hwc) += DIV_ROUND_UP(SAMPL_RATE(hwc), 10);
   1334		debug_sprintf_event(sfdbg, 1, "%s: rate adjustment %ld\n",
   1335				    __func__,
   1336				    DIV_ROUND_UP(SAMPL_RATE(hwc), 10));
   1337	}
   1338
   1339	if (sampl_overflow || event_overflow)
   1340		debug_sprintf_event(sfdbg, 4, "%s: "
   1341				    "overflows: sample %llu event %llu"
   1342				    " total %llu num_sdb %llu\n",
   1343				    __func__, sampl_overflow, event_overflow,
   1344				    OVERFLOW_REG(hwc), num_sdb);
   1345}
   1346
   1347#define AUX_SDB_INDEX(aux, i) ((i) % aux->sfb.num_sdb)
   1348#define AUX_SDB_NUM(aux, start, end) (end >= start ? end - start + 1 : 0)
   1349#define AUX_SDB_NUM_ALERT(aux) AUX_SDB_NUM(aux, aux->head, aux->alert_mark)
   1350#define AUX_SDB_NUM_EMPTY(aux) AUX_SDB_NUM(aux, aux->head, aux->empty_mark)
   1351
   1352/*
   1353 * Get trailer entry by index of SDB.
   1354 */
   1355static struct hws_trailer_entry *aux_sdb_trailer(struct aux_buffer *aux,
   1356						 unsigned long index)
   1357{
   1358	unsigned long sdb;
   1359
   1360	index = AUX_SDB_INDEX(aux, index);
   1361	sdb = aux->sdb_index[index];
   1362	return (struct hws_trailer_entry *)trailer_entry_ptr(sdb);
   1363}
   1364
   1365/*
   1366 * Finish sampling on the cpu. Called by cpumsf_pmu_del() with pmu
   1367 * disabled. Collect the full SDBs in AUX buffer which have not reached
   1368 * the point of alert indicator. And ignore the SDBs which are not
   1369 * full.
   1370 *
   1371 * 1. Scan SDBs to see how much data is there and consume them.
   1372 * 2. Remove alert indicator in the buffer.
   1373 */
   1374static void aux_output_end(struct perf_output_handle *handle)
   1375{
   1376	unsigned long i, range_scan, idx;
   1377	struct aux_buffer *aux;
   1378	struct hws_trailer_entry *te;
   1379
   1380	aux = perf_get_aux(handle);
   1381	if (!aux)
   1382		return;
   1383
   1384	range_scan = AUX_SDB_NUM_ALERT(aux);
   1385	for (i = 0, idx = aux->head; i < range_scan; i++, idx++) {
   1386		te = aux_sdb_trailer(aux, idx);
   1387		if (!(te->flags & SDB_TE_BUFFER_FULL_MASK))
   1388			break;
   1389	}
   1390	/* i is num of SDBs which are full */
   1391	perf_aux_output_end(handle, i << PAGE_SHIFT);
   1392
   1393	/* Remove alert indicators in the buffer */
   1394	te = aux_sdb_trailer(aux, aux->alert_mark);
   1395	te->flags &= ~SDB_TE_ALERT_REQ_MASK;
   1396
   1397	debug_sprintf_event(sfdbg, 6, "%s: SDBs %ld range %ld head %ld\n",
   1398			    __func__, i, range_scan, aux->head);
   1399}
   1400
   1401/*
   1402 * Start sampling on the CPU. Called by cpumsf_pmu_add() when an event
   1403 * is first added to the CPU or rescheduled again to the CPU. It is called
   1404 * with pmu disabled.
   1405 *
   1406 * 1. Reset the trailer of SDBs to get ready for new data.
   1407 * 2. Tell the hardware where to put the data by reset the SDBs buffer
   1408 *    head(tear/dear).
   1409 */
   1410static int aux_output_begin(struct perf_output_handle *handle,
   1411			    struct aux_buffer *aux,
   1412			    struct cpu_hw_sf *cpuhw)
   1413{
   1414	unsigned long range;
   1415	unsigned long i, range_scan, idx;
   1416	unsigned long head, base, offset;
   1417	struct hws_trailer_entry *te;
   1418
   1419	if (WARN_ON_ONCE(handle->head & ~PAGE_MASK))
   1420		return -EINVAL;
   1421
   1422	aux->head = handle->head >> PAGE_SHIFT;
   1423	range = (handle->size + 1) >> PAGE_SHIFT;
   1424	if (range <= 1)
   1425		return -ENOMEM;
   1426
   1427	/*
   1428	 * SDBs between aux->head and aux->empty_mark are already ready
   1429	 * for new data. range_scan is num of SDBs not within them.
   1430	 */
   1431	debug_sprintf_event(sfdbg, 6,
   1432			    "%s: range %ld head %ld alert %ld empty %ld\n",
   1433			    __func__, range, aux->head, aux->alert_mark,
   1434			    aux->empty_mark);
   1435	if (range > AUX_SDB_NUM_EMPTY(aux)) {
   1436		range_scan = range - AUX_SDB_NUM_EMPTY(aux);
   1437		idx = aux->empty_mark + 1;
   1438		for (i = 0; i < range_scan; i++, idx++) {
   1439			te = aux_sdb_trailer(aux, idx);
   1440			te->flags &= ~(SDB_TE_BUFFER_FULL_MASK |
   1441				       SDB_TE_ALERT_REQ_MASK);
   1442			te->overflow = 0;
   1443		}
   1444		/* Save the position of empty SDBs */
   1445		aux->empty_mark = aux->head + range - 1;
   1446	}
   1447
   1448	/* Set alert indicator */
   1449	aux->alert_mark = aux->head + range/2 - 1;
   1450	te = aux_sdb_trailer(aux, aux->alert_mark);
   1451	te->flags = te->flags | SDB_TE_ALERT_REQ_MASK;
   1452
   1453	/* Reset hardware buffer head */
   1454	head = AUX_SDB_INDEX(aux, aux->head);
   1455	base = aux->sdbt_index[head / CPUM_SF_SDB_PER_TABLE];
   1456	offset = head % CPUM_SF_SDB_PER_TABLE;
   1457	cpuhw->lsctl.tear = base + offset * sizeof(unsigned long);
   1458	cpuhw->lsctl.dear = aux->sdb_index[head];
   1459
   1460	debug_sprintf_event(sfdbg, 6, "%s: head %ld alert %ld empty %ld "
   1461			    "index %ld tear %#lx dear %#lx\n", __func__,
   1462			    aux->head, aux->alert_mark, aux->empty_mark,
   1463			    head / CPUM_SF_SDB_PER_TABLE,
   1464			    cpuhw->lsctl.tear, cpuhw->lsctl.dear);
   1465
   1466	return 0;
   1467}
   1468
   1469/*
   1470 * Set alert indicator on SDB at index @alert_index while sampler is running.
   1471 *
   1472 * Return true if successfully.
   1473 * Return false if full indicator is already set by hardware sampler.
   1474 */
   1475static bool aux_set_alert(struct aux_buffer *aux, unsigned long alert_index,
   1476			  unsigned long long *overflow)
   1477{
   1478	unsigned long long orig_overflow, orig_flags, new_flags;
   1479	struct hws_trailer_entry *te;
   1480
   1481	te = aux_sdb_trailer(aux, alert_index);
   1482	do {
   1483		orig_flags = te->flags;
   1484		*overflow = orig_overflow = te->overflow;
   1485		if (orig_flags & SDB_TE_BUFFER_FULL_MASK) {
   1486			/*
   1487			 * SDB is already set by hardware.
   1488			 * Abort and try to set somewhere
   1489			 * behind.
   1490			 */
   1491			return false;
   1492		}
   1493		new_flags = orig_flags | SDB_TE_ALERT_REQ_MASK;
   1494	} while (!cmpxchg_double(&te->flags, &te->overflow,
   1495				 orig_flags, orig_overflow,
   1496				 new_flags, 0ULL));
   1497	return true;
   1498}
   1499
   1500/*
   1501 * aux_reset_buffer() - Scan and setup SDBs for new samples
   1502 * @aux:	The AUX buffer to set
   1503 * @range:	The range of SDBs to scan started from aux->head
   1504 * @overflow:	Set to overflow count
   1505 *
   1506 * Set alert indicator on the SDB at index of aux->alert_mark. If this SDB is
   1507 * marked as empty, check if it is already set full by the hardware sampler.
   1508 * If yes, that means new data is already there before we can set an alert
   1509 * indicator. Caller should try to set alert indicator to some position behind.
   1510 *
   1511 * Scan the SDBs in AUX buffer from behind aux->empty_mark. They are used
   1512 * previously and have already been consumed by user space. Reset these SDBs
   1513 * (clear full indicator and alert indicator) for new data.
   1514 * If aux->alert_mark fall in this area, just set it. Overflow count is
   1515 * recorded while scanning.
   1516 *
   1517 * SDBs between aux->head and aux->empty_mark are already reset at last time.
   1518 * and ready for new samples. So scanning on this area could be skipped.
   1519 *
   1520 * Return true if alert indicator is set successfully and false if not.
   1521 */
   1522static bool aux_reset_buffer(struct aux_buffer *aux, unsigned long range,
   1523			     unsigned long long *overflow)
   1524{
   1525	unsigned long long orig_overflow, orig_flags, new_flags;
   1526	unsigned long i, range_scan, idx, idx_old;
   1527	struct hws_trailer_entry *te;
   1528
   1529	debug_sprintf_event(sfdbg, 6, "%s: range %ld head %ld alert %ld "
   1530			    "empty %ld\n", __func__, range, aux->head,
   1531			    aux->alert_mark, aux->empty_mark);
   1532	if (range <= AUX_SDB_NUM_EMPTY(aux))
   1533		/*
   1534		 * No need to scan. All SDBs in range are marked as empty.
   1535		 * Just set alert indicator. Should check race with hardware
   1536		 * sampler.
   1537		 */
   1538		return aux_set_alert(aux, aux->alert_mark, overflow);
   1539
   1540	if (aux->alert_mark <= aux->empty_mark)
   1541		/*
   1542		 * Set alert indicator on empty SDB. Should check race
   1543		 * with hardware sampler.
   1544		 */
   1545		if (!aux_set_alert(aux, aux->alert_mark, overflow))
   1546			return false;
   1547
   1548	/*
   1549	 * Scan the SDBs to clear full and alert indicator used previously.
   1550	 * Start scanning from one SDB behind empty_mark. If the new alert
   1551	 * indicator fall into this range, set it.
   1552	 */
   1553	range_scan = range - AUX_SDB_NUM_EMPTY(aux);
   1554	idx_old = idx = aux->empty_mark + 1;
   1555	for (i = 0; i < range_scan; i++, idx++) {
   1556		te = aux_sdb_trailer(aux, idx);
   1557		do {
   1558			orig_flags = te->flags;
   1559			orig_overflow = te->overflow;
   1560			new_flags = orig_flags & ~SDB_TE_BUFFER_FULL_MASK;
   1561			if (idx == aux->alert_mark)
   1562				new_flags |= SDB_TE_ALERT_REQ_MASK;
   1563			else
   1564				new_flags &= ~SDB_TE_ALERT_REQ_MASK;
   1565		} while (!cmpxchg_double(&te->flags, &te->overflow,
   1566					 orig_flags, orig_overflow,
   1567					 new_flags, 0ULL));
   1568		*overflow += orig_overflow;
   1569	}
   1570
   1571	/* Update empty_mark to new position */
   1572	aux->empty_mark = aux->head + range - 1;
   1573
   1574	debug_sprintf_event(sfdbg, 6, "%s: range_scan %ld idx %ld..%ld "
   1575			    "empty %ld\n", __func__, range_scan, idx_old,
   1576			    idx - 1, aux->empty_mark);
   1577	return true;
   1578}
   1579
   1580/*
   1581 * Measurement alert handler for diagnostic mode sampling.
   1582 */
   1583static void hw_collect_aux(struct cpu_hw_sf *cpuhw)
   1584{
   1585	struct aux_buffer *aux;
   1586	int done = 0;
   1587	unsigned long range = 0, size;
   1588	unsigned long long overflow = 0;
   1589	struct perf_output_handle *handle = &cpuhw->handle;
   1590	unsigned long num_sdb;
   1591
   1592	aux = perf_get_aux(handle);
   1593	if (WARN_ON_ONCE(!aux))
   1594		return;
   1595
   1596	/* Inform user space new data arrived */
   1597	size = AUX_SDB_NUM_ALERT(aux) << PAGE_SHIFT;
   1598	debug_sprintf_event(sfdbg, 6, "%s: #alert %ld\n", __func__,
   1599			    size >> PAGE_SHIFT);
   1600	perf_aux_output_end(handle, size);
   1601
   1602	num_sdb = aux->sfb.num_sdb;
   1603	while (!done) {
   1604		/* Get an output handle */
   1605		aux = perf_aux_output_begin(handle, cpuhw->event);
   1606		if (handle->size == 0) {
   1607			pr_err("The AUX buffer with %lu pages for the "
   1608			       "diagnostic-sampling mode is full\n",
   1609				num_sdb);
   1610			debug_sprintf_event(sfdbg, 1,
   1611					    "%s: AUX buffer used up\n",
   1612					    __func__);
   1613			break;
   1614		}
   1615		if (WARN_ON_ONCE(!aux))
   1616			return;
   1617
   1618		/* Update head and alert_mark to new position */
   1619		aux->head = handle->head >> PAGE_SHIFT;
   1620		range = (handle->size + 1) >> PAGE_SHIFT;
   1621		if (range == 1)
   1622			aux->alert_mark = aux->head;
   1623		else
   1624			aux->alert_mark = aux->head + range/2 - 1;
   1625
   1626		if (aux_reset_buffer(aux, range, &overflow)) {
   1627			if (!overflow) {
   1628				done = 1;
   1629				break;
   1630			}
   1631			size = range << PAGE_SHIFT;
   1632			perf_aux_output_end(&cpuhw->handle, size);
   1633			pr_err("Sample data caused the AUX buffer with %lu "
   1634			       "pages to overflow\n", aux->sfb.num_sdb);
   1635			debug_sprintf_event(sfdbg, 1, "%s: head %ld range %ld "
   1636					    "overflow %lld\n", __func__,
   1637					    aux->head, range, overflow);
   1638		} else {
   1639			size = AUX_SDB_NUM_ALERT(aux) << PAGE_SHIFT;
   1640			perf_aux_output_end(&cpuhw->handle, size);
   1641			debug_sprintf_event(sfdbg, 6, "%s: head %ld alert %ld "
   1642					    "already full, try another\n",
   1643					    __func__,
   1644					    aux->head, aux->alert_mark);
   1645		}
   1646	}
   1647
   1648	if (done)
   1649		debug_sprintf_event(sfdbg, 6, "%s: head %ld alert %ld "
   1650				    "empty %ld\n", __func__, aux->head,
   1651				    aux->alert_mark, aux->empty_mark);
   1652}
   1653
   1654/*
   1655 * Callback when freeing AUX buffers.
   1656 */
   1657static void aux_buffer_free(void *data)
   1658{
   1659	struct aux_buffer *aux = data;
   1660	unsigned long i, num_sdbt;
   1661
   1662	if (!aux)
   1663		return;
   1664
   1665	/* Free SDBT. SDB is freed by the caller */
   1666	num_sdbt = aux->sfb.num_sdbt;
   1667	for (i = 0; i < num_sdbt; i++)
   1668		free_page(aux->sdbt_index[i]);
   1669
   1670	kfree(aux->sdbt_index);
   1671	kfree(aux->sdb_index);
   1672	kfree(aux);
   1673
   1674	debug_sprintf_event(sfdbg, 4, "%s: SDBTs %lu\n", __func__, num_sdbt);
   1675}
   1676
   1677static void aux_sdb_init(unsigned long sdb)
   1678{
   1679	struct hws_trailer_entry *te;
   1680
   1681	te = (struct hws_trailer_entry *)trailer_entry_ptr(sdb);
   1682
   1683	/* Save clock base */
   1684	te->clock_base = 1;
   1685	te->progusage2 = tod_clock_base.tod;
   1686}
   1687
   1688/*
   1689 * aux_buffer_setup() - Setup AUX buffer for diagnostic mode sampling
   1690 * @event:	Event the buffer is setup for, event->cpu == -1 means current
   1691 * @pages:	Array of pointers to buffer pages passed from perf core
   1692 * @nr_pages:	Total pages
   1693 * @snapshot:	Flag for snapshot mode
   1694 *
   1695 * This is the callback when setup an event using AUX buffer. Perf tool can
   1696 * trigger this by an additional mmap() call on the event. Unlike the buffer
   1697 * for basic samples, AUX buffer belongs to the event. It is scheduled with
   1698 * the task among online cpus when it is a per-thread event.
   1699 *
   1700 * Return the private AUX buffer structure if success or NULL if fails.
   1701 */
   1702static void *aux_buffer_setup(struct perf_event *event, void **pages,
   1703			      int nr_pages, bool snapshot)
   1704{
   1705	struct sf_buffer *sfb;
   1706	struct aux_buffer *aux;
   1707	unsigned long *new, *tail;
   1708	int i, n_sdbt;
   1709
   1710	if (!nr_pages || !pages)
   1711		return NULL;
   1712
   1713	if (nr_pages > CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR) {
   1714		pr_err("AUX buffer size (%i pages) is larger than the "
   1715		       "maximum sampling buffer limit\n",
   1716		       nr_pages);
   1717		return NULL;
   1718	} else if (nr_pages < CPUM_SF_MIN_SDB * CPUM_SF_SDB_DIAG_FACTOR) {
   1719		pr_err("AUX buffer size (%i pages) is less than the "
   1720		       "minimum sampling buffer limit\n",
   1721		       nr_pages);
   1722		return NULL;
   1723	}
   1724
   1725	/* Allocate aux_buffer struct for the event */
   1726	aux = kzalloc(sizeof(struct aux_buffer), GFP_KERNEL);
   1727	if (!aux)
   1728		goto no_aux;
   1729	sfb = &aux->sfb;
   1730
   1731	/* Allocate sdbt_index for fast reference */
   1732	n_sdbt = DIV_ROUND_UP(nr_pages, CPUM_SF_SDB_PER_TABLE);
   1733	aux->sdbt_index = kmalloc_array(n_sdbt, sizeof(void *), GFP_KERNEL);
   1734	if (!aux->sdbt_index)
   1735		goto no_sdbt_index;
   1736
   1737	/* Allocate sdb_index for fast reference */
   1738	aux->sdb_index = kmalloc_array(nr_pages, sizeof(void *), GFP_KERNEL);
   1739	if (!aux->sdb_index)
   1740		goto no_sdb_index;
   1741
   1742	/* Allocate the first SDBT */
   1743	sfb->num_sdbt = 0;
   1744	sfb->sdbt = (unsigned long *) get_zeroed_page(GFP_KERNEL);
   1745	if (!sfb->sdbt)
   1746		goto no_sdbt;
   1747	aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)sfb->sdbt;
   1748	tail = sfb->tail = sfb->sdbt;
   1749
   1750	/*
   1751	 * Link the provided pages of AUX buffer to SDBT.
   1752	 * Allocate SDBT if needed.
   1753	 */
   1754	for (i = 0; i < nr_pages; i++, tail++) {
   1755		if (require_table_link(tail)) {
   1756			new = (unsigned long *) get_zeroed_page(GFP_KERNEL);
   1757			if (!new)
   1758				goto no_sdbt;
   1759			aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)new;
   1760			/* Link current page to tail of chain */
   1761			*tail = (unsigned long)(void *) new + 1;
   1762			tail = new;
   1763		}
   1764		/* Tail is the entry in a SDBT */
   1765		*tail = (unsigned long)pages[i];
   1766		aux->sdb_index[i] = (unsigned long)pages[i];
   1767		aux_sdb_init((unsigned long)pages[i]);
   1768	}
   1769	sfb->num_sdb = nr_pages;
   1770
   1771	/* Link the last entry in the SDBT to the first SDBT */
   1772	*tail = (unsigned long) sfb->sdbt + 1;
   1773	sfb->tail = tail;
   1774
   1775	/*
   1776	 * Initial all SDBs are zeroed. Mark it as empty.
   1777	 * So there is no need to clear the full indicator
   1778	 * when this event is first added.
   1779	 */
   1780	aux->empty_mark = sfb->num_sdb - 1;
   1781
   1782	debug_sprintf_event(sfdbg, 4, "%s: SDBTs %lu SDBs %lu\n", __func__,
   1783			    sfb->num_sdbt, sfb->num_sdb);
   1784
   1785	return aux;
   1786
   1787no_sdbt:
   1788	/* SDBs (AUX buffer pages) are freed by caller */
   1789	for (i = 0; i < sfb->num_sdbt; i++)
   1790		free_page(aux->sdbt_index[i]);
   1791	kfree(aux->sdb_index);
   1792no_sdb_index:
   1793	kfree(aux->sdbt_index);
   1794no_sdbt_index:
   1795	kfree(aux);
   1796no_aux:
   1797	return NULL;
   1798}
   1799
   1800static void cpumsf_pmu_read(struct perf_event *event)
   1801{
   1802	/* Nothing to do ... updates are interrupt-driven */
   1803}
   1804
   1805/* Check if the new sampling period/freqeuncy is appropriate.
   1806 *
   1807 * Return non-zero on error and zero on passed checks.
   1808 */
   1809static int cpumsf_pmu_check_period(struct perf_event *event, u64 value)
   1810{
   1811	struct hws_qsi_info_block si;
   1812	unsigned long rate;
   1813	bool do_freq;
   1814
   1815	memset(&si, 0, sizeof(si));
   1816	if (event->cpu == -1) {
   1817		if (qsi(&si))
   1818			return -ENODEV;
   1819	} else {
   1820		/* Event is pinned to a particular CPU, retrieve the per-CPU
   1821		 * sampling structure for accessing the CPU-specific QSI.
   1822		 */
   1823		struct cpu_hw_sf *cpuhw = &per_cpu(cpu_hw_sf, event->cpu);
   1824
   1825		si = cpuhw->qsi;
   1826	}
   1827
   1828	do_freq = !!SAMPLE_FREQ_MODE(&event->hw);
   1829	rate = getrate(do_freq, value, &si);
   1830	if (!rate)
   1831		return -EINVAL;
   1832
   1833	event->attr.sample_period = rate;
   1834	SAMPL_RATE(&event->hw) = rate;
   1835	hw_init_period(&event->hw, SAMPL_RATE(&event->hw));
   1836	debug_sprintf_event(sfdbg, 4, "%s:"
   1837			    " cpu %d value %#llx period %#llx freq %d\n",
   1838			    __func__, event->cpu, value,
   1839			    event->attr.sample_period, do_freq);
   1840	return 0;
   1841}
   1842
   1843/* Activate sampling control.
   1844 * Next call of pmu_enable() starts sampling.
   1845 */
   1846static void cpumsf_pmu_start(struct perf_event *event, int flags)
   1847{
   1848	struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
   1849
   1850	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
   1851		return;
   1852
   1853	if (flags & PERF_EF_RELOAD)
   1854		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
   1855
   1856	perf_pmu_disable(event->pmu);
   1857	event->hw.state = 0;
   1858	cpuhw->lsctl.cs = 1;
   1859	if (SAMPL_DIAG_MODE(&event->hw))
   1860		cpuhw->lsctl.cd = 1;
   1861	perf_pmu_enable(event->pmu);
   1862}
   1863
   1864/* Deactivate sampling control.
   1865 * Next call of pmu_enable() stops sampling.
   1866 */
   1867static void cpumsf_pmu_stop(struct perf_event *event, int flags)
   1868{
   1869	struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
   1870
   1871	if (event->hw.state & PERF_HES_STOPPED)
   1872		return;
   1873
   1874	perf_pmu_disable(event->pmu);
   1875	cpuhw->lsctl.cs = 0;
   1876	cpuhw->lsctl.cd = 0;
   1877	event->hw.state |= PERF_HES_STOPPED;
   1878
   1879	if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
   1880		hw_perf_event_update(event, 1);
   1881		event->hw.state |= PERF_HES_UPTODATE;
   1882	}
   1883	perf_pmu_enable(event->pmu);
   1884}
   1885
   1886static int cpumsf_pmu_add(struct perf_event *event, int flags)
   1887{
   1888	struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
   1889	struct aux_buffer *aux;
   1890	int err;
   1891
   1892	if (cpuhw->flags & PMU_F_IN_USE)
   1893		return -EAGAIN;
   1894
   1895	if (!SAMPL_DIAG_MODE(&event->hw) && !cpuhw->sfb.sdbt)
   1896		return -EINVAL;
   1897
   1898	err = 0;
   1899	perf_pmu_disable(event->pmu);
   1900
   1901	event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
   1902
   1903	/* Set up sampling controls.  Always program the sampling register
   1904	 * using the SDB-table start.  Reset TEAR_REG event hardware register
   1905	 * that is used by hw_perf_event_update() to store the sampling buffer
   1906	 * position after samples have been flushed.
   1907	 */
   1908	cpuhw->lsctl.s = 0;
   1909	cpuhw->lsctl.h = 1;
   1910	cpuhw->lsctl.interval = SAMPL_RATE(&event->hw);
   1911	if (!SAMPL_DIAG_MODE(&event->hw)) {
   1912		cpuhw->lsctl.tear = (unsigned long) cpuhw->sfb.sdbt;
   1913		cpuhw->lsctl.dear = *(unsigned long *) cpuhw->sfb.sdbt;
   1914		TEAR_REG(&event->hw) = (unsigned long) cpuhw->sfb.sdbt;
   1915	}
   1916
   1917	/* Ensure sampling functions are in the disabled state.  If disabled,
   1918	 * switch on sampling enable control. */
   1919	if (WARN_ON_ONCE(cpuhw->lsctl.es == 1 || cpuhw->lsctl.ed == 1)) {
   1920		err = -EAGAIN;
   1921		goto out;
   1922	}
   1923	if (SAMPL_DIAG_MODE(&event->hw)) {
   1924		aux = perf_aux_output_begin(&cpuhw->handle, event);
   1925		if (!aux) {
   1926			err = -EINVAL;
   1927			goto out;
   1928		}
   1929		err = aux_output_begin(&cpuhw->handle, aux, cpuhw);
   1930		if (err)
   1931			goto out;
   1932		cpuhw->lsctl.ed = 1;
   1933	}
   1934	cpuhw->lsctl.es = 1;
   1935
   1936	/* Set in_use flag and store event */
   1937	cpuhw->event = event;
   1938	cpuhw->flags |= PMU_F_IN_USE;
   1939
   1940	if (flags & PERF_EF_START)
   1941		cpumsf_pmu_start(event, PERF_EF_RELOAD);
   1942out:
   1943	perf_event_update_userpage(event);
   1944	perf_pmu_enable(event->pmu);
   1945	return err;
   1946}
   1947
   1948static void cpumsf_pmu_del(struct perf_event *event, int flags)
   1949{
   1950	struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
   1951
   1952	perf_pmu_disable(event->pmu);
   1953	cpumsf_pmu_stop(event, PERF_EF_UPDATE);
   1954
   1955	cpuhw->lsctl.es = 0;
   1956	cpuhw->lsctl.ed = 0;
   1957	cpuhw->flags &= ~PMU_F_IN_USE;
   1958	cpuhw->event = NULL;
   1959
   1960	if (SAMPL_DIAG_MODE(&event->hw))
   1961		aux_output_end(&cpuhw->handle);
   1962	perf_event_update_userpage(event);
   1963	perf_pmu_enable(event->pmu);
   1964}
   1965
   1966CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC, PERF_EVENT_CPUM_SF);
   1967CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC_DIAG, PERF_EVENT_CPUM_SF_DIAG);
   1968
   1969/* Attribute list for CPU_SF.
   1970 *
   1971 * The availablitiy depends on the CPU_MF sampling facility authorization
   1972 * for basic + diagnositic samples. This is determined at initialization
   1973 * time by the sampling facility device driver.
   1974 * If the authorization for basic samples is turned off, it should be
   1975 * also turned off for diagnostic sampling.
   1976 *
   1977 * During initialization of the device driver, check the authorization
   1978 * level for diagnostic sampling and installs the attribute
   1979 * file for diagnostic sampling if necessary.
   1980 *
   1981 * For now install a placeholder to reference all possible attributes:
   1982 * SF_CYCLES_BASIC and SF_CYCLES_BASIC_DIAG.
   1983 * Add another entry for the final NULL pointer.
   1984 */
   1985enum {
   1986	SF_CYCLES_BASIC_ATTR_IDX = 0,
   1987	SF_CYCLES_BASIC_DIAG_ATTR_IDX,
   1988	SF_CYCLES_ATTR_MAX
   1989};
   1990
   1991static struct attribute *cpumsf_pmu_events_attr[SF_CYCLES_ATTR_MAX + 1] = {
   1992	[SF_CYCLES_BASIC_ATTR_IDX] = CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC)
   1993};
   1994
   1995PMU_FORMAT_ATTR(event, "config:0-63");
   1996
   1997static struct attribute *cpumsf_pmu_format_attr[] = {
   1998	&format_attr_event.attr,
   1999	NULL,
   2000};
   2001
   2002static struct attribute_group cpumsf_pmu_events_group = {
   2003	.name = "events",
   2004	.attrs = cpumsf_pmu_events_attr,
   2005};
   2006
   2007static struct attribute_group cpumsf_pmu_format_group = {
   2008	.name = "format",
   2009	.attrs = cpumsf_pmu_format_attr,
   2010};
   2011
   2012static const struct attribute_group *cpumsf_pmu_attr_groups[] = {
   2013	&cpumsf_pmu_events_group,
   2014	&cpumsf_pmu_format_group,
   2015	NULL,
   2016};
   2017
   2018static struct pmu cpumf_sampling = {
   2019	.pmu_enable   = cpumsf_pmu_enable,
   2020	.pmu_disable  = cpumsf_pmu_disable,
   2021
   2022	.event_init   = cpumsf_pmu_event_init,
   2023	.add	      = cpumsf_pmu_add,
   2024	.del	      = cpumsf_pmu_del,
   2025
   2026	.start	      = cpumsf_pmu_start,
   2027	.stop	      = cpumsf_pmu_stop,
   2028	.read	      = cpumsf_pmu_read,
   2029
   2030	.attr_groups  = cpumsf_pmu_attr_groups,
   2031
   2032	.setup_aux    = aux_buffer_setup,
   2033	.free_aux     = aux_buffer_free,
   2034
   2035	.check_period = cpumsf_pmu_check_period,
   2036};
   2037
   2038static void cpumf_measurement_alert(struct ext_code ext_code,
   2039				    unsigned int alert, unsigned long unused)
   2040{
   2041	struct cpu_hw_sf *cpuhw;
   2042
   2043	if (!(alert & CPU_MF_INT_SF_MASK))
   2044		return;
   2045	inc_irq_stat(IRQEXT_CMS);
   2046	cpuhw = this_cpu_ptr(&cpu_hw_sf);
   2047
   2048	/* Measurement alerts are shared and might happen when the PMU
   2049	 * is not reserved.  Ignore these alerts in this case. */
   2050	if (!(cpuhw->flags & PMU_F_RESERVED))
   2051		return;
   2052
   2053	/* The processing below must take care of multiple alert events that
   2054	 * might be indicated concurrently. */
   2055
   2056	/* Program alert request */
   2057	if (alert & CPU_MF_INT_SF_PRA) {
   2058		if (cpuhw->flags & PMU_F_IN_USE)
   2059			if (SAMPL_DIAG_MODE(&cpuhw->event->hw))
   2060				hw_collect_aux(cpuhw);
   2061			else
   2062				hw_perf_event_update(cpuhw->event, 0);
   2063		else
   2064			WARN_ON_ONCE(!(cpuhw->flags & PMU_F_IN_USE));
   2065	}
   2066
   2067	/* Report measurement alerts only for non-PRA codes */
   2068	if (alert != CPU_MF_INT_SF_PRA)
   2069		debug_sprintf_event(sfdbg, 6, "%s: alert %#x\n", __func__,
   2070				    alert);
   2071
   2072	/* Sampling authorization change request */
   2073	if (alert & CPU_MF_INT_SF_SACA)
   2074		qsi(&cpuhw->qsi);
   2075
   2076	/* Loss of sample data due to high-priority machine activities */
   2077	if (alert & CPU_MF_INT_SF_LSDA) {
   2078		pr_err("Sample data was lost\n");
   2079		cpuhw->flags |= PMU_F_ERR_LSDA;
   2080		sf_disable();
   2081	}
   2082
   2083	/* Invalid sampling buffer entry */
   2084	if (alert & (CPU_MF_INT_SF_IAE|CPU_MF_INT_SF_ISE)) {
   2085		pr_err("A sampling buffer entry is incorrect (alert=0x%x)\n",
   2086		       alert);
   2087		cpuhw->flags |= PMU_F_ERR_IBE;
   2088		sf_disable();
   2089	}
   2090}
   2091
   2092static int cpusf_pmu_setup(unsigned int cpu, int flags)
   2093{
   2094	/* Ignore the notification if no events are scheduled on the PMU.
   2095	 * This might be racy...
   2096	 */
   2097	if (!atomic_read(&num_events))
   2098		return 0;
   2099
   2100	local_irq_disable();
   2101	setup_pmc_cpu(&flags);
   2102	local_irq_enable();
   2103	return 0;
   2104}
   2105
   2106static int s390_pmu_sf_online_cpu(unsigned int cpu)
   2107{
   2108	return cpusf_pmu_setup(cpu, PMC_INIT);
   2109}
   2110
   2111static int s390_pmu_sf_offline_cpu(unsigned int cpu)
   2112{
   2113	return cpusf_pmu_setup(cpu, PMC_RELEASE);
   2114}
   2115
   2116static int param_get_sfb_size(char *buffer, const struct kernel_param *kp)
   2117{
   2118	if (!cpum_sf_avail())
   2119		return -ENODEV;
   2120	return sprintf(buffer, "%lu,%lu", CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB);
   2121}
   2122
   2123static int param_set_sfb_size(const char *val, const struct kernel_param *kp)
   2124{
   2125	int rc;
   2126	unsigned long min, max;
   2127
   2128	if (!cpum_sf_avail())
   2129		return -ENODEV;
   2130	if (!val || !strlen(val))
   2131		return -EINVAL;
   2132
   2133	/* Valid parameter values: "min,max" or "max" */
   2134	min = CPUM_SF_MIN_SDB;
   2135	max = CPUM_SF_MAX_SDB;
   2136	if (strchr(val, ','))
   2137		rc = (sscanf(val, "%lu,%lu", &min, &max) == 2) ? 0 : -EINVAL;
   2138	else
   2139		rc = kstrtoul(val, 10, &max);
   2140
   2141	if (min < 2 || min >= max || max > get_num_physpages())
   2142		rc = -EINVAL;
   2143	if (rc)
   2144		return rc;
   2145
   2146	sfb_set_limits(min, max);
   2147	pr_info("The sampling buffer limits have changed to: "
   2148		"min %lu max %lu (diag %lu)\n",
   2149		CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB, CPUM_SF_SDB_DIAG_FACTOR);
   2150	return 0;
   2151}
   2152
   2153#define param_check_sfb_size(name, p) __param_check(name, p, void)
   2154static const struct kernel_param_ops param_ops_sfb_size = {
   2155	.set = param_set_sfb_size,
   2156	.get = param_get_sfb_size,
   2157};
   2158
   2159#define RS_INIT_FAILURE_QSI	  0x0001
   2160#define RS_INIT_FAILURE_BSDES	  0x0002
   2161#define RS_INIT_FAILURE_ALRT	  0x0003
   2162#define RS_INIT_FAILURE_PERF	  0x0004
   2163static void __init pr_cpumsf_err(unsigned int reason)
   2164{
   2165	pr_err("Sampling facility support for perf is not available: "
   2166	       "reason %#x\n", reason);
   2167}
   2168
   2169static int __init init_cpum_sampling_pmu(void)
   2170{
   2171	struct hws_qsi_info_block si;
   2172	int err;
   2173
   2174	if (!cpum_sf_avail())
   2175		return -ENODEV;
   2176
   2177	memset(&si, 0, sizeof(si));
   2178	if (qsi(&si)) {
   2179		pr_cpumsf_err(RS_INIT_FAILURE_QSI);
   2180		return -ENODEV;
   2181	}
   2182
   2183	if (!si.as && !si.ad)
   2184		return -ENODEV;
   2185
   2186	if (si.bsdes != sizeof(struct hws_basic_entry)) {
   2187		pr_cpumsf_err(RS_INIT_FAILURE_BSDES);
   2188		return -EINVAL;
   2189	}
   2190
   2191	if (si.ad) {
   2192		sfb_set_limits(CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB);
   2193		/* Sampling of diagnostic data authorized,
   2194		 * install event into attribute list of PMU device.
   2195		 */
   2196		cpumsf_pmu_events_attr[SF_CYCLES_BASIC_DIAG_ATTR_IDX] =
   2197			CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC_DIAG);
   2198	}
   2199
   2200	sfdbg = debug_register(KMSG_COMPONENT, 2, 1, 80);
   2201	if (!sfdbg) {
   2202		pr_err("Registering for s390dbf failed\n");
   2203		return -ENOMEM;
   2204	}
   2205	debug_register_view(sfdbg, &debug_sprintf_view);
   2206
   2207	err = register_external_irq(EXT_IRQ_MEASURE_ALERT,
   2208				    cpumf_measurement_alert);
   2209	if (err) {
   2210		pr_cpumsf_err(RS_INIT_FAILURE_ALRT);
   2211		debug_unregister(sfdbg);
   2212		goto out;
   2213	}
   2214
   2215	err = perf_pmu_register(&cpumf_sampling, "cpum_sf", PERF_TYPE_RAW);
   2216	if (err) {
   2217		pr_cpumsf_err(RS_INIT_FAILURE_PERF);
   2218		unregister_external_irq(EXT_IRQ_MEASURE_ALERT,
   2219					cpumf_measurement_alert);
   2220		debug_unregister(sfdbg);
   2221		goto out;
   2222	}
   2223
   2224	cpuhp_setup_state(CPUHP_AP_PERF_S390_SF_ONLINE, "perf/s390/sf:online",
   2225			  s390_pmu_sf_online_cpu, s390_pmu_sf_offline_cpu);
   2226out:
   2227	return err;
   2228}
   2229
   2230arch_initcall(init_cpum_sampling_pmu);
   2231core_param(cpum_sfb_size, CPUM_SF_MAX_SDB, sfb_size, 0644);