cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

time.c (23174B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 *    Time of day based timer functions.
      4 *
      5 *  S390 version
      6 *    Copyright IBM Corp. 1999, 2008
      7 *    Author(s): Hartmut Penner (hp@de.ibm.com),
      8 *               Martin Schwidefsky (schwidefsky@de.ibm.com),
      9 *               Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
     10 *
     11 *  Derived from "arch/i386/kernel/time.c"
     12 *    Copyright (C) 1991, 1992, 1995  Linus Torvalds
     13 */
     14
     15#define KMSG_COMPONENT "time"
     16#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
     17
     18#include <linux/kernel_stat.h>
     19#include <linux/errno.h>
     20#include <linux/export.h>
     21#include <linux/sched.h>
     22#include <linux/sched/clock.h>
     23#include <linux/kernel.h>
     24#include <linux/param.h>
     25#include <linux/string.h>
     26#include <linux/mm.h>
     27#include <linux/interrupt.h>
     28#include <linux/cpu.h>
     29#include <linux/stop_machine.h>
     30#include <linux/time.h>
     31#include <linux/device.h>
     32#include <linux/delay.h>
     33#include <linux/init.h>
     34#include <linux/smp.h>
     35#include <linux/types.h>
     36#include <linux/profile.h>
     37#include <linux/timex.h>
     38#include <linux/notifier.h>
     39#include <linux/timekeeper_internal.h>
     40#include <linux/clockchips.h>
     41#include <linux/gfp.h>
     42#include <linux/kprobes.h>
     43#include <linux/uaccess.h>
     44#include <vdso/vsyscall.h>
     45#include <vdso/clocksource.h>
     46#include <vdso/helpers.h>
     47#include <asm/facility.h>
     48#include <asm/delay.h>
     49#include <asm/div64.h>
     50#include <asm/vdso.h>
     51#include <asm/irq.h>
     52#include <asm/irq_regs.h>
     53#include <asm/vtimer.h>
     54#include <asm/stp.h>
     55#include <asm/cio.h>
     56#include "entry.h"
     57
     58union tod_clock tod_clock_base __section(".data");
     59EXPORT_SYMBOL_GPL(tod_clock_base);
     60
     61u64 clock_comparator_max = -1ULL;
     62EXPORT_SYMBOL_GPL(clock_comparator_max);
     63
     64static DEFINE_PER_CPU(struct clock_event_device, comparators);
     65
     66ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier);
     67EXPORT_SYMBOL(s390_epoch_delta_notifier);
     68
     69unsigned char ptff_function_mask[16];
     70
     71static unsigned long lpar_offset;
     72static unsigned long initial_leap_seconds;
     73static unsigned long tod_steering_end;
     74static long tod_steering_delta;
     75
     76/*
     77 * Get time offsets with PTFF
     78 */
     79void __init time_early_init(void)
     80{
     81	struct ptff_qto qto;
     82	struct ptff_qui qui;
     83	int cs;
     84
     85	/* Initialize TOD steering parameters */
     86	tod_steering_end = tod_clock_base.tod;
     87	for (cs = 0; cs < CS_BASES; cs++)
     88		vdso_data[cs].arch_data.tod_steering_end = tod_steering_end;
     89
     90	if (!test_facility(28))
     91		return;
     92
     93	ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF);
     94
     95	/* get LPAR offset */
     96	if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
     97		lpar_offset = qto.tod_epoch_difference;
     98
     99	/* get initial leap seconds */
    100	if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0)
    101		initial_leap_seconds = (unsigned long)
    102			((long) qui.old_leap * 4096000000L);
    103}
    104
    105/*
    106 * Scheduler clock - returns current time in nanosec units.
    107 */
    108unsigned long long notrace sched_clock(void)
    109{
    110	return tod_to_ns(get_tod_clock_monotonic());
    111}
    112NOKPROBE_SYMBOL(sched_clock);
    113
    114static void ext_to_timespec64(union tod_clock *clk, struct timespec64 *xt)
    115{
    116	unsigned long rem, sec, nsec;
    117
    118	sec = clk->us;
    119	rem = do_div(sec, 1000000);
    120	nsec = ((clk->sus + (rem << 12)) * 125) >> 9;
    121	xt->tv_sec = sec;
    122	xt->tv_nsec = nsec;
    123}
    124
    125void clock_comparator_work(void)
    126{
    127	struct clock_event_device *cd;
    128
    129	S390_lowcore.clock_comparator = clock_comparator_max;
    130	cd = this_cpu_ptr(&comparators);
    131	cd->event_handler(cd);
    132}
    133
    134static int s390_next_event(unsigned long delta,
    135			   struct clock_event_device *evt)
    136{
    137	S390_lowcore.clock_comparator = get_tod_clock() + delta;
    138	set_clock_comparator(S390_lowcore.clock_comparator);
    139	return 0;
    140}
    141
    142/*
    143 * Set up lowcore and control register of the current cpu to
    144 * enable TOD clock and clock comparator interrupts.
    145 */
    146void init_cpu_timer(void)
    147{
    148	struct clock_event_device *cd;
    149	int cpu;
    150
    151	S390_lowcore.clock_comparator = clock_comparator_max;
    152	set_clock_comparator(S390_lowcore.clock_comparator);
    153
    154	cpu = smp_processor_id();
    155	cd = &per_cpu(comparators, cpu);
    156	cd->name		= "comparator";
    157	cd->features		= CLOCK_EVT_FEAT_ONESHOT;
    158	cd->mult		= 16777;
    159	cd->shift		= 12;
    160	cd->min_delta_ns	= 1;
    161	cd->min_delta_ticks	= 1;
    162	cd->max_delta_ns	= LONG_MAX;
    163	cd->max_delta_ticks	= ULONG_MAX;
    164	cd->rating		= 400;
    165	cd->cpumask		= cpumask_of(cpu);
    166	cd->set_next_event	= s390_next_event;
    167
    168	clockevents_register_device(cd);
    169
    170	/* Enable clock comparator timer interrupt. */
    171	__ctl_set_bit(0,11);
    172
    173	/* Always allow the timing alert external interrupt. */
    174	__ctl_set_bit(0, 4);
    175}
    176
    177static void clock_comparator_interrupt(struct ext_code ext_code,
    178				       unsigned int param32,
    179				       unsigned long param64)
    180{
    181	inc_irq_stat(IRQEXT_CLK);
    182	if (S390_lowcore.clock_comparator == clock_comparator_max)
    183		set_clock_comparator(S390_lowcore.clock_comparator);
    184}
    185
    186static void stp_timing_alert(struct stp_irq_parm *);
    187
    188static void timing_alert_interrupt(struct ext_code ext_code,
    189				   unsigned int param32, unsigned long param64)
    190{
    191	inc_irq_stat(IRQEXT_TLA);
    192	if (param32 & 0x00038000)
    193		stp_timing_alert((struct stp_irq_parm *) &param32);
    194}
    195
    196static void stp_reset(void);
    197
    198void read_persistent_clock64(struct timespec64 *ts)
    199{
    200	union tod_clock clk;
    201	u64 delta;
    202
    203	delta = initial_leap_seconds + TOD_UNIX_EPOCH;
    204	store_tod_clock_ext(&clk);
    205	clk.eitod -= delta;
    206	ext_to_timespec64(&clk, ts);
    207}
    208
    209void __init read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
    210						 struct timespec64 *boot_offset)
    211{
    212	struct timespec64 boot_time;
    213	union tod_clock clk;
    214	u64 delta;
    215
    216	delta = initial_leap_seconds + TOD_UNIX_EPOCH;
    217	clk = tod_clock_base;
    218	clk.eitod -= delta;
    219	ext_to_timespec64(&clk, &boot_time);
    220
    221	read_persistent_clock64(wall_time);
    222	*boot_offset = timespec64_sub(*wall_time, boot_time);
    223}
    224
    225static u64 read_tod_clock(struct clocksource *cs)
    226{
    227	unsigned long now, adj;
    228
    229	preempt_disable(); /* protect from changes to steering parameters */
    230	now = get_tod_clock();
    231	adj = tod_steering_end - now;
    232	if (unlikely((s64) adj > 0))
    233		/*
    234		 * manually steer by 1 cycle every 2^16 cycles. This
    235		 * corresponds to shifting the tod delta by 15. 1s is
    236		 * therefore steered in ~9h. The adjust will decrease
    237		 * over time, until it finally reaches 0.
    238		 */
    239		now += (tod_steering_delta < 0) ? (adj >> 15) : -(adj >> 15);
    240	preempt_enable();
    241	return now;
    242}
    243
    244static struct clocksource clocksource_tod = {
    245	.name		= "tod",
    246	.rating		= 400,
    247	.read		= read_tod_clock,
    248	.mask		= CLOCKSOURCE_MASK(64),
    249	.mult		= 1000,
    250	.shift		= 12,
    251	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
    252	.vdso_clock_mode = VDSO_CLOCKMODE_TOD,
    253};
    254
    255struct clocksource * __init clocksource_default_clock(void)
    256{
    257	return &clocksource_tod;
    258}
    259
    260/*
    261 * Initialize the TOD clock and the CPU timer of
    262 * the boot cpu.
    263 */
    264void __init time_init(void)
    265{
    266	/* Reset time synchronization interfaces. */
    267	stp_reset();
    268
    269	/* request the clock comparator external interrupt */
    270	if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt))
    271		panic("Couldn't request external interrupt 0x1004");
    272
    273	/* request the timing alert external interrupt */
    274	if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt))
    275		panic("Couldn't request external interrupt 0x1406");
    276
    277	if (__clocksource_register(&clocksource_tod) != 0)
    278		panic("Could not register TOD clock source");
    279
    280	/* Enable TOD clock interrupts on the boot cpu. */
    281	init_cpu_timer();
    282
    283	/* Enable cpu timer interrupts on the boot cpu. */
    284	vtime_init();
    285}
    286
    287static DEFINE_PER_CPU(atomic_t, clock_sync_word);
    288static DEFINE_MUTEX(stp_mutex);
    289static unsigned long clock_sync_flags;
    290
    291#define CLOCK_SYNC_HAS_STP		0
    292#define CLOCK_SYNC_STP			1
    293#define CLOCK_SYNC_STPINFO_VALID	2
    294
    295/*
    296 * The get_clock function for the physical clock. It will get the current
    297 * TOD clock, subtract the LPAR offset and write the result to *clock.
    298 * The function returns 0 if the clock is in sync with the external time
    299 * source. If the clock mode is local it will return -EOPNOTSUPP and
    300 * -EAGAIN if the clock is not in sync with the external reference.
    301 */
    302int get_phys_clock(unsigned long *clock)
    303{
    304	atomic_t *sw_ptr;
    305	unsigned int sw0, sw1;
    306
    307	sw_ptr = &get_cpu_var(clock_sync_word);
    308	sw0 = atomic_read(sw_ptr);
    309	*clock = get_tod_clock() - lpar_offset;
    310	sw1 = atomic_read(sw_ptr);
    311	put_cpu_var(clock_sync_word);
    312	if (sw0 == sw1 && (sw0 & 0x80000000U))
    313		/* Success: time is in sync. */
    314		return 0;
    315	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
    316		return -EOPNOTSUPP;
    317	if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
    318		return -EACCES;
    319	return -EAGAIN;
    320}
    321EXPORT_SYMBOL(get_phys_clock);
    322
    323/*
    324 * Make get_phys_clock() return -EAGAIN.
    325 */
    326static void disable_sync_clock(void *dummy)
    327{
    328	atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
    329	/*
    330	 * Clear the in-sync bit 2^31. All get_phys_clock calls will
    331	 * fail until the sync bit is turned back on. In addition
    332	 * increase the "sequence" counter to avoid the race of an
    333	 * stp event and the complete recovery against get_phys_clock.
    334	 */
    335	atomic_andnot(0x80000000, sw_ptr);
    336	atomic_inc(sw_ptr);
    337}
    338
    339/*
    340 * Make get_phys_clock() return 0 again.
    341 * Needs to be called from a context disabled for preemption.
    342 */
    343static void enable_sync_clock(void)
    344{
    345	atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
    346	atomic_or(0x80000000, sw_ptr);
    347}
    348
    349/*
    350 * Function to check if the clock is in sync.
    351 */
    352static inline int check_sync_clock(void)
    353{
    354	atomic_t *sw_ptr;
    355	int rc;
    356
    357	sw_ptr = &get_cpu_var(clock_sync_word);
    358	rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
    359	put_cpu_var(clock_sync_word);
    360	return rc;
    361}
    362
    363/*
    364 * Apply clock delta to the global data structures.
    365 * This is called once on the CPU that performed the clock sync.
    366 */
    367static void clock_sync_global(long delta)
    368{
    369	unsigned long now, adj;
    370	struct ptff_qto qto;
    371	int cs;
    372
    373	/* Fixup the monotonic sched clock. */
    374	tod_clock_base.eitod += delta;
    375	/* Adjust TOD steering parameters. */
    376	now = get_tod_clock();
    377	adj = tod_steering_end - now;
    378	if (unlikely((s64) adj >= 0))
    379		/* Calculate how much of the old adjustment is left. */
    380		tod_steering_delta = (tod_steering_delta < 0) ?
    381			-(adj >> 15) : (adj >> 15);
    382	tod_steering_delta += delta;
    383	if ((abs(tod_steering_delta) >> 48) != 0)
    384		panic("TOD clock sync offset %li is too large to drift\n",
    385		      tod_steering_delta);
    386	tod_steering_end = now + (abs(tod_steering_delta) << 15);
    387	for (cs = 0; cs < CS_BASES; cs++) {
    388		vdso_data[cs].arch_data.tod_steering_end = tod_steering_end;
    389		vdso_data[cs].arch_data.tod_steering_delta = tod_steering_delta;
    390	}
    391
    392	/* Update LPAR offset. */
    393	if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
    394		lpar_offset = qto.tod_epoch_difference;
    395	/* Call the TOD clock change notifier. */
    396	atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta);
    397}
    398
    399/*
    400 * Apply clock delta to the per-CPU data structures of this CPU.
    401 * This is called for each online CPU after the call to clock_sync_global.
    402 */
    403static void clock_sync_local(long delta)
    404{
    405	/* Add the delta to the clock comparator. */
    406	if (S390_lowcore.clock_comparator != clock_comparator_max) {
    407		S390_lowcore.clock_comparator += delta;
    408		set_clock_comparator(S390_lowcore.clock_comparator);
    409	}
    410	/* Adjust the last_update_clock time-stamp. */
    411	S390_lowcore.last_update_clock += delta;
    412}
    413
    414/* Single threaded workqueue used for stp sync events */
    415static struct workqueue_struct *time_sync_wq;
    416
    417static void __init time_init_wq(void)
    418{
    419	if (time_sync_wq)
    420		return;
    421	time_sync_wq = create_singlethread_workqueue("timesync");
    422}
    423
    424struct clock_sync_data {
    425	atomic_t cpus;
    426	int in_sync;
    427	long clock_delta;
    428};
    429
    430/*
    431 * Server Time Protocol (STP) code.
    432 */
    433static bool stp_online;
    434static struct stp_sstpi stp_info;
    435static void *stp_page;
    436
    437static void stp_work_fn(struct work_struct *work);
    438static DECLARE_WORK(stp_work, stp_work_fn);
    439static struct timer_list stp_timer;
    440
    441static int __init early_parse_stp(char *p)
    442{
    443	return kstrtobool(p, &stp_online);
    444}
    445early_param("stp", early_parse_stp);
    446
    447/*
    448 * Reset STP attachment.
    449 */
    450static void __init stp_reset(void)
    451{
    452	int rc;
    453
    454	stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
    455	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
    456	if (rc == 0)
    457		set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
    458	else if (stp_online) {
    459		pr_warn("The real or virtual hardware system does not provide an STP interface\n");
    460		free_page((unsigned long) stp_page);
    461		stp_page = NULL;
    462		stp_online = false;
    463	}
    464}
    465
    466static void stp_timeout(struct timer_list *unused)
    467{
    468	queue_work(time_sync_wq, &stp_work);
    469}
    470
    471static int __init stp_init(void)
    472{
    473	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
    474		return 0;
    475	timer_setup(&stp_timer, stp_timeout, 0);
    476	time_init_wq();
    477	if (!stp_online)
    478		return 0;
    479	queue_work(time_sync_wq, &stp_work);
    480	return 0;
    481}
    482
    483arch_initcall(stp_init);
    484
    485/*
    486 * STP timing alert. There are three causes:
    487 * 1) timing status change
    488 * 2) link availability change
    489 * 3) time control parameter change
    490 * In all three cases we are only interested in the clock source state.
    491 * If a STP clock source is now available use it.
    492 */
    493static void stp_timing_alert(struct stp_irq_parm *intparm)
    494{
    495	if (intparm->tsc || intparm->lac || intparm->tcpc)
    496		queue_work(time_sync_wq, &stp_work);
    497}
    498
    499/*
    500 * STP sync check machine check. This is called when the timing state
    501 * changes from the synchronized state to the unsynchronized state.
    502 * After a STP sync check the clock is not in sync. The machine check
    503 * is broadcasted to all cpus at the same time.
    504 */
    505int stp_sync_check(void)
    506{
    507	disable_sync_clock(NULL);
    508	return 1;
    509}
    510
    511/*
    512 * STP island condition machine check. This is called when an attached
    513 * server  attempts to communicate over an STP link and the servers
    514 * have matching CTN ids and have a valid stratum-1 configuration
    515 * but the configurations do not match.
    516 */
    517int stp_island_check(void)
    518{
    519	disable_sync_clock(NULL);
    520	return 1;
    521}
    522
    523void stp_queue_work(void)
    524{
    525	queue_work(time_sync_wq, &stp_work);
    526}
    527
    528static int __store_stpinfo(void)
    529{
    530	int rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
    531
    532	if (rc)
    533		clear_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
    534	else
    535		set_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
    536	return rc;
    537}
    538
    539static int stpinfo_valid(void)
    540{
    541	return stp_online && test_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
    542}
    543
    544static int stp_sync_clock(void *data)
    545{
    546	struct clock_sync_data *sync = data;
    547	long clock_delta, flags;
    548	static int first;
    549	int rc;
    550
    551	enable_sync_clock();
    552	if (xchg(&first, 1) == 0) {
    553		/* Wait until all other cpus entered the sync function. */
    554		while (atomic_read(&sync->cpus) != 0)
    555			cpu_relax();
    556		rc = 0;
    557		if (stp_info.todoff || stp_info.tmd != 2) {
    558			flags = vdso_update_begin();
    559			rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0,
    560					&clock_delta);
    561			if (rc == 0) {
    562				sync->clock_delta = clock_delta;
    563				clock_sync_global(clock_delta);
    564				rc = __store_stpinfo();
    565				if (rc == 0 && stp_info.tmd != 2)
    566					rc = -EAGAIN;
    567			}
    568			vdso_update_end(flags);
    569		}
    570		sync->in_sync = rc ? -EAGAIN : 1;
    571		xchg(&first, 0);
    572	} else {
    573		/* Slave */
    574		atomic_dec(&sync->cpus);
    575		/* Wait for in_sync to be set. */
    576		while (READ_ONCE(sync->in_sync) == 0)
    577			__udelay(1);
    578	}
    579	if (sync->in_sync != 1)
    580		/* Didn't work. Clear per-cpu in sync bit again. */
    581		disable_sync_clock(NULL);
    582	/* Apply clock delta to per-CPU fields of this CPU. */
    583	clock_sync_local(sync->clock_delta);
    584
    585	return 0;
    586}
    587
    588static int stp_clear_leap(void)
    589{
    590	struct __kernel_timex txc;
    591	int ret;
    592
    593	memset(&txc, 0, sizeof(txc));
    594
    595	ret = do_adjtimex(&txc);
    596	if (ret < 0)
    597		return ret;
    598
    599	txc.modes = ADJ_STATUS;
    600	txc.status &= ~(STA_INS|STA_DEL);
    601	return do_adjtimex(&txc);
    602}
    603
    604static void stp_check_leap(void)
    605{
    606	struct stp_stzi stzi;
    607	struct stp_lsoib *lsoib = &stzi.lsoib;
    608	struct __kernel_timex txc;
    609	int64_t timediff;
    610	int leapdiff, ret;
    611
    612	if (!stp_info.lu || !check_sync_clock()) {
    613		/*
    614		 * Either a scheduled leap second was removed by the operator,
    615		 * or STP is out of sync. In both cases, clear the leap second
    616		 * kernel flags.
    617		 */
    618		if (stp_clear_leap() < 0)
    619			pr_err("failed to clear leap second flags\n");
    620		return;
    621	}
    622
    623	if (chsc_stzi(stp_page, &stzi, sizeof(stzi))) {
    624		pr_err("stzi failed\n");
    625		return;
    626	}
    627
    628	timediff = tod_to_ns(lsoib->nlsout - get_tod_clock()) / NSEC_PER_SEC;
    629	leapdiff = lsoib->nlso - lsoib->also;
    630
    631	if (leapdiff != 1 && leapdiff != -1) {
    632		pr_err("Cannot schedule %d leap seconds\n", leapdiff);
    633		return;
    634	}
    635
    636	if (timediff < 0) {
    637		if (stp_clear_leap() < 0)
    638			pr_err("failed to clear leap second flags\n");
    639	} else if (timediff < 7200) {
    640		memset(&txc, 0, sizeof(txc));
    641		ret = do_adjtimex(&txc);
    642		if (ret < 0)
    643			return;
    644
    645		txc.modes = ADJ_STATUS;
    646		if (leapdiff > 0)
    647			txc.status |= STA_INS;
    648		else
    649			txc.status |= STA_DEL;
    650		ret = do_adjtimex(&txc);
    651		if (ret < 0)
    652			pr_err("failed to set leap second flags\n");
    653		/* arm Timer to clear leap second flags */
    654		mod_timer(&stp_timer, jiffies + msecs_to_jiffies(14400 * MSEC_PER_SEC));
    655	} else {
    656		/* The day the leap second is scheduled for hasn't been reached. Retry
    657		 * in one hour.
    658		 */
    659		mod_timer(&stp_timer, jiffies + msecs_to_jiffies(3600 * MSEC_PER_SEC));
    660	}
    661}
    662
    663/*
    664 * STP work. Check for the STP state and take over the clock
    665 * synchronization if the STP clock source is usable.
    666 */
    667static void stp_work_fn(struct work_struct *work)
    668{
    669	struct clock_sync_data stp_sync;
    670	int rc;
    671
    672	/* prevent multiple execution. */
    673	mutex_lock(&stp_mutex);
    674
    675	if (!stp_online) {
    676		chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
    677		del_timer_sync(&stp_timer);
    678		goto out_unlock;
    679	}
    680
    681	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xf0e0, NULL);
    682	if (rc)
    683		goto out_unlock;
    684
    685	rc = __store_stpinfo();
    686	if (rc || stp_info.c == 0)
    687		goto out_unlock;
    688
    689	/* Skip synchronization if the clock is already in sync. */
    690	if (!check_sync_clock()) {
    691		memset(&stp_sync, 0, sizeof(stp_sync));
    692		cpus_read_lock();
    693		atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
    694		stop_machine_cpuslocked(stp_sync_clock, &stp_sync, cpu_online_mask);
    695		cpus_read_unlock();
    696	}
    697
    698	if (!check_sync_clock())
    699		/*
    700		 * There is a usable clock but the synchonization failed.
    701		 * Retry after a second.
    702		 */
    703		mod_timer(&stp_timer, jiffies + msecs_to_jiffies(MSEC_PER_SEC));
    704	else if (stp_info.lu)
    705		stp_check_leap();
    706
    707out_unlock:
    708	mutex_unlock(&stp_mutex);
    709}
    710
    711/*
    712 * STP subsys sysfs interface functions
    713 */
    714static struct bus_type stp_subsys = {
    715	.name		= "stp",
    716	.dev_name	= "stp",
    717};
    718
    719static ssize_t ctn_id_show(struct device *dev,
    720				struct device_attribute *attr,
    721				char *buf)
    722{
    723	ssize_t ret = -ENODATA;
    724
    725	mutex_lock(&stp_mutex);
    726	if (stpinfo_valid())
    727		ret = sprintf(buf, "%016lx\n",
    728			      *(unsigned long *) stp_info.ctnid);
    729	mutex_unlock(&stp_mutex);
    730	return ret;
    731}
    732
    733static DEVICE_ATTR_RO(ctn_id);
    734
    735static ssize_t ctn_type_show(struct device *dev,
    736				struct device_attribute *attr,
    737				char *buf)
    738{
    739	ssize_t ret = -ENODATA;
    740
    741	mutex_lock(&stp_mutex);
    742	if (stpinfo_valid())
    743		ret = sprintf(buf, "%i\n", stp_info.ctn);
    744	mutex_unlock(&stp_mutex);
    745	return ret;
    746}
    747
    748static DEVICE_ATTR_RO(ctn_type);
    749
    750static ssize_t dst_offset_show(struct device *dev,
    751				   struct device_attribute *attr,
    752				   char *buf)
    753{
    754	ssize_t ret = -ENODATA;
    755
    756	mutex_lock(&stp_mutex);
    757	if (stpinfo_valid() && (stp_info.vbits & 0x2000))
    758		ret = sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
    759	mutex_unlock(&stp_mutex);
    760	return ret;
    761}
    762
    763static DEVICE_ATTR_RO(dst_offset);
    764
    765static ssize_t leap_seconds_show(struct device *dev,
    766					struct device_attribute *attr,
    767					char *buf)
    768{
    769	ssize_t ret = -ENODATA;
    770
    771	mutex_lock(&stp_mutex);
    772	if (stpinfo_valid() && (stp_info.vbits & 0x8000))
    773		ret = sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
    774	mutex_unlock(&stp_mutex);
    775	return ret;
    776}
    777
    778static DEVICE_ATTR_RO(leap_seconds);
    779
    780static ssize_t leap_seconds_scheduled_show(struct device *dev,
    781						struct device_attribute *attr,
    782						char *buf)
    783{
    784	struct stp_stzi stzi;
    785	ssize_t ret;
    786
    787	mutex_lock(&stp_mutex);
    788	if (!stpinfo_valid() || !(stp_info.vbits & 0x8000) || !stp_info.lu) {
    789		mutex_unlock(&stp_mutex);
    790		return -ENODATA;
    791	}
    792
    793	ret = chsc_stzi(stp_page, &stzi, sizeof(stzi));
    794	mutex_unlock(&stp_mutex);
    795	if (ret < 0)
    796		return ret;
    797
    798	if (!stzi.lsoib.p)
    799		return sprintf(buf, "0,0\n");
    800
    801	return sprintf(buf, "%lu,%d\n",
    802		       tod_to_ns(stzi.lsoib.nlsout - TOD_UNIX_EPOCH) / NSEC_PER_SEC,
    803		       stzi.lsoib.nlso - stzi.lsoib.also);
    804}
    805
    806static DEVICE_ATTR_RO(leap_seconds_scheduled);
    807
    808static ssize_t stratum_show(struct device *dev,
    809				struct device_attribute *attr,
    810				char *buf)
    811{
    812	ssize_t ret = -ENODATA;
    813
    814	mutex_lock(&stp_mutex);
    815	if (stpinfo_valid())
    816		ret = sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
    817	mutex_unlock(&stp_mutex);
    818	return ret;
    819}
    820
    821static DEVICE_ATTR_RO(stratum);
    822
    823static ssize_t time_offset_show(struct device *dev,
    824				struct device_attribute *attr,
    825				char *buf)
    826{
    827	ssize_t ret = -ENODATA;
    828
    829	mutex_lock(&stp_mutex);
    830	if (stpinfo_valid() && (stp_info.vbits & 0x0800))
    831		ret = sprintf(buf, "%i\n", (int) stp_info.tto);
    832	mutex_unlock(&stp_mutex);
    833	return ret;
    834}
    835
    836static DEVICE_ATTR_RO(time_offset);
    837
    838static ssize_t time_zone_offset_show(struct device *dev,
    839				struct device_attribute *attr,
    840				char *buf)
    841{
    842	ssize_t ret = -ENODATA;
    843
    844	mutex_lock(&stp_mutex);
    845	if (stpinfo_valid() && (stp_info.vbits & 0x4000))
    846		ret = sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
    847	mutex_unlock(&stp_mutex);
    848	return ret;
    849}
    850
    851static DEVICE_ATTR_RO(time_zone_offset);
    852
    853static ssize_t timing_mode_show(struct device *dev,
    854				struct device_attribute *attr,
    855				char *buf)
    856{
    857	ssize_t ret = -ENODATA;
    858
    859	mutex_lock(&stp_mutex);
    860	if (stpinfo_valid())
    861		ret = sprintf(buf, "%i\n", stp_info.tmd);
    862	mutex_unlock(&stp_mutex);
    863	return ret;
    864}
    865
    866static DEVICE_ATTR_RO(timing_mode);
    867
    868static ssize_t timing_state_show(struct device *dev,
    869				struct device_attribute *attr,
    870				char *buf)
    871{
    872	ssize_t ret = -ENODATA;
    873
    874	mutex_lock(&stp_mutex);
    875	if (stpinfo_valid())
    876		ret = sprintf(buf, "%i\n", stp_info.tst);
    877	mutex_unlock(&stp_mutex);
    878	return ret;
    879}
    880
    881static DEVICE_ATTR_RO(timing_state);
    882
    883static ssize_t online_show(struct device *dev,
    884				struct device_attribute *attr,
    885				char *buf)
    886{
    887	return sprintf(buf, "%i\n", stp_online);
    888}
    889
    890static ssize_t online_store(struct device *dev,
    891				struct device_attribute *attr,
    892				const char *buf, size_t count)
    893{
    894	unsigned int value;
    895
    896	value = simple_strtoul(buf, NULL, 0);
    897	if (value != 0 && value != 1)
    898		return -EINVAL;
    899	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
    900		return -EOPNOTSUPP;
    901	mutex_lock(&stp_mutex);
    902	stp_online = value;
    903	if (stp_online)
    904		set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
    905	else
    906		clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
    907	queue_work(time_sync_wq, &stp_work);
    908	mutex_unlock(&stp_mutex);
    909	return count;
    910}
    911
    912/*
    913 * Can't use DEVICE_ATTR because the attribute should be named
    914 * stp/online but dev_attr_online already exists in this file ..
    915 */
    916static DEVICE_ATTR_RW(online);
    917
    918static struct attribute *stp_dev_attrs[] = {
    919	&dev_attr_ctn_id.attr,
    920	&dev_attr_ctn_type.attr,
    921	&dev_attr_dst_offset.attr,
    922	&dev_attr_leap_seconds.attr,
    923	&dev_attr_online.attr,
    924	&dev_attr_leap_seconds_scheduled.attr,
    925	&dev_attr_stratum.attr,
    926	&dev_attr_time_offset.attr,
    927	&dev_attr_time_zone_offset.attr,
    928	&dev_attr_timing_mode.attr,
    929	&dev_attr_timing_state.attr,
    930	NULL
    931};
    932ATTRIBUTE_GROUPS(stp_dev);
    933
    934static int __init stp_init_sysfs(void)
    935{
    936	return subsys_system_register(&stp_subsys, stp_dev_groups);
    937}
    938
    939device_initcall(stp_init_sysfs);