cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

uv.c (13227B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Common Ultravisor functions and initialization
      4 *
      5 * Copyright IBM Corp. 2019, 2020
      6 */
      7#define KMSG_COMPONENT "prot_virt"
      8#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
      9
     10#include <linux/kernel.h>
     11#include <linux/types.h>
     12#include <linux/sizes.h>
     13#include <linux/bitmap.h>
     14#include <linux/memblock.h>
     15#include <linux/pagemap.h>
     16#include <linux/swap.h>
     17#include <asm/facility.h>
     18#include <asm/sections.h>
     19#include <asm/uv.h>
     20
     21/* the bootdata_preserved fields come from ones in arch/s390/boot/uv.c */
     22#ifdef CONFIG_PROTECTED_VIRTUALIZATION_GUEST
     23int __bootdata_preserved(prot_virt_guest);
     24#endif
     25
     26struct uv_info __bootdata_preserved(uv_info);
     27
     28#if IS_ENABLED(CONFIG_KVM)
     29int __bootdata_preserved(prot_virt_host);
     30EXPORT_SYMBOL(prot_virt_host);
     31EXPORT_SYMBOL(uv_info);
     32
     33static int __init uv_init(phys_addr_t stor_base, unsigned long stor_len)
     34{
     35	struct uv_cb_init uvcb = {
     36		.header.cmd = UVC_CMD_INIT_UV,
     37		.header.len = sizeof(uvcb),
     38		.stor_origin = stor_base,
     39		.stor_len = stor_len,
     40	};
     41
     42	if (uv_call(0, (uint64_t)&uvcb)) {
     43		pr_err("Ultravisor init failed with rc: 0x%x rrc: 0%x\n",
     44		       uvcb.header.rc, uvcb.header.rrc);
     45		return -1;
     46	}
     47	return 0;
     48}
     49
     50void __init setup_uv(void)
     51{
     52	void *uv_stor_base;
     53
     54	if (!is_prot_virt_host())
     55		return;
     56
     57	uv_stor_base = memblock_alloc_try_nid(
     58		uv_info.uv_base_stor_len, SZ_1M, SZ_2G,
     59		MEMBLOCK_ALLOC_ACCESSIBLE, NUMA_NO_NODE);
     60	if (!uv_stor_base) {
     61		pr_warn("Failed to reserve %lu bytes for ultravisor base storage\n",
     62			uv_info.uv_base_stor_len);
     63		goto fail;
     64	}
     65
     66	if (uv_init(__pa(uv_stor_base), uv_info.uv_base_stor_len)) {
     67		memblock_free(uv_stor_base, uv_info.uv_base_stor_len);
     68		goto fail;
     69	}
     70
     71	pr_info("Reserving %luMB as ultravisor base storage\n",
     72		uv_info.uv_base_stor_len >> 20);
     73	return;
     74fail:
     75	pr_info("Disabling support for protected virtualization");
     76	prot_virt_host = 0;
     77}
     78
     79/*
     80 * Requests the Ultravisor to pin the page in the shared state. This will
     81 * cause an intercept when the guest attempts to unshare the pinned page.
     82 */
     83static int uv_pin_shared(unsigned long paddr)
     84{
     85	struct uv_cb_cfs uvcb = {
     86		.header.cmd = UVC_CMD_PIN_PAGE_SHARED,
     87		.header.len = sizeof(uvcb),
     88		.paddr = paddr,
     89	};
     90
     91	if (uv_call(0, (u64)&uvcb))
     92		return -EINVAL;
     93	return 0;
     94}
     95
     96/*
     97 * Requests the Ultravisor to destroy a guest page and make it
     98 * accessible to the host. The destroy clears the page instead of
     99 * exporting.
    100 *
    101 * @paddr: Absolute host address of page to be destroyed
    102 */
    103static int uv_destroy_page(unsigned long paddr)
    104{
    105	struct uv_cb_cfs uvcb = {
    106		.header.cmd = UVC_CMD_DESTR_SEC_STOR,
    107		.header.len = sizeof(uvcb),
    108		.paddr = paddr
    109	};
    110
    111	if (uv_call(0, (u64)&uvcb)) {
    112		/*
    113		 * Older firmware uses 107/d as an indication of a non secure
    114		 * page. Let us emulate the newer variant (no-op).
    115		 */
    116		if (uvcb.header.rc == 0x107 && uvcb.header.rrc == 0xd)
    117			return 0;
    118		return -EINVAL;
    119	}
    120	return 0;
    121}
    122
    123/*
    124 * The caller must already hold a reference to the page
    125 */
    126int uv_destroy_owned_page(unsigned long paddr)
    127{
    128	struct page *page = phys_to_page(paddr);
    129	int rc;
    130
    131	get_page(page);
    132	rc = uv_destroy_page(paddr);
    133	if (!rc)
    134		clear_bit(PG_arch_1, &page->flags);
    135	put_page(page);
    136	return rc;
    137}
    138
    139/*
    140 * Requests the Ultravisor to encrypt a guest page and make it
    141 * accessible to the host for paging (export).
    142 *
    143 * @paddr: Absolute host address of page to be exported
    144 */
    145int uv_convert_from_secure(unsigned long paddr)
    146{
    147	struct uv_cb_cfs uvcb = {
    148		.header.cmd = UVC_CMD_CONV_FROM_SEC_STOR,
    149		.header.len = sizeof(uvcb),
    150		.paddr = paddr
    151	};
    152
    153	if (uv_call(0, (u64)&uvcb))
    154		return -EINVAL;
    155	return 0;
    156}
    157
    158/*
    159 * The caller must already hold a reference to the page
    160 */
    161int uv_convert_owned_from_secure(unsigned long paddr)
    162{
    163	struct page *page = phys_to_page(paddr);
    164	int rc;
    165
    166	get_page(page);
    167	rc = uv_convert_from_secure(paddr);
    168	if (!rc)
    169		clear_bit(PG_arch_1, &page->flags);
    170	put_page(page);
    171	return rc;
    172}
    173
    174/*
    175 * Calculate the expected ref_count for a page that would otherwise have no
    176 * further pins. This was cribbed from similar functions in other places in
    177 * the kernel, but with some slight modifications. We know that a secure
    178 * page can not be a huge page for example.
    179 */
    180static int expected_page_refs(struct page *page)
    181{
    182	int res;
    183
    184	res = page_mapcount(page);
    185	if (PageSwapCache(page)) {
    186		res++;
    187	} else if (page_mapping(page)) {
    188		res++;
    189		if (page_has_private(page))
    190			res++;
    191	}
    192	return res;
    193}
    194
    195static int make_secure_pte(pte_t *ptep, unsigned long addr,
    196			   struct page *exp_page, struct uv_cb_header *uvcb)
    197{
    198	pte_t entry = READ_ONCE(*ptep);
    199	struct page *page;
    200	int expected, cc = 0;
    201
    202	if (!pte_present(entry))
    203		return -ENXIO;
    204	if (pte_val(entry) & _PAGE_INVALID)
    205		return -ENXIO;
    206
    207	page = pte_page(entry);
    208	if (page != exp_page)
    209		return -ENXIO;
    210	if (PageWriteback(page))
    211		return -EAGAIN;
    212	expected = expected_page_refs(page);
    213	if (!page_ref_freeze(page, expected))
    214		return -EBUSY;
    215	set_bit(PG_arch_1, &page->flags);
    216	/*
    217	 * If the UVC does not succeed or fail immediately, we don't want to
    218	 * loop for long, or we might get stall notifications.
    219	 * On the other hand, this is a complex scenario and we are holding a lot of
    220	 * locks, so we can't easily sleep and reschedule. We try only once,
    221	 * and if the UVC returned busy or partial completion, we return
    222	 * -EAGAIN and we let the callers deal with it.
    223	 */
    224	cc = __uv_call(0, (u64)uvcb);
    225	page_ref_unfreeze(page, expected);
    226	/*
    227	 * Return -ENXIO if the page was not mapped, -EINVAL for other errors.
    228	 * If busy or partially completed, return -EAGAIN.
    229	 */
    230	if (cc == UVC_CC_OK)
    231		return 0;
    232	else if (cc == UVC_CC_BUSY || cc == UVC_CC_PARTIAL)
    233		return -EAGAIN;
    234	return uvcb->rc == 0x10a ? -ENXIO : -EINVAL;
    235}
    236
    237/*
    238 * Requests the Ultravisor to make a page accessible to a guest.
    239 * If it's brought in the first time, it will be cleared. If
    240 * it has been exported before, it will be decrypted and integrity
    241 * checked.
    242 */
    243int gmap_make_secure(struct gmap *gmap, unsigned long gaddr, void *uvcb)
    244{
    245	struct vm_area_struct *vma;
    246	bool local_drain = false;
    247	spinlock_t *ptelock;
    248	unsigned long uaddr;
    249	struct page *page;
    250	pte_t *ptep;
    251	int rc;
    252
    253again:
    254	rc = -EFAULT;
    255	mmap_read_lock(gmap->mm);
    256
    257	uaddr = __gmap_translate(gmap, gaddr);
    258	if (IS_ERR_VALUE(uaddr))
    259		goto out;
    260	vma = vma_lookup(gmap->mm, uaddr);
    261	if (!vma)
    262		goto out;
    263	/*
    264	 * Secure pages cannot be huge and userspace should not combine both.
    265	 * In case userspace does it anyway this will result in an -EFAULT for
    266	 * the unpack. The guest is thus never reaching secure mode. If
    267	 * userspace is playing dirty tricky with mapping huge pages later
    268	 * on this will result in a segmentation fault.
    269	 */
    270	if (is_vm_hugetlb_page(vma))
    271		goto out;
    272
    273	rc = -ENXIO;
    274	page = follow_page(vma, uaddr, FOLL_WRITE);
    275	if (IS_ERR_OR_NULL(page))
    276		goto out;
    277
    278	lock_page(page);
    279	ptep = get_locked_pte(gmap->mm, uaddr, &ptelock);
    280	rc = make_secure_pte(ptep, uaddr, page, uvcb);
    281	pte_unmap_unlock(ptep, ptelock);
    282	unlock_page(page);
    283out:
    284	mmap_read_unlock(gmap->mm);
    285
    286	if (rc == -EAGAIN) {
    287		/*
    288		 * If we are here because the UVC returned busy or partial
    289		 * completion, this is just a useless check, but it is safe.
    290		 */
    291		wait_on_page_writeback(page);
    292	} else if (rc == -EBUSY) {
    293		/*
    294		 * If we have tried a local drain and the page refcount
    295		 * still does not match our expected safe value, try with a
    296		 * system wide drain. This is needed if the pagevecs holding
    297		 * the page are on a different CPU.
    298		 */
    299		if (local_drain) {
    300			lru_add_drain_all();
    301			/* We give up here, and let the caller try again */
    302			return -EAGAIN;
    303		}
    304		/*
    305		 * We are here if the page refcount does not match the
    306		 * expected safe value. The main culprits are usually
    307		 * pagevecs. With lru_add_drain() we drain the pagevecs
    308		 * on the local CPU so that hopefully the refcount will
    309		 * reach the expected safe value.
    310		 */
    311		lru_add_drain();
    312		local_drain = true;
    313		/* And now we try again immediately after draining */
    314		goto again;
    315	} else if (rc == -ENXIO) {
    316		if (gmap_fault(gmap, gaddr, FAULT_FLAG_WRITE))
    317			return -EFAULT;
    318		return -EAGAIN;
    319	}
    320	return rc;
    321}
    322EXPORT_SYMBOL_GPL(gmap_make_secure);
    323
    324int gmap_convert_to_secure(struct gmap *gmap, unsigned long gaddr)
    325{
    326	struct uv_cb_cts uvcb = {
    327		.header.cmd = UVC_CMD_CONV_TO_SEC_STOR,
    328		.header.len = sizeof(uvcb),
    329		.guest_handle = gmap->guest_handle,
    330		.gaddr = gaddr,
    331	};
    332
    333	return gmap_make_secure(gmap, gaddr, &uvcb);
    334}
    335EXPORT_SYMBOL_GPL(gmap_convert_to_secure);
    336
    337/*
    338 * To be called with the page locked or with an extra reference! This will
    339 * prevent gmap_make_secure from touching the page concurrently. Having 2
    340 * parallel make_page_accessible is fine, as the UV calls will become a
    341 * no-op if the page is already exported.
    342 */
    343int arch_make_page_accessible(struct page *page)
    344{
    345	int rc = 0;
    346
    347	/* Hugepage cannot be protected, so nothing to do */
    348	if (PageHuge(page))
    349		return 0;
    350
    351	/*
    352	 * PG_arch_1 is used in 3 places:
    353	 * 1. for kernel page tables during early boot
    354	 * 2. for storage keys of huge pages and KVM
    355	 * 3. As an indication that this page might be secure. This can
    356	 *    overindicate, e.g. we set the bit before calling
    357	 *    convert_to_secure.
    358	 * As secure pages are never huge, all 3 variants can co-exists.
    359	 */
    360	if (!test_bit(PG_arch_1, &page->flags))
    361		return 0;
    362
    363	rc = uv_pin_shared(page_to_phys(page));
    364	if (!rc) {
    365		clear_bit(PG_arch_1, &page->flags);
    366		return 0;
    367	}
    368
    369	rc = uv_convert_from_secure(page_to_phys(page));
    370	if (!rc) {
    371		clear_bit(PG_arch_1, &page->flags);
    372		return 0;
    373	}
    374
    375	return rc;
    376}
    377EXPORT_SYMBOL_GPL(arch_make_page_accessible);
    378
    379#endif
    380
    381#if defined(CONFIG_PROTECTED_VIRTUALIZATION_GUEST) || IS_ENABLED(CONFIG_KVM)
    382static ssize_t uv_query_facilities(struct kobject *kobj,
    383				   struct kobj_attribute *attr, char *page)
    384{
    385	return scnprintf(page, PAGE_SIZE, "%lx\n%lx\n%lx\n%lx\n",
    386			uv_info.inst_calls_list[0],
    387			uv_info.inst_calls_list[1],
    388			uv_info.inst_calls_list[2],
    389			uv_info.inst_calls_list[3]);
    390}
    391
    392static struct kobj_attribute uv_query_facilities_attr =
    393	__ATTR(facilities, 0444, uv_query_facilities, NULL);
    394
    395static ssize_t uv_query_feature_indications(struct kobject *kobj,
    396					    struct kobj_attribute *attr, char *buf)
    397{
    398	return sysfs_emit(buf, "%lx\n", uv_info.uv_feature_indications);
    399}
    400
    401static struct kobj_attribute uv_query_feature_indications_attr =
    402	__ATTR(feature_indications, 0444, uv_query_feature_indications, NULL);
    403
    404static ssize_t uv_query_max_guest_cpus(struct kobject *kobj,
    405				       struct kobj_attribute *attr, char *page)
    406{
    407	return scnprintf(page, PAGE_SIZE, "%d\n",
    408			uv_info.max_guest_cpu_id + 1);
    409}
    410
    411static struct kobj_attribute uv_query_max_guest_cpus_attr =
    412	__ATTR(max_cpus, 0444, uv_query_max_guest_cpus, NULL);
    413
    414static ssize_t uv_query_max_guest_vms(struct kobject *kobj,
    415				      struct kobj_attribute *attr, char *page)
    416{
    417	return scnprintf(page, PAGE_SIZE, "%d\n",
    418			uv_info.max_num_sec_conf);
    419}
    420
    421static struct kobj_attribute uv_query_max_guest_vms_attr =
    422	__ATTR(max_guests, 0444, uv_query_max_guest_vms, NULL);
    423
    424static ssize_t uv_query_max_guest_addr(struct kobject *kobj,
    425				       struct kobj_attribute *attr, char *page)
    426{
    427	return scnprintf(page, PAGE_SIZE, "%lx\n",
    428			uv_info.max_sec_stor_addr);
    429}
    430
    431static struct kobj_attribute uv_query_max_guest_addr_attr =
    432	__ATTR(max_address, 0444, uv_query_max_guest_addr, NULL);
    433
    434static struct attribute *uv_query_attrs[] = {
    435	&uv_query_facilities_attr.attr,
    436	&uv_query_feature_indications_attr.attr,
    437	&uv_query_max_guest_cpus_attr.attr,
    438	&uv_query_max_guest_vms_attr.attr,
    439	&uv_query_max_guest_addr_attr.attr,
    440	NULL,
    441};
    442
    443static struct attribute_group uv_query_attr_group = {
    444	.attrs = uv_query_attrs,
    445};
    446
    447static ssize_t uv_is_prot_virt_guest(struct kobject *kobj,
    448				     struct kobj_attribute *attr, char *page)
    449{
    450	int val = 0;
    451
    452#ifdef CONFIG_PROTECTED_VIRTUALIZATION_GUEST
    453	val = prot_virt_guest;
    454#endif
    455	return scnprintf(page, PAGE_SIZE, "%d\n", val);
    456}
    457
    458static ssize_t uv_is_prot_virt_host(struct kobject *kobj,
    459				    struct kobj_attribute *attr, char *page)
    460{
    461	int val = 0;
    462
    463#if IS_ENABLED(CONFIG_KVM)
    464	val = prot_virt_host;
    465#endif
    466
    467	return scnprintf(page, PAGE_SIZE, "%d\n", val);
    468}
    469
    470static struct kobj_attribute uv_prot_virt_guest =
    471	__ATTR(prot_virt_guest, 0444, uv_is_prot_virt_guest, NULL);
    472
    473static struct kobj_attribute uv_prot_virt_host =
    474	__ATTR(prot_virt_host, 0444, uv_is_prot_virt_host, NULL);
    475
    476static const struct attribute *uv_prot_virt_attrs[] = {
    477	&uv_prot_virt_guest.attr,
    478	&uv_prot_virt_host.attr,
    479	NULL,
    480};
    481
    482static struct kset *uv_query_kset;
    483static struct kobject *uv_kobj;
    484
    485static int __init uv_info_init(void)
    486{
    487	int rc = -ENOMEM;
    488
    489	if (!test_facility(158))
    490		return 0;
    491
    492	uv_kobj = kobject_create_and_add("uv", firmware_kobj);
    493	if (!uv_kobj)
    494		return -ENOMEM;
    495
    496	rc = sysfs_create_files(uv_kobj, uv_prot_virt_attrs);
    497	if (rc)
    498		goto out_kobj;
    499
    500	uv_query_kset = kset_create_and_add("query", NULL, uv_kobj);
    501	if (!uv_query_kset) {
    502		rc = -ENOMEM;
    503		goto out_ind_files;
    504	}
    505
    506	rc = sysfs_create_group(&uv_query_kset->kobj, &uv_query_attr_group);
    507	if (!rc)
    508		return 0;
    509
    510	kset_unregister(uv_query_kset);
    511out_ind_files:
    512	sysfs_remove_files(uv_kobj, uv_prot_virt_attrs);
    513out_kobj:
    514	kobject_del(uv_kobj);
    515	kobject_put(uv_kobj);
    516	return rc;
    517}
    518device_initcall(uv_info_init);
    519#endif