cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

guestdbg.c (16735B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * kvm guest debug support
      4 *
      5 * Copyright IBM Corp. 2014
      6 *
      7 *    Author(s): David Hildenbrand <dahi@linux.vnet.ibm.com>
      8 */
      9#include <linux/kvm_host.h>
     10#include <linux/errno.h>
     11#include "kvm-s390.h"
     12#include "gaccess.h"
     13
     14/*
     15 * Extends the address range given by *start and *stop to include the address
     16 * range starting with estart and the length len. Takes care of overflowing
     17 * intervals and tries to minimize the overall interval size.
     18 */
     19static void extend_address_range(u64 *start, u64 *stop, u64 estart, int len)
     20{
     21	u64 estop;
     22
     23	if (len > 0)
     24		len--;
     25	else
     26		len = 0;
     27
     28	estop = estart + len;
     29
     30	/* 0-0 range represents "not set" */
     31	if ((*start == 0) && (*stop == 0)) {
     32		*start = estart;
     33		*stop = estop;
     34	} else if (*start <= *stop) {
     35		/* increase the existing range */
     36		if (estart < *start)
     37			*start = estart;
     38		if (estop > *stop)
     39			*stop = estop;
     40	} else {
     41		/* "overflowing" interval, whereby *stop > *start */
     42		if (estart <= *stop) {
     43			if (estop > *stop)
     44				*stop = estop;
     45		} else if (estop > *start) {
     46			if (estart < *start)
     47				*start = estart;
     48		}
     49		/* minimize the range */
     50		else if ((estop - *stop) < (*start - estart))
     51			*stop = estop;
     52		else
     53			*start = estart;
     54	}
     55}
     56
     57#define MAX_INST_SIZE 6
     58
     59static void enable_all_hw_bp(struct kvm_vcpu *vcpu)
     60{
     61	unsigned long start, len;
     62	u64 *cr9 = &vcpu->arch.sie_block->gcr[9];
     63	u64 *cr10 = &vcpu->arch.sie_block->gcr[10];
     64	u64 *cr11 = &vcpu->arch.sie_block->gcr[11];
     65	int i;
     66
     67	if (vcpu->arch.guestdbg.nr_hw_bp <= 0 ||
     68	    vcpu->arch.guestdbg.hw_bp_info == NULL)
     69		return;
     70
     71	/*
     72	 * If the guest is not interested in branching events, we can safely
     73	 * limit them to the PER address range.
     74	 */
     75	if (!(*cr9 & PER_EVENT_BRANCH))
     76		*cr9 |= PER_CONTROL_BRANCH_ADDRESS;
     77	*cr9 |= PER_EVENT_IFETCH | PER_EVENT_BRANCH;
     78
     79	for (i = 0; i < vcpu->arch.guestdbg.nr_hw_bp; i++) {
     80		start = vcpu->arch.guestdbg.hw_bp_info[i].addr;
     81		len = vcpu->arch.guestdbg.hw_bp_info[i].len;
     82
     83		/*
     84		 * The instruction in front of the desired bp has to
     85		 * report instruction-fetching events
     86		 */
     87		if (start < MAX_INST_SIZE) {
     88			len += start;
     89			start = 0;
     90		} else {
     91			start -= MAX_INST_SIZE;
     92			len += MAX_INST_SIZE;
     93		}
     94
     95		extend_address_range(cr10, cr11, start, len);
     96	}
     97}
     98
     99static void enable_all_hw_wp(struct kvm_vcpu *vcpu)
    100{
    101	unsigned long start, len;
    102	u64 *cr9 = &vcpu->arch.sie_block->gcr[9];
    103	u64 *cr10 = &vcpu->arch.sie_block->gcr[10];
    104	u64 *cr11 = &vcpu->arch.sie_block->gcr[11];
    105	int i;
    106
    107	if (vcpu->arch.guestdbg.nr_hw_wp <= 0 ||
    108	    vcpu->arch.guestdbg.hw_wp_info == NULL)
    109		return;
    110
    111	/* if host uses storage alternation for special address
    112	 * spaces, enable all events and give all to the guest */
    113	if (*cr9 & PER_EVENT_STORE && *cr9 & PER_CONTROL_ALTERATION) {
    114		*cr9 &= ~PER_CONTROL_ALTERATION;
    115		*cr10 = 0;
    116		*cr11 = -1UL;
    117	} else {
    118		*cr9 &= ~PER_CONTROL_ALTERATION;
    119		*cr9 |= PER_EVENT_STORE;
    120
    121		for (i = 0; i < vcpu->arch.guestdbg.nr_hw_wp; i++) {
    122			start = vcpu->arch.guestdbg.hw_wp_info[i].addr;
    123			len = vcpu->arch.guestdbg.hw_wp_info[i].len;
    124
    125			extend_address_range(cr10, cr11, start, len);
    126		}
    127	}
    128}
    129
    130void kvm_s390_backup_guest_per_regs(struct kvm_vcpu *vcpu)
    131{
    132	vcpu->arch.guestdbg.cr0 = vcpu->arch.sie_block->gcr[0];
    133	vcpu->arch.guestdbg.cr9 = vcpu->arch.sie_block->gcr[9];
    134	vcpu->arch.guestdbg.cr10 = vcpu->arch.sie_block->gcr[10];
    135	vcpu->arch.guestdbg.cr11 = vcpu->arch.sie_block->gcr[11];
    136}
    137
    138void kvm_s390_restore_guest_per_regs(struct kvm_vcpu *vcpu)
    139{
    140	vcpu->arch.sie_block->gcr[0] = vcpu->arch.guestdbg.cr0;
    141	vcpu->arch.sie_block->gcr[9] = vcpu->arch.guestdbg.cr9;
    142	vcpu->arch.sie_block->gcr[10] = vcpu->arch.guestdbg.cr10;
    143	vcpu->arch.sie_block->gcr[11] = vcpu->arch.guestdbg.cr11;
    144}
    145
    146void kvm_s390_patch_guest_per_regs(struct kvm_vcpu *vcpu)
    147{
    148	/*
    149	 * TODO: if guest psw has per enabled, otherwise 0s!
    150	 * This reduces the amount of reported events.
    151	 * Need to intercept all psw changes!
    152	 */
    153
    154	if (guestdbg_sstep_enabled(vcpu)) {
    155		/* disable timer (clock-comparator) interrupts */
    156		vcpu->arch.sie_block->gcr[0] &= ~CR0_CLOCK_COMPARATOR_SUBMASK;
    157		vcpu->arch.sie_block->gcr[9] |= PER_EVENT_IFETCH;
    158		vcpu->arch.sie_block->gcr[10] = 0;
    159		vcpu->arch.sie_block->gcr[11] = -1UL;
    160	}
    161
    162	if (guestdbg_hw_bp_enabled(vcpu)) {
    163		enable_all_hw_bp(vcpu);
    164		enable_all_hw_wp(vcpu);
    165	}
    166
    167	/* TODO: Instruction-fetching-nullification not allowed for now */
    168	if (vcpu->arch.sie_block->gcr[9] & PER_EVENT_NULLIFICATION)
    169		vcpu->arch.sie_block->gcr[9] &= ~PER_EVENT_NULLIFICATION;
    170}
    171
    172#define MAX_WP_SIZE 100
    173
    174static int __import_wp_info(struct kvm_vcpu *vcpu,
    175			    struct kvm_hw_breakpoint *bp_data,
    176			    struct kvm_hw_wp_info_arch *wp_info)
    177{
    178	int ret = 0;
    179	wp_info->len = bp_data->len;
    180	wp_info->addr = bp_data->addr;
    181	wp_info->phys_addr = bp_data->phys_addr;
    182	wp_info->old_data = NULL;
    183
    184	if (wp_info->len < 0 || wp_info->len > MAX_WP_SIZE)
    185		return -EINVAL;
    186
    187	wp_info->old_data = kmalloc(bp_data->len, GFP_KERNEL_ACCOUNT);
    188	if (!wp_info->old_data)
    189		return -ENOMEM;
    190	/* try to backup the original value */
    191	ret = read_guest_abs(vcpu, wp_info->phys_addr, wp_info->old_data,
    192			     wp_info->len);
    193	if (ret) {
    194		kfree(wp_info->old_data);
    195		wp_info->old_data = NULL;
    196	}
    197
    198	return ret;
    199}
    200
    201#define MAX_BP_COUNT 50
    202
    203int kvm_s390_import_bp_data(struct kvm_vcpu *vcpu,
    204			    struct kvm_guest_debug *dbg)
    205{
    206	int ret = 0, nr_wp = 0, nr_bp = 0, i;
    207	struct kvm_hw_breakpoint *bp_data = NULL;
    208	struct kvm_hw_wp_info_arch *wp_info = NULL;
    209	struct kvm_hw_bp_info_arch *bp_info = NULL;
    210
    211	if (dbg->arch.nr_hw_bp <= 0 || !dbg->arch.hw_bp)
    212		return 0;
    213	else if (dbg->arch.nr_hw_bp > MAX_BP_COUNT)
    214		return -EINVAL;
    215
    216	bp_data = memdup_user(dbg->arch.hw_bp,
    217			      sizeof(*bp_data) * dbg->arch.nr_hw_bp);
    218	if (IS_ERR(bp_data))
    219		return PTR_ERR(bp_data);
    220
    221	for (i = 0; i < dbg->arch.nr_hw_bp; i++) {
    222		switch (bp_data[i].type) {
    223		case KVM_HW_WP_WRITE:
    224			nr_wp++;
    225			break;
    226		case KVM_HW_BP:
    227			nr_bp++;
    228			break;
    229		default:
    230			break;
    231		}
    232	}
    233
    234	if (nr_wp > 0) {
    235		wp_info = kmalloc_array(nr_wp,
    236					sizeof(*wp_info),
    237					GFP_KERNEL_ACCOUNT);
    238		if (!wp_info) {
    239			ret = -ENOMEM;
    240			goto error;
    241		}
    242	}
    243	if (nr_bp > 0) {
    244		bp_info = kmalloc_array(nr_bp,
    245					sizeof(*bp_info),
    246					GFP_KERNEL_ACCOUNT);
    247		if (!bp_info) {
    248			ret = -ENOMEM;
    249			goto error;
    250		}
    251	}
    252
    253	for (nr_wp = 0, nr_bp = 0, i = 0; i < dbg->arch.nr_hw_bp; i++) {
    254		switch (bp_data[i].type) {
    255		case KVM_HW_WP_WRITE:
    256			ret = __import_wp_info(vcpu, &bp_data[i],
    257					       &wp_info[nr_wp]);
    258			if (ret)
    259				goto error;
    260			nr_wp++;
    261			break;
    262		case KVM_HW_BP:
    263			bp_info[nr_bp].len = bp_data[i].len;
    264			bp_info[nr_bp].addr = bp_data[i].addr;
    265			nr_bp++;
    266			break;
    267		}
    268	}
    269
    270	vcpu->arch.guestdbg.nr_hw_bp = nr_bp;
    271	vcpu->arch.guestdbg.hw_bp_info = bp_info;
    272	vcpu->arch.guestdbg.nr_hw_wp = nr_wp;
    273	vcpu->arch.guestdbg.hw_wp_info = wp_info;
    274	return 0;
    275error:
    276	kfree(bp_data);
    277	kfree(wp_info);
    278	kfree(bp_info);
    279	return ret;
    280}
    281
    282void kvm_s390_clear_bp_data(struct kvm_vcpu *vcpu)
    283{
    284	int i;
    285	struct kvm_hw_wp_info_arch *hw_wp_info = NULL;
    286
    287	for (i = 0; i < vcpu->arch.guestdbg.nr_hw_wp; i++) {
    288		hw_wp_info = &vcpu->arch.guestdbg.hw_wp_info[i];
    289		kfree(hw_wp_info->old_data);
    290		hw_wp_info->old_data = NULL;
    291	}
    292	kfree(vcpu->arch.guestdbg.hw_wp_info);
    293	vcpu->arch.guestdbg.hw_wp_info = NULL;
    294
    295	kfree(vcpu->arch.guestdbg.hw_bp_info);
    296	vcpu->arch.guestdbg.hw_bp_info = NULL;
    297
    298	vcpu->arch.guestdbg.nr_hw_wp = 0;
    299	vcpu->arch.guestdbg.nr_hw_bp = 0;
    300}
    301
    302static inline int in_addr_range(u64 addr, u64 a, u64 b)
    303{
    304	if (a <= b)
    305		return (addr >= a) && (addr <= b);
    306	else
    307		/* "overflowing" interval */
    308		return (addr >= a) || (addr <= b);
    309}
    310
    311#define end_of_range(bp_info) (bp_info->addr + bp_info->len - 1)
    312
    313static struct kvm_hw_bp_info_arch *find_hw_bp(struct kvm_vcpu *vcpu,
    314					      unsigned long addr)
    315{
    316	struct kvm_hw_bp_info_arch *bp_info = vcpu->arch.guestdbg.hw_bp_info;
    317	int i;
    318
    319	if (vcpu->arch.guestdbg.nr_hw_bp == 0)
    320		return NULL;
    321
    322	for (i = 0; i < vcpu->arch.guestdbg.nr_hw_bp; i++) {
    323		/* addr is directly the start or in the range of a bp */
    324		if (addr == bp_info->addr)
    325			goto found;
    326		if (bp_info->len > 0 &&
    327		    in_addr_range(addr, bp_info->addr, end_of_range(bp_info)))
    328			goto found;
    329
    330		bp_info++;
    331	}
    332
    333	return NULL;
    334found:
    335	return bp_info;
    336}
    337
    338static struct kvm_hw_wp_info_arch *any_wp_changed(struct kvm_vcpu *vcpu)
    339{
    340	int i;
    341	struct kvm_hw_wp_info_arch *wp_info = NULL;
    342	void *temp = NULL;
    343
    344	if (vcpu->arch.guestdbg.nr_hw_wp == 0)
    345		return NULL;
    346
    347	for (i = 0; i < vcpu->arch.guestdbg.nr_hw_wp; i++) {
    348		wp_info = &vcpu->arch.guestdbg.hw_wp_info[i];
    349		if (!wp_info || !wp_info->old_data || wp_info->len <= 0)
    350			continue;
    351
    352		temp = kmalloc(wp_info->len, GFP_KERNEL_ACCOUNT);
    353		if (!temp)
    354			continue;
    355
    356		/* refetch the wp data and compare it to the old value */
    357		if (!read_guest_abs(vcpu, wp_info->phys_addr, temp,
    358				    wp_info->len)) {
    359			if (memcmp(temp, wp_info->old_data, wp_info->len)) {
    360				kfree(temp);
    361				return wp_info;
    362			}
    363		}
    364		kfree(temp);
    365		temp = NULL;
    366	}
    367
    368	return NULL;
    369}
    370
    371void kvm_s390_prepare_debug_exit(struct kvm_vcpu *vcpu)
    372{
    373	vcpu->run->exit_reason = KVM_EXIT_DEBUG;
    374	vcpu->guest_debug &= ~KVM_GUESTDBG_EXIT_PENDING;
    375}
    376
    377#define PER_CODE_MASK		(PER_EVENT_MASK >> 24)
    378#define PER_CODE_BRANCH		(PER_EVENT_BRANCH >> 24)
    379#define PER_CODE_IFETCH		(PER_EVENT_IFETCH >> 24)
    380#define PER_CODE_STORE		(PER_EVENT_STORE >> 24)
    381#define PER_CODE_STORE_REAL	(PER_EVENT_STORE_REAL >> 24)
    382
    383#define per_bp_event(code) \
    384			(code & (PER_CODE_IFETCH | PER_CODE_BRANCH))
    385#define per_write_wp_event(code) \
    386			(code & (PER_CODE_STORE | PER_CODE_STORE_REAL))
    387
    388static int debug_exit_required(struct kvm_vcpu *vcpu, u8 perc,
    389			       unsigned long peraddr)
    390{
    391	struct kvm_debug_exit_arch *debug_exit = &vcpu->run->debug.arch;
    392	struct kvm_hw_wp_info_arch *wp_info = NULL;
    393	struct kvm_hw_bp_info_arch *bp_info = NULL;
    394	unsigned long addr = vcpu->arch.sie_block->gpsw.addr;
    395
    396	if (guestdbg_hw_bp_enabled(vcpu)) {
    397		if (per_write_wp_event(perc) &&
    398		    vcpu->arch.guestdbg.nr_hw_wp > 0) {
    399			wp_info = any_wp_changed(vcpu);
    400			if (wp_info) {
    401				debug_exit->addr = wp_info->addr;
    402				debug_exit->type = KVM_HW_WP_WRITE;
    403				goto exit_required;
    404			}
    405		}
    406		if (per_bp_event(perc) &&
    407			 vcpu->arch.guestdbg.nr_hw_bp > 0) {
    408			bp_info = find_hw_bp(vcpu, addr);
    409			/* remove duplicate events if PC==PER address */
    410			if (bp_info && (addr != peraddr)) {
    411				debug_exit->addr = addr;
    412				debug_exit->type = KVM_HW_BP;
    413				vcpu->arch.guestdbg.last_bp = addr;
    414				goto exit_required;
    415			}
    416			/* breakpoint missed */
    417			bp_info = find_hw_bp(vcpu, peraddr);
    418			if (bp_info && vcpu->arch.guestdbg.last_bp != peraddr) {
    419				debug_exit->addr = peraddr;
    420				debug_exit->type = KVM_HW_BP;
    421				goto exit_required;
    422			}
    423		}
    424	}
    425	if (guestdbg_sstep_enabled(vcpu) && per_bp_event(perc)) {
    426		debug_exit->addr = addr;
    427		debug_exit->type = KVM_SINGLESTEP;
    428		goto exit_required;
    429	}
    430
    431	return 0;
    432exit_required:
    433	return 1;
    434}
    435
    436static int per_fetched_addr(struct kvm_vcpu *vcpu, unsigned long *addr)
    437{
    438	u8 exec_ilen = 0;
    439	u16 opcode[3];
    440	int rc;
    441
    442	if (vcpu->arch.sie_block->icptcode == ICPT_PROGI) {
    443		/* PER address references the fetched or the execute instr */
    444		*addr = vcpu->arch.sie_block->peraddr;
    445		/*
    446		 * Manually detect if we have an EXECUTE instruction. As
    447		 * instructions are always 2 byte aligned we can read the
    448		 * first two bytes unconditionally
    449		 */
    450		rc = read_guest_instr(vcpu, *addr, &opcode, 2);
    451		if (rc)
    452			return rc;
    453		if (opcode[0] >> 8 == 0x44)
    454			exec_ilen = 4;
    455		if ((opcode[0] & 0xff0f) == 0xc600)
    456			exec_ilen = 6;
    457	} else {
    458		/* instr was suppressed, calculate the responsible instr */
    459		*addr = __rewind_psw(vcpu->arch.sie_block->gpsw,
    460				     kvm_s390_get_ilen(vcpu));
    461		if (vcpu->arch.sie_block->icptstatus & 0x01) {
    462			exec_ilen = (vcpu->arch.sie_block->icptstatus & 0x60) >> 4;
    463			if (!exec_ilen)
    464				exec_ilen = 4;
    465		}
    466	}
    467
    468	if (exec_ilen) {
    469		/* read the complete EXECUTE instr to detect the fetched addr */
    470		rc = read_guest_instr(vcpu, *addr, &opcode, exec_ilen);
    471		if (rc)
    472			return rc;
    473		if (exec_ilen == 6) {
    474			/* EXECUTE RELATIVE LONG - RIL-b format */
    475			s32 rl = *((s32 *) (opcode + 1));
    476
    477			/* rl is a _signed_ 32 bit value specifying halfwords */
    478			*addr += (u64)(s64) rl * 2;
    479		} else {
    480			/* EXECUTE - RX-a format */
    481			u32 base = (opcode[1] & 0xf000) >> 12;
    482			u32 disp = opcode[1] & 0x0fff;
    483			u32 index = opcode[0] & 0x000f;
    484
    485			*addr = base ? vcpu->run->s.regs.gprs[base] : 0;
    486			*addr += index ? vcpu->run->s.regs.gprs[index] : 0;
    487			*addr += disp;
    488		}
    489		*addr = kvm_s390_logical_to_effective(vcpu, *addr);
    490	}
    491	return 0;
    492}
    493
    494#define guest_per_enabled(vcpu) \
    495			     (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PER)
    496
    497int kvm_s390_handle_per_ifetch_icpt(struct kvm_vcpu *vcpu)
    498{
    499	const u64 cr10 = vcpu->arch.sie_block->gcr[10];
    500	const u64 cr11 = vcpu->arch.sie_block->gcr[11];
    501	const u8 ilen = kvm_s390_get_ilen(vcpu);
    502	struct kvm_s390_pgm_info pgm_info = {
    503		.code = PGM_PER,
    504		.per_code = PER_CODE_IFETCH,
    505		.per_address = __rewind_psw(vcpu->arch.sie_block->gpsw, ilen),
    506	};
    507	unsigned long fetched_addr;
    508	int rc;
    509
    510	/*
    511	 * The PSW points to the next instruction, therefore the intercepted
    512	 * instruction generated a PER i-fetch event. PER address therefore
    513	 * points at the previous PSW address (could be an EXECUTE function).
    514	 */
    515	if (!guestdbg_enabled(vcpu))
    516		return kvm_s390_inject_prog_irq(vcpu, &pgm_info);
    517
    518	if (debug_exit_required(vcpu, pgm_info.per_code, pgm_info.per_address))
    519		vcpu->guest_debug |= KVM_GUESTDBG_EXIT_PENDING;
    520
    521	if (!guest_per_enabled(vcpu) ||
    522	    !(vcpu->arch.sie_block->gcr[9] & PER_EVENT_IFETCH))
    523		return 0;
    524
    525	rc = per_fetched_addr(vcpu, &fetched_addr);
    526	if (rc < 0)
    527		return rc;
    528	if (rc)
    529		/* instruction-fetching exceptions */
    530		return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
    531
    532	if (in_addr_range(fetched_addr, cr10, cr11))
    533		return kvm_s390_inject_prog_irq(vcpu, &pgm_info);
    534	return 0;
    535}
    536
    537static int filter_guest_per_event(struct kvm_vcpu *vcpu)
    538{
    539	const u8 perc = vcpu->arch.sie_block->perc;
    540	u64 addr = vcpu->arch.sie_block->gpsw.addr;
    541	u64 cr9 = vcpu->arch.sie_block->gcr[9];
    542	u64 cr10 = vcpu->arch.sie_block->gcr[10];
    543	u64 cr11 = vcpu->arch.sie_block->gcr[11];
    544	/* filter all events, demanded by the guest */
    545	u8 guest_perc = perc & (cr9 >> 24) & PER_CODE_MASK;
    546	unsigned long fetched_addr;
    547	int rc;
    548
    549	if (!guest_per_enabled(vcpu))
    550		guest_perc = 0;
    551
    552	/* filter "successful-branching" events */
    553	if (guest_perc & PER_CODE_BRANCH &&
    554	    cr9 & PER_CONTROL_BRANCH_ADDRESS &&
    555	    !in_addr_range(addr, cr10, cr11))
    556		guest_perc &= ~PER_CODE_BRANCH;
    557
    558	/* filter "instruction-fetching" events */
    559	if (guest_perc & PER_CODE_IFETCH) {
    560		rc = per_fetched_addr(vcpu, &fetched_addr);
    561		if (rc < 0)
    562			return rc;
    563		/*
    564		 * Don't inject an irq on exceptions. This would make handling
    565		 * on icpt code 8 very complex (as PSW was already rewound).
    566		 */
    567		if (rc || !in_addr_range(fetched_addr, cr10, cr11))
    568			guest_perc &= ~PER_CODE_IFETCH;
    569	}
    570
    571	/* All other PER events will be given to the guest */
    572	/* TODO: Check altered address/address space */
    573
    574	vcpu->arch.sie_block->perc = guest_perc;
    575
    576	if (!guest_perc)
    577		vcpu->arch.sie_block->iprcc &= ~PGM_PER;
    578	return 0;
    579}
    580
    581#define pssec(vcpu) (vcpu->arch.sie_block->gcr[1] & _ASCE_SPACE_SWITCH)
    582#define hssec(vcpu) (vcpu->arch.sie_block->gcr[13] & _ASCE_SPACE_SWITCH)
    583#define old_ssec(vcpu) ((vcpu->arch.sie_block->tecmc >> 31) & 0x1)
    584#define old_as_is_home(vcpu) !(vcpu->arch.sie_block->tecmc & 0xffff)
    585
    586int kvm_s390_handle_per_event(struct kvm_vcpu *vcpu)
    587{
    588	int rc, new_as;
    589
    590	if (debug_exit_required(vcpu, vcpu->arch.sie_block->perc,
    591				vcpu->arch.sie_block->peraddr))
    592		vcpu->guest_debug |= KVM_GUESTDBG_EXIT_PENDING;
    593
    594	rc = filter_guest_per_event(vcpu);
    595	if (rc)
    596		return rc;
    597
    598	/*
    599	 * Only RP, SAC, SACF, PT, PTI, PR, PC instructions can trigger
    600	 * a space-switch event. PER events enforce space-switch events
    601	 * for these instructions. So if no PER event for the guest is left,
    602	 * we might have to filter the space-switch element out, too.
    603	 */
    604	if (vcpu->arch.sie_block->iprcc == PGM_SPACE_SWITCH) {
    605		vcpu->arch.sie_block->iprcc = 0;
    606		new_as = psw_bits(vcpu->arch.sie_block->gpsw).as;
    607
    608		/*
    609		 * If the AS changed from / to home, we had RP, SAC or SACF
    610		 * instruction. Check primary and home space-switch-event
    611		 * controls. (theoretically home -> home produced no event)
    612		 */
    613		if (((new_as == PSW_BITS_AS_HOME) ^ old_as_is_home(vcpu)) &&
    614		    (pssec(vcpu) || hssec(vcpu)))
    615			vcpu->arch.sie_block->iprcc = PGM_SPACE_SWITCH;
    616
    617		/*
    618		 * PT, PTI, PR, PC instruction operate on primary AS only. Check
    619		 * if the primary-space-switch-event control was or got set.
    620		 */
    621		if (new_as == PSW_BITS_AS_PRIMARY && !old_as_is_home(vcpu) &&
    622		    (pssec(vcpu) || old_ssec(vcpu)))
    623			vcpu->arch.sie_block->iprcc = PGM_SPACE_SWITCH;
    624	}
    625	return 0;
    626}