cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

pgalloc.c (20012B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 *  Page table allocation functions
      4 *
      5 *    Copyright IBM Corp. 2016
      6 *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
      7 */
      8
      9#include <linux/sysctl.h>
     10#include <linux/slab.h>
     11#include <linux/mm.h>
     12#include <asm/mmu_context.h>
     13#include <asm/pgalloc.h>
     14#include <asm/gmap.h>
     15#include <asm/tlb.h>
     16#include <asm/tlbflush.h>
     17
     18#ifdef CONFIG_PGSTE
     19
     20int page_table_allocate_pgste = 0;
     21EXPORT_SYMBOL(page_table_allocate_pgste);
     22
     23static struct ctl_table page_table_sysctl[] = {
     24	{
     25		.procname	= "allocate_pgste",
     26		.data		= &page_table_allocate_pgste,
     27		.maxlen		= sizeof(int),
     28		.mode		= S_IRUGO | S_IWUSR,
     29		.proc_handler	= proc_dointvec_minmax,
     30		.extra1		= SYSCTL_ZERO,
     31		.extra2		= SYSCTL_ONE,
     32	},
     33	{ }
     34};
     35
     36static struct ctl_table page_table_sysctl_dir[] = {
     37	{
     38		.procname	= "vm",
     39		.maxlen		= 0,
     40		.mode		= 0555,
     41		.child		= page_table_sysctl,
     42	},
     43	{ }
     44};
     45
     46static int __init page_table_register_sysctl(void)
     47{
     48	return register_sysctl_table(page_table_sysctl_dir) ? 0 : -ENOMEM;
     49}
     50__initcall(page_table_register_sysctl);
     51
     52#endif /* CONFIG_PGSTE */
     53
     54unsigned long *crst_table_alloc(struct mm_struct *mm)
     55{
     56	struct page *page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
     57
     58	if (!page)
     59		return NULL;
     60	arch_set_page_dat(page, CRST_ALLOC_ORDER);
     61	return (unsigned long *) page_to_virt(page);
     62}
     63
     64void crst_table_free(struct mm_struct *mm, unsigned long *table)
     65{
     66	free_pages((unsigned long)table, CRST_ALLOC_ORDER);
     67}
     68
     69static void __crst_table_upgrade(void *arg)
     70{
     71	struct mm_struct *mm = arg;
     72
     73	/* change all active ASCEs to avoid the creation of new TLBs */
     74	if (current->active_mm == mm) {
     75		S390_lowcore.user_asce = mm->context.asce;
     76		__ctl_load(S390_lowcore.user_asce, 7, 7);
     77	}
     78	__tlb_flush_local();
     79}
     80
     81int crst_table_upgrade(struct mm_struct *mm, unsigned long end)
     82{
     83	unsigned long *pgd = NULL, *p4d = NULL, *__pgd;
     84	unsigned long asce_limit = mm->context.asce_limit;
     85
     86	/* upgrade should only happen from 3 to 4, 3 to 5, or 4 to 5 levels */
     87	VM_BUG_ON(asce_limit < _REGION2_SIZE);
     88
     89	if (end <= asce_limit)
     90		return 0;
     91
     92	if (asce_limit == _REGION2_SIZE) {
     93		p4d = crst_table_alloc(mm);
     94		if (unlikely(!p4d))
     95			goto err_p4d;
     96		crst_table_init(p4d, _REGION2_ENTRY_EMPTY);
     97	}
     98	if (end > _REGION1_SIZE) {
     99		pgd = crst_table_alloc(mm);
    100		if (unlikely(!pgd))
    101			goto err_pgd;
    102		crst_table_init(pgd, _REGION1_ENTRY_EMPTY);
    103	}
    104
    105	spin_lock_bh(&mm->page_table_lock);
    106
    107	/*
    108	 * This routine gets called with mmap_lock lock held and there is
    109	 * no reason to optimize for the case of otherwise. However, if
    110	 * that would ever change, the below check will let us know.
    111	 */
    112	VM_BUG_ON(asce_limit != mm->context.asce_limit);
    113
    114	if (p4d) {
    115		__pgd = (unsigned long *) mm->pgd;
    116		p4d_populate(mm, (p4d_t *) p4d, (pud_t *) __pgd);
    117		mm->pgd = (pgd_t *) p4d;
    118		mm->context.asce_limit = _REGION1_SIZE;
    119		mm->context.asce = __pa(mm->pgd) | _ASCE_TABLE_LENGTH |
    120			_ASCE_USER_BITS | _ASCE_TYPE_REGION2;
    121		mm_inc_nr_puds(mm);
    122	}
    123	if (pgd) {
    124		__pgd = (unsigned long *) mm->pgd;
    125		pgd_populate(mm, (pgd_t *) pgd, (p4d_t *) __pgd);
    126		mm->pgd = (pgd_t *) pgd;
    127		mm->context.asce_limit = TASK_SIZE_MAX;
    128		mm->context.asce = __pa(mm->pgd) | _ASCE_TABLE_LENGTH |
    129			_ASCE_USER_BITS | _ASCE_TYPE_REGION1;
    130	}
    131
    132	spin_unlock_bh(&mm->page_table_lock);
    133
    134	on_each_cpu(__crst_table_upgrade, mm, 0);
    135
    136	return 0;
    137
    138err_pgd:
    139	crst_table_free(mm, p4d);
    140err_p4d:
    141	return -ENOMEM;
    142}
    143
    144static inline unsigned int atomic_xor_bits(atomic_t *v, unsigned int bits)
    145{
    146	unsigned int old, new;
    147
    148	do {
    149		old = atomic_read(v);
    150		new = old ^ bits;
    151	} while (atomic_cmpxchg(v, old, new) != old);
    152	return new;
    153}
    154
    155#ifdef CONFIG_PGSTE
    156
    157struct page *page_table_alloc_pgste(struct mm_struct *mm)
    158{
    159	struct page *page;
    160	u64 *table;
    161
    162	page = alloc_page(GFP_KERNEL);
    163	if (page) {
    164		table = (u64 *)page_to_virt(page);
    165		memset64(table, _PAGE_INVALID, PTRS_PER_PTE);
    166		memset64(table + PTRS_PER_PTE, 0, PTRS_PER_PTE);
    167	}
    168	return page;
    169}
    170
    171void page_table_free_pgste(struct page *page)
    172{
    173	__free_page(page);
    174}
    175
    176#endif /* CONFIG_PGSTE */
    177
    178/*
    179 * A 2KB-pgtable is either upper or lower half of a normal page.
    180 * The second half of the page may be unused or used as another
    181 * 2KB-pgtable.
    182 *
    183 * Whenever possible the parent page for a new 2KB-pgtable is picked
    184 * from the list of partially allocated pages mm_context_t::pgtable_list.
    185 * In case the list is empty a new parent page is allocated and added to
    186 * the list.
    187 *
    188 * When a parent page gets fully allocated it contains 2KB-pgtables in both
    189 * upper and lower halves and is removed from mm_context_t::pgtable_list.
    190 *
    191 * When 2KB-pgtable is freed from to fully allocated parent page that
    192 * page turns partially allocated and added to mm_context_t::pgtable_list.
    193 *
    194 * If 2KB-pgtable is freed from the partially allocated parent page that
    195 * page turns unused and gets removed from mm_context_t::pgtable_list.
    196 * Furthermore, the unused parent page is released.
    197 *
    198 * As follows from the above, no unallocated or fully allocated parent
    199 * pages are contained in mm_context_t::pgtable_list.
    200 *
    201 * The upper byte (bits 24-31) of the parent page _refcount is used
    202 * for tracking contained 2KB-pgtables and has the following format:
    203 *
    204 *   PP  AA
    205 * 01234567    upper byte (bits 24-31) of struct page::_refcount
    206 *   ||  ||
    207 *   ||  |+--- upper 2KB-pgtable is allocated
    208 *   ||  +---- lower 2KB-pgtable is allocated
    209 *   |+------- upper 2KB-pgtable is pending for removal
    210 *   +-------- lower 2KB-pgtable is pending for removal
    211 *
    212 * (See commit 620b4e903179 ("s390: use _refcount for pgtables") on why
    213 * using _refcount is possible).
    214 *
    215 * When 2KB-pgtable is allocated the corresponding AA bit is set to 1.
    216 * The parent page is either:
    217 *   - added to mm_context_t::pgtable_list in case the second half of the
    218 *     parent page is still unallocated;
    219 *   - removed from mm_context_t::pgtable_list in case both hales of the
    220 *     parent page are allocated;
    221 * These operations are protected with mm_context_t::lock.
    222 *
    223 * When 2KB-pgtable is deallocated the corresponding AA bit is set to 0
    224 * and the corresponding PP bit is set to 1 in a single atomic operation.
    225 * Thus, PP and AA bits corresponding to the same 2KB-pgtable are mutually
    226 * exclusive and may never be both set to 1!
    227 * The parent page is either:
    228 *   - added to mm_context_t::pgtable_list in case the second half of the
    229 *     parent page is still allocated;
    230 *   - removed from mm_context_t::pgtable_list in case the second half of
    231 *     the parent page is unallocated;
    232 * These operations are protected with mm_context_t::lock.
    233 *
    234 * It is important to understand that mm_context_t::lock only protects
    235 * mm_context_t::pgtable_list and AA bits, but not the parent page itself
    236 * and PP bits.
    237 *
    238 * Releasing the parent page happens whenever the PP bit turns from 1 to 0,
    239 * while both AA bits and the second PP bit are already unset. Then the
    240 * parent page does not contain any 2KB-pgtable fragment anymore, and it has
    241 * also been removed from mm_context_t::pgtable_list. It is safe to release
    242 * the page therefore.
    243 *
    244 * PGSTE memory spaces use full 4KB-pgtables and do not need most of the
    245 * logic described above. Both AA bits are set to 1 to denote a 4KB-pgtable
    246 * while the PP bits are never used, nor such a page is added to or removed
    247 * from mm_context_t::pgtable_list.
    248 */
    249unsigned long *page_table_alloc(struct mm_struct *mm)
    250{
    251	unsigned long *table;
    252	struct page *page;
    253	unsigned int mask, bit;
    254
    255	/* Try to get a fragment of a 4K page as a 2K page table */
    256	if (!mm_alloc_pgste(mm)) {
    257		table = NULL;
    258		spin_lock_bh(&mm->context.lock);
    259		if (!list_empty(&mm->context.pgtable_list)) {
    260			page = list_first_entry(&mm->context.pgtable_list,
    261						struct page, lru);
    262			mask = atomic_read(&page->_refcount) >> 24;
    263			/*
    264			 * The pending removal bits must also be checked.
    265			 * Failure to do so might lead to an impossible
    266			 * value of (i.e 0x13 or 0x23) written to _refcount.
    267			 * Such values violate the assumption that pending and
    268			 * allocation bits are mutually exclusive, and the rest
    269			 * of the code unrails as result. That could lead to
    270			 * a whole bunch of races and corruptions.
    271			 */
    272			mask = (mask | (mask >> 4)) & 0x03U;
    273			if (mask != 0x03U) {
    274				table = (unsigned long *) page_to_virt(page);
    275				bit = mask & 1;		/* =1 -> second 2K */
    276				if (bit)
    277					table += PTRS_PER_PTE;
    278				atomic_xor_bits(&page->_refcount,
    279							0x01U << (bit + 24));
    280				list_del(&page->lru);
    281			}
    282		}
    283		spin_unlock_bh(&mm->context.lock);
    284		if (table)
    285			return table;
    286	}
    287	/* Allocate a fresh page */
    288	page = alloc_page(GFP_KERNEL);
    289	if (!page)
    290		return NULL;
    291	if (!pgtable_pte_page_ctor(page)) {
    292		__free_page(page);
    293		return NULL;
    294	}
    295	arch_set_page_dat(page, 0);
    296	/* Initialize page table */
    297	table = (unsigned long *) page_to_virt(page);
    298	if (mm_alloc_pgste(mm)) {
    299		/* Return 4K page table with PGSTEs */
    300		atomic_xor_bits(&page->_refcount, 0x03U << 24);
    301		memset64((u64 *)table, _PAGE_INVALID, PTRS_PER_PTE);
    302		memset64((u64 *)table + PTRS_PER_PTE, 0, PTRS_PER_PTE);
    303	} else {
    304		/* Return the first 2K fragment of the page */
    305		atomic_xor_bits(&page->_refcount, 0x01U << 24);
    306		memset64((u64 *)table, _PAGE_INVALID, 2 * PTRS_PER_PTE);
    307		spin_lock_bh(&mm->context.lock);
    308		list_add(&page->lru, &mm->context.pgtable_list);
    309		spin_unlock_bh(&mm->context.lock);
    310	}
    311	return table;
    312}
    313
    314static void page_table_release_check(struct page *page, void *table,
    315				     unsigned int half, unsigned int mask)
    316{
    317	char msg[128];
    318
    319	if (!IS_ENABLED(CONFIG_DEBUG_VM) || !mask)
    320		return;
    321	snprintf(msg, sizeof(msg),
    322		 "Invalid pgtable %p release half 0x%02x mask 0x%02x",
    323		 table, half, mask);
    324	dump_page(page, msg);
    325}
    326
    327void page_table_free(struct mm_struct *mm, unsigned long *table)
    328{
    329	unsigned int mask, bit, half;
    330	struct page *page;
    331
    332	page = virt_to_page(table);
    333	if (!mm_alloc_pgste(mm)) {
    334		/* Free 2K page table fragment of a 4K page */
    335		bit = ((unsigned long) table & ~PAGE_MASK)/(PTRS_PER_PTE*sizeof(pte_t));
    336		spin_lock_bh(&mm->context.lock);
    337		/*
    338		 * Mark the page for delayed release. The actual release
    339		 * will happen outside of the critical section from this
    340		 * function or from __tlb_remove_table()
    341		 */
    342		mask = atomic_xor_bits(&page->_refcount, 0x11U << (bit + 24));
    343		mask >>= 24;
    344		if (mask & 0x03U)
    345			list_add(&page->lru, &mm->context.pgtable_list);
    346		else
    347			list_del(&page->lru);
    348		spin_unlock_bh(&mm->context.lock);
    349		mask = atomic_xor_bits(&page->_refcount, 0x10U << (bit + 24));
    350		mask >>= 24;
    351		if (mask != 0x00U)
    352			return;
    353		half = 0x01U << bit;
    354	} else {
    355		half = 0x03U;
    356		mask = atomic_xor_bits(&page->_refcount, 0x03U << 24);
    357		mask >>= 24;
    358	}
    359
    360	page_table_release_check(page, table, half, mask);
    361	pgtable_pte_page_dtor(page);
    362	__free_page(page);
    363}
    364
    365void page_table_free_rcu(struct mmu_gather *tlb, unsigned long *table,
    366			 unsigned long vmaddr)
    367{
    368	struct mm_struct *mm;
    369	struct page *page;
    370	unsigned int bit, mask;
    371
    372	mm = tlb->mm;
    373	page = virt_to_page(table);
    374	if (mm_alloc_pgste(mm)) {
    375		gmap_unlink(mm, table, vmaddr);
    376		table = (unsigned long *) ((unsigned long)table | 0x03U);
    377		tlb_remove_table(tlb, table);
    378		return;
    379	}
    380	bit = ((unsigned long) table & ~PAGE_MASK) / (PTRS_PER_PTE*sizeof(pte_t));
    381	spin_lock_bh(&mm->context.lock);
    382	/*
    383	 * Mark the page for delayed release. The actual release will happen
    384	 * outside of the critical section from __tlb_remove_table() or from
    385	 * page_table_free()
    386	 */
    387	mask = atomic_xor_bits(&page->_refcount, 0x11U << (bit + 24));
    388	mask >>= 24;
    389	if (mask & 0x03U)
    390		list_add_tail(&page->lru, &mm->context.pgtable_list);
    391	else
    392		list_del(&page->lru);
    393	spin_unlock_bh(&mm->context.lock);
    394	table = (unsigned long *) ((unsigned long) table | (0x01U << bit));
    395	tlb_remove_table(tlb, table);
    396}
    397
    398void __tlb_remove_table(void *_table)
    399{
    400	unsigned int mask = (unsigned long) _table & 0x03U, half = mask;
    401	void *table = (void *)((unsigned long) _table ^ mask);
    402	struct page *page = virt_to_page(table);
    403
    404	switch (half) {
    405	case 0x00U:	/* pmd, pud, or p4d */
    406		free_pages((unsigned long)table, CRST_ALLOC_ORDER);
    407		return;
    408	case 0x01U:	/* lower 2K of a 4K page table */
    409	case 0x02U:	/* higher 2K of a 4K page table */
    410		mask = atomic_xor_bits(&page->_refcount, mask << (4 + 24));
    411		mask >>= 24;
    412		if (mask != 0x00U)
    413			return;
    414		break;
    415	case 0x03U:	/* 4K page table with pgstes */
    416		mask = atomic_xor_bits(&page->_refcount, 0x03U << 24);
    417		mask >>= 24;
    418		break;
    419	}
    420
    421	page_table_release_check(page, table, half, mask);
    422	pgtable_pte_page_dtor(page);
    423	__free_page(page);
    424}
    425
    426/*
    427 * Base infrastructure required to generate basic asces, region, segment,
    428 * and page tables that do not make use of enhanced features like EDAT1.
    429 */
    430
    431static struct kmem_cache *base_pgt_cache;
    432
    433static unsigned long *base_pgt_alloc(void)
    434{
    435	unsigned long *table;
    436
    437	table = kmem_cache_alloc(base_pgt_cache, GFP_KERNEL);
    438	if (table)
    439		memset64((u64 *)table, _PAGE_INVALID, PTRS_PER_PTE);
    440	return table;
    441}
    442
    443static void base_pgt_free(unsigned long *table)
    444{
    445	kmem_cache_free(base_pgt_cache, table);
    446}
    447
    448static unsigned long *base_crst_alloc(unsigned long val)
    449{
    450	unsigned long *table;
    451
    452	table =	(unsigned long *)__get_free_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
    453	if (table)
    454		crst_table_init(table, val);
    455	return table;
    456}
    457
    458static void base_crst_free(unsigned long *table)
    459{
    460	free_pages((unsigned long)table, CRST_ALLOC_ORDER);
    461}
    462
    463#define BASE_ADDR_END_FUNC(NAME, SIZE)					\
    464static inline unsigned long base_##NAME##_addr_end(unsigned long addr,	\
    465						   unsigned long end)	\
    466{									\
    467	unsigned long next = (addr + (SIZE)) & ~((SIZE) - 1);		\
    468									\
    469	return (next - 1) < (end - 1) ? next : end;			\
    470}
    471
    472BASE_ADDR_END_FUNC(page,    _PAGE_SIZE)
    473BASE_ADDR_END_FUNC(segment, _SEGMENT_SIZE)
    474BASE_ADDR_END_FUNC(region3, _REGION3_SIZE)
    475BASE_ADDR_END_FUNC(region2, _REGION2_SIZE)
    476BASE_ADDR_END_FUNC(region1, _REGION1_SIZE)
    477
    478static inline unsigned long base_lra(unsigned long address)
    479{
    480	unsigned long real;
    481
    482	asm volatile(
    483		"	lra	%0,0(%1)\n"
    484		: "=d" (real) : "a" (address) : "cc");
    485	return real;
    486}
    487
    488static int base_page_walk(unsigned long *origin, unsigned long addr,
    489			  unsigned long end, int alloc)
    490{
    491	unsigned long *pte, next;
    492
    493	if (!alloc)
    494		return 0;
    495	pte = origin;
    496	pte += (addr & _PAGE_INDEX) >> _PAGE_SHIFT;
    497	do {
    498		next = base_page_addr_end(addr, end);
    499		*pte = base_lra(addr);
    500	} while (pte++, addr = next, addr < end);
    501	return 0;
    502}
    503
    504static int base_segment_walk(unsigned long *origin, unsigned long addr,
    505			     unsigned long end, int alloc)
    506{
    507	unsigned long *ste, next, *table;
    508	int rc;
    509
    510	ste = origin;
    511	ste += (addr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
    512	do {
    513		next = base_segment_addr_end(addr, end);
    514		if (*ste & _SEGMENT_ENTRY_INVALID) {
    515			if (!alloc)
    516				continue;
    517			table = base_pgt_alloc();
    518			if (!table)
    519				return -ENOMEM;
    520			*ste = __pa(table) | _SEGMENT_ENTRY;
    521		}
    522		table = __va(*ste & _SEGMENT_ENTRY_ORIGIN);
    523		rc = base_page_walk(table, addr, next, alloc);
    524		if (rc)
    525			return rc;
    526		if (!alloc)
    527			base_pgt_free(table);
    528		cond_resched();
    529	} while (ste++, addr = next, addr < end);
    530	return 0;
    531}
    532
    533static int base_region3_walk(unsigned long *origin, unsigned long addr,
    534			     unsigned long end, int alloc)
    535{
    536	unsigned long *rtte, next, *table;
    537	int rc;
    538
    539	rtte = origin;
    540	rtte += (addr & _REGION3_INDEX) >> _REGION3_SHIFT;
    541	do {
    542		next = base_region3_addr_end(addr, end);
    543		if (*rtte & _REGION_ENTRY_INVALID) {
    544			if (!alloc)
    545				continue;
    546			table = base_crst_alloc(_SEGMENT_ENTRY_EMPTY);
    547			if (!table)
    548				return -ENOMEM;
    549			*rtte = __pa(table) | _REGION3_ENTRY;
    550		}
    551		table = __va(*rtte & _REGION_ENTRY_ORIGIN);
    552		rc = base_segment_walk(table, addr, next, alloc);
    553		if (rc)
    554			return rc;
    555		if (!alloc)
    556			base_crst_free(table);
    557	} while (rtte++, addr = next, addr < end);
    558	return 0;
    559}
    560
    561static int base_region2_walk(unsigned long *origin, unsigned long addr,
    562			     unsigned long end, int alloc)
    563{
    564	unsigned long *rste, next, *table;
    565	int rc;
    566
    567	rste = origin;
    568	rste += (addr & _REGION2_INDEX) >> _REGION2_SHIFT;
    569	do {
    570		next = base_region2_addr_end(addr, end);
    571		if (*rste & _REGION_ENTRY_INVALID) {
    572			if (!alloc)
    573				continue;
    574			table = base_crst_alloc(_REGION3_ENTRY_EMPTY);
    575			if (!table)
    576				return -ENOMEM;
    577			*rste = __pa(table) | _REGION2_ENTRY;
    578		}
    579		table = __va(*rste & _REGION_ENTRY_ORIGIN);
    580		rc = base_region3_walk(table, addr, next, alloc);
    581		if (rc)
    582			return rc;
    583		if (!alloc)
    584			base_crst_free(table);
    585	} while (rste++, addr = next, addr < end);
    586	return 0;
    587}
    588
    589static int base_region1_walk(unsigned long *origin, unsigned long addr,
    590			     unsigned long end, int alloc)
    591{
    592	unsigned long *rfte, next, *table;
    593	int rc;
    594
    595	rfte = origin;
    596	rfte += (addr & _REGION1_INDEX) >> _REGION1_SHIFT;
    597	do {
    598		next = base_region1_addr_end(addr, end);
    599		if (*rfte & _REGION_ENTRY_INVALID) {
    600			if (!alloc)
    601				continue;
    602			table = base_crst_alloc(_REGION2_ENTRY_EMPTY);
    603			if (!table)
    604				return -ENOMEM;
    605			*rfte = __pa(table) | _REGION1_ENTRY;
    606		}
    607		table = __va(*rfte & _REGION_ENTRY_ORIGIN);
    608		rc = base_region2_walk(table, addr, next, alloc);
    609		if (rc)
    610			return rc;
    611		if (!alloc)
    612			base_crst_free(table);
    613	} while (rfte++, addr = next, addr < end);
    614	return 0;
    615}
    616
    617/**
    618 * base_asce_free - free asce and tables returned from base_asce_alloc()
    619 * @asce: asce to be freed
    620 *
    621 * Frees all region, segment, and page tables that were allocated with a
    622 * corresponding base_asce_alloc() call.
    623 */
    624void base_asce_free(unsigned long asce)
    625{
    626	unsigned long *table = __va(asce & _ASCE_ORIGIN);
    627
    628	if (!asce)
    629		return;
    630	switch (asce & _ASCE_TYPE_MASK) {
    631	case _ASCE_TYPE_SEGMENT:
    632		base_segment_walk(table, 0, _REGION3_SIZE, 0);
    633		break;
    634	case _ASCE_TYPE_REGION3:
    635		base_region3_walk(table, 0, _REGION2_SIZE, 0);
    636		break;
    637	case _ASCE_TYPE_REGION2:
    638		base_region2_walk(table, 0, _REGION1_SIZE, 0);
    639		break;
    640	case _ASCE_TYPE_REGION1:
    641		base_region1_walk(table, 0, TASK_SIZE_MAX, 0);
    642		break;
    643	}
    644	base_crst_free(table);
    645}
    646
    647static int base_pgt_cache_init(void)
    648{
    649	static DEFINE_MUTEX(base_pgt_cache_mutex);
    650	unsigned long sz = _PAGE_TABLE_SIZE;
    651
    652	if (base_pgt_cache)
    653		return 0;
    654	mutex_lock(&base_pgt_cache_mutex);
    655	if (!base_pgt_cache)
    656		base_pgt_cache = kmem_cache_create("base_pgt", sz, sz, 0, NULL);
    657	mutex_unlock(&base_pgt_cache_mutex);
    658	return base_pgt_cache ? 0 : -ENOMEM;
    659}
    660
    661/**
    662 * base_asce_alloc - create kernel mapping without enhanced DAT features
    663 * @addr: virtual start address of kernel mapping
    664 * @num_pages: number of consecutive pages
    665 *
    666 * Generate an asce, including all required region, segment and page tables,
    667 * that can be used to access the virtual kernel mapping. The difference is
    668 * that the returned asce does not make use of any enhanced DAT features like
    669 * e.g. large pages. This is required for some I/O functions that pass an
    670 * asce, like e.g. some service call requests.
    671 *
    672 * Note: the returned asce may NEVER be attached to any cpu. It may only be
    673 *	 used for I/O requests. tlb entries that might result because the
    674 *	 asce was attached to a cpu won't be cleared.
    675 */
    676unsigned long base_asce_alloc(unsigned long addr, unsigned long num_pages)
    677{
    678	unsigned long asce, *table, end;
    679	int rc;
    680
    681	if (base_pgt_cache_init())
    682		return 0;
    683	end = addr + num_pages * PAGE_SIZE;
    684	if (end <= _REGION3_SIZE) {
    685		table = base_crst_alloc(_SEGMENT_ENTRY_EMPTY);
    686		if (!table)
    687			return 0;
    688		rc = base_segment_walk(table, addr, end, 1);
    689		asce = __pa(table) | _ASCE_TYPE_SEGMENT | _ASCE_TABLE_LENGTH;
    690	} else if (end <= _REGION2_SIZE) {
    691		table = base_crst_alloc(_REGION3_ENTRY_EMPTY);
    692		if (!table)
    693			return 0;
    694		rc = base_region3_walk(table, addr, end, 1);
    695		asce = __pa(table) | _ASCE_TYPE_REGION3 | _ASCE_TABLE_LENGTH;
    696	} else if (end <= _REGION1_SIZE) {
    697		table = base_crst_alloc(_REGION2_ENTRY_EMPTY);
    698		if (!table)
    699			return 0;
    700		rc = base_region2_walk(table, addr, end, 1);
    701		asce = __pa(table) | _ASCE_TYPE_REGION2 | _ASCE_TABLE_LENGTH;
    702	} else {
    703		table = base_crst_alloc(_REGION1_ENTRY_EMPTY);
    704		if (!table)
    705			return 0;
    706		rc = base_region1_walk(table, addr, end, 1);
    707		asce = __pa(table) | _ASCE_TYPE_REGION1 | _ASCE_TABLE_LENGTH;
    708	}
    709	if (rc) {
    710		base_asce_free(asce);
    711		asce = 0;
    712	}
    713	return asce;
    714}