pgalloc.c (20012B)
1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Page table allocation functions 4 * 5 * Copyright IBM Corp. 2016 6 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com> 7 */ 8 9#include <linux/sysctl.h> 10#include <linux/slab.h> 11#include <linux/mm.h> 12#include <asm/mmu_context.h> 13#include <asm/pgalloc.h> 14#include <asm/gmap.h> 15#include <asm/tlb.h> 16#include <asm/tlbflush.h> 17 18#ifdef CONFIG_PGSTE 19 20int page_table_allocate_pgste = 0; 21EXPORT_SYMBOL(page_table_allocate_pgste); 22 23static struct ctl_table page_table_sysctl[] = { 24 { 25 .procname = "allocate_pgste", 26 .data = &page_table_allocate_pgste, 27 .maxlen = sizeof(int), 28 .mode = S_IRUGO | S_IWUSR, 29 .proc_handler = proc_dointvec_minmax, 30 .extra1 = SYSCTL_ZERO, 31 .extra2 = SYSCTL_ONE, 32 }, 33 { } 34}; 35 36static struct ctl_table page_table_sysctl_dir[] = { 37 { 38 .procname = "vm", 39 .maxlen = 0, 40 .mode = 0555, 41 .child = page_table_sysctl, 42 }, 43 { } 44}; 45 46static int __init page_table_register_sysctl(void) 47{ 48 return register_sysctl_table(page_table_sysctl_dir) ? 0 : -ENOMEM; 49} 50__initcall(page_table_register_sysctl); 51 52#endif /* CONFIG_PGSTE */ 53 54unsigned long *crst_table_alloc(struct mm_struct *mm) 55{ 56 struct page *page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER); 57 58 if (!page) 59 return NULL; 60 arch_set_page_dat(page, CRST_ALLOC_ORDER); 61 return (unsigned long *) page_to_virt(page); 62} 63 64void crst_table_free(struct mm_struct *mm, unsigned long *table) 65{ 66 free_pages((unsigned long)table, CRST_ALLOC_ORDER); 67} 68 69static void __crst_table_upgrade(void *arg) 70{ 71 struct mm_struct *mm = arg; 72 73 /* change all active ASCEs to avoid the creation of new TLBs */ 74 if (current->active_mm == mm) { 75 S390_lowcore.user_asce = mm->context.asce; 76 __ctl_load(S390_lowcore.user_asce, 7, 7); 77 } 78 __tlb_flush_local(); 79} 80 81int crst_table_upgrade(struct mm_struct *mm, unsigned long end) 82{ 83 unsigned long *pgd = NULL, *p4d = NULL, *__pgd; 84 unsigned long asce_limit = mm->context.asce_limit; 85 86 /* upgrade should only happen from 3 to 4, 3 to 5, or 4 to 5 levels */ 87 VM_BUG_ON(asce_limit < _REGION2_SIZE); 88 89 if (end <= asce_limit) 90 return 0; 91 92 if (asce_limit == _REGION2_SIZE) { 93 p4d = crst_table_alloc(mm); 94 if (unlikely(!p4d)) 95 goto err_p4d; 96 crst_table_init(p4d, _REGION2_ENTRY_EMPTY); 97 } 98 if (end > _REGION1_SIZE) { 99 pgd = crst_table_alloc(mm); 100 if (unlikely(!pgd)) 101 goto err_pgd; 102 crst_table_init(pgd, _REGION1_ENTRY_EMPTY); 103 } 104 105 spin_lock_bh(&mm->page_table_lock); 106 107 /* 108 * This routine gets called with mmap_lock lock held and there is 109 * no reason to optimize for the case of otherwise. However, if 110 * that would ever change, the below check will let us know. 111 */ 112 VM_BUG_ON(asce_limit != mm->context.asce_limit); 113 114 if (p4d) { 115 __pgd = (unsigned long *) mm->pgd; 116 p4d_populate(mm, (p4d_t *) p4d, (pud_t *) __pgd); 117 mm->pgd = (pgd_t *) p4d; 118 mm->context.asce_limit = _REGION1_SIZE; 119 mm->context.asce = __pa(mm->pgd) | _ASCE_TABLE_LENGTH | 120 _ASCE_USER_BITS | _ASCE_TYPE_REGION2; 121 mm_inc_nr_puds(mm); 122 } 123 if (pgd) { 124 __pgd = (unsigned long *) mm->pgd; 125 pgd_populate(mm, (pgd_t *) pgd, (p4d_t *) __pgd); 126 mm->pgd = (pgd_t *) pgd; 127 mm->context.asce_limit = TASK_SIZE_MAX; 128 mm->context.asce = __pa(mm->pgd) | _ASCE_TABLE_LENGTH | 129 _ASCE_USER_BITS | _ASCE_TYPE_REGION1; 130 } 131 132 spin_unlock_bh(&mm->page_table_lock); 133 134 on_each_cpu(__crst_table_upgrade, mm, 0); 135 136 return 0; 137 138err_pgd: 139 crst_table_free(mm, p4d); 140err_p4d: 141 return -ENOMEM; 142} 143 144static inline unsigned int atomic_xor_bits(atomic_t *v, unsigned int bits) 145{ 146 unsigned int old, new; 147 148 do { 149 old = atomic_read(v); 150 new = old ^ bits; 151 } while (atomic_cmpxchg(v, old, new) != old); 152 return new; 153} 154 155#ifdef CONFIG_PGSTE 156 157struct page *page_table_alloc_pgste(struct mm_struct *mm) 158{ 159 struct page *page; 160 u64 *table; 161 162 page = alloc_page(GFP_KERNEL); 163 if (page) { 164 table = (u64 *)page_to_virt(page); 165 memset64(table, _PAGE_INVALID, PTRS_PER_PTE); 166 memset64(table + PTRS_PER_PTE, 0, PTRS_PER_PTE); 167 } 168 return page; 169} 170 171void page_table_free_pgste(struct page *page) 172{ 173 __free_page(page); 174} 175 176#endif /* CONFIG_PGSTE */ 177 178/* 179 * A 2KB-pgtable is either upper or lower half of a normal page. 180 * The second half of the page may be unused or used as another 181 * 2KB-pgtable. 182 * 183 * Whenever possible the parent page for a new 2KB-pgtable is picked 184 * from the list of partially allocated pages mm_context_t::pgtable_list. 185 * In case the list is empty a new parent page is allocated and added to 186 * the list. 187 * 188 * When a parent page gets fully allocated it contains 2KB-pgtables in both 189 * upper and lower halves and is removed from mm_context_t::pgtable_list. 190 * 191 * When 2KB-pgtable is freed from to fully allocated parent page that 192 * page turns partially allocated and added to mm_context_t::pgtable_list. 193 * 194 * If 2KB-pgtable is freed from the partially allocated parent page that 195 * page turns unused and gets removed from mm_context_t::pgtable_list. 196 * Furthermore, the unused parent page is released. 197 * 198 * As follows from the above, no unallocated or fully allocated parent 199 * pages are contained in mm_context_t::pgtable_list. 200 * 201 * The upper byte (bits 24-31) of the parent page _refcount is used 202 * for tracking contained 2KB-pgtables and has the following format: 203 * 204 * PP AA 205 * 01234567 upper byte (bits 24-31) of struct page::_refcount 206 * || || 207 * || |+--- upper 2KB-pgtable is allocated 208 * || +---- lower 2KB-pgtable is allocated 209 * |+------- upper 2KB-pgtable is pending for removal 210 * +-------- lower 2KB-pgtable is pending for removal 211 * 212 * (See commit 620b4e903179 ("s390: use _refcount for pgtables") on why 213 * using _refcount is possible). 214 * 215 * When 2KB-pgtable is allocated the corresponding AA bit is set to 1. 216 * The parent page is either: 217 * - added to mm_context_t::pgtable_list in case the second half of the 218 * parent page is still unallocated; 219 * - removed from mm_context_t::pgtable_list in case both hales of the 220 * parent page are allocated; 221 * These operations are protected with mm_context_t::lock. 222 * 223 * When 2KB-pgtable is deallocated the corresponding AA bit is set to 0 224 * and the corresponding PP bit is set to 1 in a single atomic operation. 225 * Thus, PP and AA bits corresponding to the same 2KB-pgtable are mutually 226 * exclusive and may never be both set to 1! 227 * The parent page is either: 228 * - added to mm_context_t::pgtable_list in case the second half of the 229 * parent page is still allocated; 230 * - removed from mm_context_t::pgtable_list in case the second half of 231 * the parent page is unallocated; 232 * These operations are protected with mm_context_t::lock. 233 * 234 * It is important to understand that mm_context_t::lock only protects 235 * mm_context_t::pgtable_list and AA bits, but not the parent page itself 236 * and PP bits. 237 * 238 * Releasing the parent page happens whenever the PP bit turns from 1 to 0, 239 * while both AA bits and the second PP bit are already unset. Then the 240 * parent page does not contain any 2KB-pgtable fragment anymore, and it has 241 * also been removed from mm_context_t::pgtable_list. It is safe to release 242 * the page therefore. 243 * 244 * PGSTE memory spaces use full 4KB-pgtables and do not need most of the 245 * logic described above. Both AA bits are set to 1 to denote a 4KB-pgtable 246 * while the PP bits are never used, nor such a page is added to or removed 247 * from mm_context_t::pgtable_list. 248 */ 249unsigned long *page_table_alloc(struct mm_struct *mm) 250{ 251 unsigned long *table; 252 struct page *page; 253 unsigned int mask, bit; 254 255 /* Try to get a fragment of a 4K page as a 2K page table */ 256 if (!mm_alloc_pgste(mm)) { 257 table = NULL; 258 spin_lock_bh(&mm->context.lock); 259 if (!list_empty(&mm->context.pgtable_list)) { 260 page = list_first_entry(&mm->context.pgtable_list, 261 struct page, lru); 262 mask = atomic_read(&page->_refcount) >> 24; 263 /* 264 * The pending removal bits must also be checked. 265 * Failure to do so might lead to an impossible 266 * value of (i.e 0x13 or 0x23) written to _refcount. 267 * Such values violate the assumption that pending and 268 * allocation bits are mutually exclusive, and the rest 269 * of the code unrails as result. That could lead to 270 * a whole bunch of races and corruptions. 271 */ 272 mask = (mask | (mask >> 4)) & 0x03U; 273 if (mask != 0x03U) { 274 table = (unsigned long *) page_to_virt(page); 275 bit = mask & 1; /* =1 -> second 2K */ 276 if (bit) 277 table += PTRS_PER_PTE; 278 atomic_xor_bits(&page->_refcount, 279 0x01U << (bit + 24)); 280 list_del(&page->lru); 281 } 282 } 283 spin_unlock_bh(&mm->context.lock); 284 if (table) 285 return table; 286 } 287 /* Allocate a fresh page */ 288 page = alloc_page(GFP_KERNEL); 289 if (!page) 290 return NULL; 291 if (!pgtable_pte_page_ctor(page)) { 292 __free_page(page); 293 return NULL; 294 } 295 arch_set_page_dat(page, 0); 296 /* Initialize page table */ 297 table = (unsigned long *) page_to_virt(page); 298 if (mm_alloc_pgste(mm)) { 299 /* Return 4K page table with PGSTEs */ 300 atomic_xor_bits(&page->_refcount, 0x03U << 24); 301 memset64((u64 *)table, _PAGE_INVALID, PTRS_PER_PTE); 302 memset64((u64 *)table + PTRS_PER_PTE, 0, PTRS_PER_PTE); 303 } else { 304 /* Return the first 2K fragment of the page */ 305 atomic_xor_bits(&page->_refcount, 0x01U << 24); 306 memset64((u64 *)table, _PAGE_INVALID, 2 * PTRS_PER_PTE); 307 spin_lock_bh(&mm->context.lock); 308 list_add(&page->lru, &mm->context.pgtable_list); 309 spin_unlock_bh(&mm->context.lock); 310 } 311 return table; 312} 313 314static void page_table_release_check(struct page *page, void *table, 315 unsigned int half, unsigned int mask) 316{ 317 char msg[128]; 318 319 if (!IS_ENABLED(CONFIG_DEBUG_VM) || !mask) 320 return; 321 snprintf(msg, sizeof(msg), 322 "Invalid pgtable %p release half 0x%02x mask 0x%02x", 323 table, half, mask); 324 dump_page(page, msg); 325} 326 327void page_table_free(struct mm_struct *mm, unsigned long *table) 328{ 329 unsigned int mask, bit, half; 330 struct page *page; 331 332 page = virt_to_page(table); 333 if (!mm_alloc_pgste(mm)) { 334 /* Free 2K page table fragment of a 4K page */ 335 bit = ((unsigned long) table & ~PAGE_MASK)/(PTRS_PER_PTE*sizeof(pte_t)); 336 spin_lock_bh(&mm->context.lock); 337 /* 338 * Mark the page for delayed release. The actual release 339 * will happen outside of the critical section from this 340 * function or from __tlb_remove_table() 341 */ 342 mask = atomic_xor_bits(&page->_refcount, 0x11U << (bit + 24)); 343 mask >>= 24; 344 if (mask & 0x03U) 345 list_add(&page->lru, &mm->context.pgtable_list); 346 else 347 list_del(&page->lru); 348 spin_unlock_bh(&mm->context.lock); 349 mask = atomic_xor_bits(&page->_refcount, 0x10U << (bit + 24)); 350 mask >>= 24; 351 if (mask != 0x00U) 352 return; 353 half = 0x01U << bit; 354 } else { 355 half = 0x03U; 356 mask = atomic_xor_bits(&page->_refcount, 0x03U << 24); 357 mask >>= 24; 358 } 359 360 page_table_release_check(page, table, half, mask); 361 pgtable_pte_page_dtor(page); 362 __free_page(page); 363} 364 365void page_table_free_rcu(struct mmu_gather *tlb, unsigned long *table, 366 unsigned long vmaddr) 367{ 368 struct mm_struct *mm; 369 struct page *page; 370 unsigned int bit, mask; 371 372 mm = tlb->mm; 373 page = virt_to_page(table); 374 if (mm_alloc_pgste(mm)) { 375 gmap_unlink(mm, table, vmaddr); 376 table = (unsigned long *) ((unsigned long)table | 0x03U); 377 tlb_remove_table(tlb, table); 378 return; 379 } 380 bit = ((unsigned long) table & ~PAGE_MASK) / (PTRS_PER_PTE*sizeof(pte_t)); 381 spin_lock_bh(&mm->context.lock); 382 /* 383 * Mark the page for delayed release. The actual release will happen 384 * outside of the critical section from __tlb_remove_table() or from 385 * page_table_free() 386 */ 387 mask = atomic_xor_bits(&page->_refcount, 0x11U << (bit + 24)); 388 mask >>= 24; 389 if (mask & 0x03U) 390 list_add_tail(&page->lru, &mm->context.pgtable_list); 391 else 392 list_del(&page->lru); 393 spin_unlock_bh(&mm->context.lock); 394 table = (unsigned long *) ((unsigned long) table | (0x01U << bit)); 395 tlb_remove_table(tlb, table); 396} 397 398void __tlb_remove_table(void *_table) 399{ 400 unsigned int mask = (unsigned long) _table & 0x03U, half = mask; 401 void *table = (void *)((unsigned long) _table ^ mask); 402 struct page *page = virt_to_page(table); 403 404 switch (half) { 405 case 0x00U: /* pmd, pud, or p4d */ 406 free_pages((unsigned long)table, CRST_ALLOC_ORDER); 407 return; 408 case 0x01U: /* lower 2K of a 4K page table */ 409 case 0x02U: /* higher 2K of a 4K page table */ 410 mask = atomic_xor_bits(&page->_refcount, mask << (4 + 24)); 411 mask >>= 24; 412 if (mask != 0x00U) 413 return; 414 break; 415 case 0x03U: /* 4K page table with pgstes */ 416 mask = atomic_xor_bits(&page->_refcount, 0x03U << 24); 417 mask >>= 24; 418 break; 419 } 420 421 page_table_release_check(page, table, half, mask); 422 pgtable_pte_page_dtor(page); 423 __free_page(page); 424} 425 426/* 427 * Base infrastructure required to generate basic asces, region, segment, 428 * and page tables that do not make use of enhanced features like EDAT1. 429 */ 430 431static struct kmem_cache *base_pgt_cache; 432 433static unsigned long *base_pgt_alloc(void) 434{ 435 unsigned long *table; 436 437 table = kmem_cache_alloc(base_pgt_cache, GFP_KERNEL); 438 if (table) 439 memset64((u64 *)table, _PAGE_INVALID, PTRS_PER_PTE); 440 return table; 441} 442 443static void base_pgt_free(unsigned long *table) 444{ 445 kmem_cache_free(base_pgt_cache, table); 446} 447 448static unsigned long *base_crst_alloc(unsigned long val) 449{ 450 unsigned long *table; 451 452 table = (unsigned long *)__get_free_pages(GFP_KERNEL, CRST_ALLOC_ORDER); 453 if (table) 454 crst_table_init(table, val); 455 return table; 456} 457 458static void base_crst_free(unsigned long *table) 459{ 460 free_pages((unsigned long)table, CRST_ALLOC_ORDER); 461} 462 463#define BASE_ADDR_END_FUNC(NAME, SIZE) \ 464static inline unsigned long base_##NAME##_addr_end(unsigned long addr, \ 465 unsigned long end) \ 466{ \ 467 unsigned long next = (addr + (SIZE)) & ~((SIZE) - 1); \ 468 \ 469 return (next - 1) < (end - 1) ? next : end; \ 470} 471 472BASE_ADDR_END_FUNC(page, _PAGE_SIZE) 473BASE_ADDR_END_FUNC(segment, _SEGMENT_SIZE) 474BASE_ADDR_END_FUNC(region3, _REGION3_SIZE) 475BASE_ADDR_END_FUNC(region2, _REGION2_SIZE) 476BASE_ADDR_END_FUNC(region1, _REGION1_SIZE) 477 478static inline unsigned long base_lra(unsigned long address) 479{ 480 unsigned long real; 481 482 asm volatile( 483 " lra %0,0(%1)\n" 484 : "=d" (real) : "a" (address) : "cc"); 485 return real; 486} 487 488static int base_page_walk(unsigned long *origin, unsigned long addr, 489 unsigned long end, int alloc) 490{ 491 unsigned long *pte, next; 492 493 if (!alloc) 494 return 0; 495 pte = origin; 496 pte += (addr & _PAGE_INDEX) >> _PAGE_SHIFT; 497 do { 498 next = base_page_addr_end(addr, end); 499 *pte = base_lra(addr); 500 } while (pte++, addr = next, addr < end); 501 return 0; 502} 503 504static int base_segment_walk(unsigned long *origin, unsigned long addr, 505 unsigned long end, int alloc) 506{ 507 unsigned long *ste, next, *table; 508 int rc; 509 510 ste = origin; 511 ste += (addr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT; 512 do { 513 next = base_segment_addr_end(addr, end); 514 if (*ste & _SEGMENT_ENTRY_INVALID) { 515 if (!alloc) 516 continue; 517 table = base_pgt_alloc(); 518 if (!table) 519 return -ENOMEM; 520 *ste = __pa(table) | _SEGMENT_ENTRY; 521 } 522 table = __va(*ste & _SEGMENT_ENTRY_ORIGIN); 523 rc = base_page_walk(table, addr, next, alloc); 524 if (rc) 525 return rc; 526 if (!alloc) 527 base_pgt_free(table); 528 cond_resched(); 529 } while (ste++, addr = next, addr < end); 530 return 0; 531} 532 533static int base_region3_walk(unsigned long *origin, unsigned long addr, 534 unsigned long end, int alloc) 535{ 536 unsigned long *rtte, next, *table; 537 int rc; 538 539 rtte = origin; 540 rtte += (addr & _REGION3_INDEX) >> _REGION3_SHIFT; 541 do { 542 next = base_region3_addr_end(addr, end); 543 if (*rtte & _REGION_ENTRY_INVALID) { 544 if (!alloc) 545 continue; 546 table = base_crst_alloc(_SEGMENT_ENTRY_EMPTY); 547 if (!table) 548 return -ENOMEM; 549 *rtte = __pa(table) | _REGION3_ENTRY; 550 } 551 table = __va(*rtte & _REGION_ENTRY_ORIGIN); 552 rc = base_segment_walk(table, addr, next, alloc); 553 if (rc) 554 return rc; 555 if (!alloc) 556 base_crst_free(table); 557 } while (rtte++, addr = next, addr < end); 558 return 0; 559} 560 561static int base_region2_walk(unsigned long *origin, unsigned long addr, 562 unsigned long end, int alloc) 563{ 564 unsigned long *rste, next, *table; 565 int rc; 566 567 rste = origin; 568 rste += (addr & _REGION2_INDEX) >> _REGION2_SHIFT; 569 do { 570 next = base_region2_addr_end(addr, end); 571 if (*rste & _REGION_ENTRY_INVALID) { 572 if (!alloc) 573 continue; 574 table = base_crst_alloc(_REGION3_ENTRY_EMPTY); 575 if (!table) 576 return -ENOMEM; 577 *rste = __pa(table) | _REGION2_ENTRY; 578 } 579 table = __va(*rste & _REGION_ENTRY_ORIGIN); 580 rc = base_region3_walk(table, addr, next, alloc); 581 if (rc) 582 return rc; 583 if (!alloc) 584 base_crst_free(table); 585 } while (rste++, addr = next, addr < end); 586 return 0; 587} 588 589static int base_region1_walk(unsigned long *origin, unsigned long addr, 590 unsigned long end, int alloc) 591{ 592 unsigned long *rfte, next, *table; 593 int rc; 594 595 rfte = origin; 596 rfte += (addr & _REGION1_INDEX) >> _REGION1_SHIFT; 597 do { 598 next = base_region1_addr_end(addr, end); 599 if (*rfte & _REGION_ENTRY_INVALID) { 600 if (!alloc) 601 continue; 602 table = base_crst_alloc(_REGION2_ENTRY_EMPTY); 603 if (!table) 604 return -ENOMEM; 605 *rfte = __pa(table) | _REGION1_ENTRY; 606 } 607 table = __va(*rfte & _REGION_ENTRY_ORIGIN); 608 rc = base_region2_walk(table, addr, next, alloc); 609 if (rc) 610 return rc; 611 if (!alloc) 612 base_crst_free(table); 613 } while (rfte++, addr = next, addr < end); 614 return 0; 615} 616 617/** 618 * base_asce_free - free asce and tables returned from base_asce_alloc() 619 * @asce: asce to be freed 620 * 621 * Frees all region, segment, and page tables that were allocated with a 622 * corresponding base_asce_alloc() call. 623 */ 624void base_asce_free(unsigned long asce) 625{ 626 unsigned long *table = __va(asce & _ASCE_ORIGIN); 627 628 if (!asce) 629 return; 630 switch (asce & _ASCE_TYPE_MASK) { 631 case _ASCE_TYPE_SEGMENT: 632 base_segment_walk(table, 0, _REGION3_SIZE, 0); 633 break; 634 case _ASCE_TYPE_REGION3: 635 base_region3_walk(table, 0, _REGION2_SIZE, 0); 636 break; 637 case _ASCE_TYPE_REGION2: 638 base_region2_walk(table, 0, _REGION1_SIZE, 0); 639 break; 640 case _ASCE_TYPE_REGION1: 641 base_region1_walk(table, 0, TASK_SIZE_MAX, 0); 642 break; 643 } 644 base_crst_free(table); 645} 646 647static int base_pgt_cache_init(void) 648{ 649 static DEFINE_MUTEX(base_pgt_cache_mutex); 650 unsigned long sz = _PAGE_TABLE_SIZE; 651 652 if (base_pgt_cache) 653 return 0; 654 mutex_lock(&base_pgt_cache_mutex); 655 if (!base_pgt_cache) 656 base_pgt_cache = kmem_cache_create("base_pgt", sz, sz, 0, NULL); 657 mutex_unlock(&base_pgt_cache_mutex); 658 return base_pgt_cache ? 0 : -ENOMEM; 659} 660 661/** 662 * base_asce_alloc - create kernel mapping without enhanced DAT features 663 * @addr: virtual start address of kernel mapping 664 * @num_pages: number of consecutive pages 665 * 666 * Generate an asce, including all required region, segment and page tables, 667 * that can be used to access the virtual kernel mapping. The difference is 668 * that the returned asce does not make use of any enhanced DAT features like 669 * e.g. large pages. This is required for some I/O functions that pass an 670 * asce, like e.g. some service call requests. 671 * 672 * Note: the returned asce may NEVER be attached to any cpu. It may only be 673 * used for I/O requests. tlb entries that might result because the 674 * asce was attached to a cpu won't be cleared. 675 */ 676unsigned long base_asce_alloc(unsigned long addr, unsigned long num_pages) 677{ 678 unsigned long asce, *table, end; 679 int rc; 680 681 if (base_pgt_cache_init()) 682 return 0; 683 end = addr + num_pages * PAGE_SIZE; 684 if (end <= _REGION3_SIZE) { 685 table = base_crst_alloc(_SEGMENT_ENTRY_EMPTY); 686 if (!table) 687 return 0; 688 rc = base_segment_walk(table, addr, end, 1); 689 asce = __pa(table) | _ASCE_TYPE_SEGMENT | _ASCE_TABLE_LENGTH; 690 } else if (end <= _REGION2_SIZE) { 691 table = base_crst_alloc(_REGION3_ENTRY_EMPTY); 692 if (!table) 693 return 0; 694 rc = base_region3_walk(table, addr, end, 1); 695 asce = __pa(table) | _ASCE_TYPE_REGION3 | _ASCE_TABLE_LENGTH; 696 } else if (end <= _REGION1_SIZE) { 697 table = base_crst_alloc(_REGION2_ENTRY_EMPTY); 698 if (!table) 699 return 0; 700 rc = base_region2_walk(table, addr, end, 1); 701 asce = __pa(table) | _ASCE_TYPE_REGION2 | _ASCE_TABLE_LENGTH; 702 } else { 703 table = base_crst_alloc(_REGION1_ENTRY_EMPTY); 704 if (!table) 705 return 0; 706 rc = base_region1_walk(table, addr, end, 1); 707 asce = __pa(table) | _ASCE_TYPE_REGION1 | _ASCE_TABLE_LENGTH; 708 } 709 if (rc) { 710 base_asce_free(asce); 711 asce = 0; 712 } 713 return asce; 714}