cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

tsb.h (12457B)


      1/* SPDX-License-Identifier: GPL-2.0 */
      2#ifndef _SPARC64_TSB_H
      3#define _SPARC64_TSB_H
      4
      5/* The sparc64 TSB is similar to the powerpc hashtables.  It's a
      6 * power-of-2 sized table of TAG/PTE pairs.  The cpu precomputes
      7 * pointers into this table for 8K and 64K page sizes, and also a
      8 * comparison TAG based upon the virtual address and context which
      9 * faults.
     10 *
     11 * TLB miss trap handler software does the actual lookup via something
     12 * of the form:
     13 *
     14 * 	ldxa		[%g0] ASI_{D,I}MMU_TSB_8KB_PTR, %g1
     15 * 	ldxa		[%g0] ASI_{D,I}MMU, %g6
     16 *	sllx		%g6, 22, %g6
     17 *	srlx		%g6, 22, %g6
     18 * 	ldda		[%g1] ASI_NUCLEUS_QUAD_LDD, %g4
     19 * 	cmp		%g4, %g6
     20 * 	bne,pn	%xcc, tsb_miss_{d,i}tlb
     21 * 	 mov		FAULT_CODE_{D,I}TLB, %g3
     22 * 	stxa		%g5, [%g0] ASI_{D,I}TLB_DATA_IN
     23 * 	retry
     24 *
     25 *
     26 * Each 16-byte slot of the TSB is the 8-byte tag and then the 8-byte
     27 * PTE.  The TAG is of the same layout as the TLB TAG TARGET mmu
     28 * register which is:
     29 *
     30 * -------------------------------------------------
     31 * |  -  |  CONTEXT |  -  |    VADDR bits 63:22    |
     32 * -------------------------------------------------
     33 *  63 61 60      48 47 42 41                     0
     34 *
     35 * But actually, since we use per-mm TSB's, we zero out the CONTEXT
     36 * field.
     37 *
     38 * Like the powerpc hashtables we need to use locking in order to
     39 * synchronize while we update the entries.  PTE updates need locking
     40 * as well.
     41 *
     42 * We need to carefully choose a lock bits for the TSB entry.  We
     43 * choose to use bit 47 in the tag.  Also, since we never map anything
     44 * at page zero in context zero, we use zero as an invalid tag entry.
     45 * When the lock bit is set, this forces a tag comparison failure.
     46 */
     47
     48#define TSB_TAG_LOCK_BIT	47
     49#define TSB_TAG_LOCK_HIGH	(1 << (TSB_TAG_LOCK_BIT - 32))
     50
     51#define TSB_TAG_INVALID_BIT	46
     52#define TSB_TAG_INVALID_HIGH	(1 << (TSB_TAG_INVALID_BIT - 32))
     53
     54/* Some cpus support physical address quad loads.  We want to use
     55 * those if possible so we don't need to hard-lock the TSB mapping
     56 * into the TLB.  We encode some instruction patching in order to
     57 * support this.
     58 *
     59 * The kernel TSB is locked into the TLB by virtue of being in the
     60 * kernel image, so we don't play these games for swapper_tsb access.
     61 */
     62#ifndef __ASSEMBLY__
     63struct tsb_ldquad_phys_patch_entry {
     64	unsigned int	addr;
     65	unsigned int	sun4u_insn;
     66	unsigned int	sun4v_insn;
     67};
     68extern struct tsb_ldquad_phys_patch_entry __tsb_ldquad_phys_patch,
     69	__tsb_ldquad_phys_patch_end;
     70
     71struct tsb_phys_patch_entry {
     72	unsigned int	addr;
     73	unsigned int	insn;
     74};
     75extern struct tsb_phys_patch_entry __tsb_phys_patch, __tsb_phys_patch_end;
     76#endif
     77#define TSB_LOAD_QUAD(TSB, REG)	\
     78661:	ldda		[TSB] ASI_NUCLEUS_QUAD_LDD, REG; \
     79	.section	.tsb_ldquad_phys_patch, "ax"; \
     80	.word		661b; \
     81	ldda		[TSB] ASI_QUAD_LDD_PHYS, REG; \
     82	ldda		[TSB] ASI_QUAD_LDD_PHYS_4V, REG; \
     83	.previous
     84
     85#define TSB_LOAD_TAG_HIGH(TSB, REG) \
     86661:	lduwa		[TSB] ASI_N, REG; \
     87	.section	.tsb_phys_patch, "ax"; \
     88	.word		661b; \
     89	lduwa		[TSB] ASI_PHYS_USE_EC, REG; \
     90	.previous
     91
     92#define TSB_LOAD_TAG(TSB, REG) \
     93661:	ldxa		[TSB] ASI_N, REG; \
     94	.section	.tsb_phys_patch, "ax"; \
     95	.word		661b; \
     96	ldxa		[TSB] ASI_PHYS_USE_EC, REG; \
     97	.previous
     98
     99#define TSB_CAS_TAG_HIGH(TSB, REG1, REG2) \
    100661:	casa		[TSB] ASI_N, REG1, REG2; \
    101	.section	.tsb_phys_patch, "ax"; \
    102	.word		661b; \
    103	casa		[TSB] ASI_PHYS_USE_EC, REG1, REG2; \
    104	.previous
    105
    106#define TSB_CAS_TAG(TSB, REG1, REG2) \
    107661:	casxa		[TSB] ASI_N, REG1, REG2; \
    108	.section	.tsb_phys_patch, "ax"; \
    109	.word		661b; \
    110	casxa		[TSB] ASI_PHYS_USE_EC, REG1, REG2; \
    111	.previous
    112
    113#define TSB_STORE(ADDR, VAL) \
    114661:	stxa		VAL, [ADDR] ASI_N; \
    115	.section	.tsb_phys_patch, "ax"; \
    116	.word		661b; \
    117	stxa		VAL, [ADDR] ASI_PHYS_USE_EC; \
    118	.previous
    119
    120#define TSB_LOCK_TAG(TSB, REG1, REG2)	\
    12199:	TSB_LOAD_TAG_HIGH(TSB, REG1);	\
    122	sethi	%hi(TSB_TAG_LOCK_HIGH), REG2;\
    123	andcc	REG1, REG2, %g0;	\
    124	bne,pn	%icc, 99b;		\
    125	 nop;				\
    126	TSB_CAS_TAG_HIGH(TSB, REG1, REG2);	\
    127	cmp	REG1, REG2;		\
    128	bne,pn	%icc, 99b;		\
    129	 nop;				\
    130
    131#define TSB_WRITE(TSB, TTE, TAG) \
    132	add	TSB, 0x8, TSB;   \
    133	TSB_STORE(TSB, TTE);     \
    134	sub	TSB, 0x8, TSB;   \
    135	TSB_STORE(TSB, TAG);
    136
    137	/* Do a kernel page table walk.  Leaves valid PTE value in
    138	 * REG1.  Jumps to FAIL_LABEL on early page table walk
    139	 * termination.  VADDR will not be clobbered, but REG2 will.
    140	 *
    141	 * There are two masks we must apply to propagate bits from
    142	 * the virtual address into the PTE physical address field
    143	 * when dealing with huge pages.  This is because the page
    144	 * table boundaries do not match the huge page size(s) the
    145	 * hardware supports.
    146	 *
    147	 * In these cases we propagate the bits that are below the
    148	 * page table level where we saw the huge page mapping, but
    149	 * are still within the relevant physical bits for the huge
    150	 * page size in question.  So for PMD mappings (which fall on
    151	 * bit 23, for 8MB per PMD) we must propagate bit 22 for a
    152	 * 4MB huge page.  For huge PUDs (which fall on bit 33, for
    153	 * 8GB per PUD), we have to accommodate 256MB and 2GB huge
    154	 * pages.  So for those we propagate bits 32 to 28.
    155	 */
    156#define KERN_PGTABLE_WALK(VADDR, REG1, REG2, FAIL_LABEL)	\
    157	sethi		%hi(swapper_pg_dir), REG1; \
    158	or		REG1, %lo(swapper_pg_dir), REG1; \
    159	sllx		VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \
    160	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
    161	andn		REG2, 0x7, REG2; \
    162	ldx		[REG1 + REG2], REG1; \
    163	brz,pn		REG1, FAIL_LABEL; \
    164	 sllx		VADDR, 64 - (PUD_SHIFT + PUD_BITS), REG2; \
    165	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
    166	andn		REG2, 0x7, REG2; \
    167	ldxa		[REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
    168	brz,pn		REG1, FAIL_LABEL; \
    169	sethi		%uhi(_PAGE_PUD_HUGE), REG2; \
    170	brz,pn		REG1, FAIL_LABEL; \
    171	 sllx		REG2, 32, REG2; \
    172	andcc		REG1, REG2, %g0; \
    173	sethi		%hi(0xf8000000), REG2; \
    174	bne,pt		%xcc, 697f; \
    175	 sllx		REG2, 1, REG2; \
    176	sllx		VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \
    177	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
    178	andn		REG2, 0x7, REG2; \
    179	ldxa		[REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
    180	sethi		%uhi(_PAGE_PMD_HUGE), REG2; \
    181	brz,pn		REG1, FAIL_LABEL; \
    182	 sllx		REG2, 32, REG2; \
    183	andcc		REG1, REG2, %g0; \
    184	be,pn		%xcc, 698f; \
    185	 sethi		%hi(0x400000), REG2; \
    186697:	brgez,pn	REG1, FAIL_LABEL; \
    187	 andn		REG1, REG2, REG1; \
    188	and		VADDR, REG2, REG2; \
    189	ba,pt		%xcc, 699f; \
    190	 or		REG1, REG2, REG1; \
    191698:	sllx		VADDR, 64 - PMD_SHIFT, REG2; \
    192	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
    193	andn		REG2, 0x7, REG2; \
    194	ldxa		[REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
    195	brgez,pn	REG1, FAIL_LABEL; \
    196	 nop; \
    197699:
    198
    199	/* PUD has been loaded into REG1, interpret the value, seeing
    200	 * if it is a HUGE PUD or a normal one.  If it is not valid
    201	 * then jump to FAIL_LABEL.  If it is a HUGE PUD, and it
    202	 * translates to a valid PTE, branch to PTE_LABEL.
    203	 *
    204	 * We have to propagate bits [32:22] from the virtual address
    205	 * to resolve at 4M granularity.
    206	 */
    207#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
    208#define USER_PGTABLE_CHECK_PUD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \
    209700:	ba 700f;					\
    210	 nop;						\
    211	.section	.pud_huge_patch, "ax";		\
    212	.word		700b;				\
    213	nop;						\
    214	.previous;					\
    215	brz,pn		REG1, FAIL_LABEL;		\
    216	 sethi		%uhi(_PAGE_PUD_HUGE), REG2;	\
    217	sllx		REG2, 32, REG2;			\
    218	andcc		REG1, REG2, %g0;		\
    219	be,pt		%xcc, 700f;			\
    220	 sethi		%hi(0xffe00000), REG2;		\
    221	sllx		REG2, 1, REG2;			\
    222	brgez,pn	REG1, FAIL_LABEL;		\
    223	 andn		REG1, REG2, REG1;		\
    224	and		VADDR, REG2, REG2;		\
    225	brlz,pt		REG1, PTE_LABEL;		\
    226	 or		REG1, REG2, REG1;		\
    227700:
    228#else
    229#define USER_PGTABLE_CHECK_PUD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \
    230	brz,pn		REG1, FAIL_LABEL; \
    231	 nop;
    232#endif
    233
    234	/* PMD has been loaded into REG1, interpret the value, seeing
    235	 * if it is a HUGE PMD or a normal one.  If it is not valid
    236	 * then jump to FAIL_LABEL.  If it is a HUGE PMD, and it
    237	 * translates to a valid PTE, branch to PTE_LABEL.
    238	 *
    239	 * We have to propagate the 4MB bit of the virtual address
    240	 * because we are fabricating 8MB pages using 4MB hw pages.
    241	 */
    242#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
    243#define USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \
    244	brz,pn		REG1, FAIL_LABEL;		\
    245	 sethi		%uhi(_PAGE_PMD_HUGE), REG2;	\
    246	sllx		REG2, 32, REG2;			\
    247	andcc		REG1, REG2, %g0;		\
    248	be,pt		%xcc, 700f;			\
    249	 sethi		%hi(4 * 1024 * 1024), REG2;	\
    250	brgez,pn	REG1, FAIL_LABEL;		\
    251	 andn		REG1, REG2, REG1;		\
    252	and		VADDR, REG2, REG2;		\
    253	brlz,pt		REG1, PTE_LABEL;		\
    254	 or		REG1, REG2, REG1;		\
    255700:
    256#else
    257#define USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \
    258	brz,pn		REG1, FAIL_LABEL; \
    259	 nop;
    260#endif
    261
    262	/* Do a user page table walk in MMU globals.  Leaves final,
    263	 * valid, PTE value in REG1.  Jumps to FAIL_LABEL on early
    264	 * page table walk termination or if the PTE is not valid.
    265	 *
    266	 * Physical base of page tables is in PHYS_PGD which will not
    267	 * be modified.
    268	 *
    269	 * VADDR will not be clobbered, but REG1 and REG2 will.
    270	 */
    271#define USER_PGTABLE_WALK_TL1(VADDR, PHYS_PGD, REG1, REG2, FAIL_LABEL)	\
    272	sllx		VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \
    273	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
    274	andn		REG2, 0x7, REG2; \
    275	ldxa		[PHYS_PGD + REG2] ASI_PHYS_USE_EC, REG1; \
    276	brz,pn		REG1, FAIL_LABEL; \
    277	 sllx		VADDR, 64 - (PUD_SHIFT + PUD_BITS), REG2; \
    278	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
    279	andn		REG2, 0x7, REG2; \
    280	ldxa		[REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
    281	USER_PGTABLE_CHECK_PUD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, 800f) \
    282	brz,pn		REG1, FAIL_LABEL; \
    283	 sllx		VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \
    284	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
    285	andn		REG2, 0x7, REG2; \
    286	ldxa		[REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
    287	USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, 800f) \
    288	sllx		VADDR, 64 - PMD_SHIFT, REG2; \
    289	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
    290	andn		REG2, 0x7, REG2; \
    291	add		REG1, REG2, REG1; \
    292	ldxa		[REG1] ASI_PHYS_USE_EC, REG1; \
    293	brgez,pn	REG1, FAIL_LABEL; \
    294	 nop; \
    295800:
    296
    297/* Lookup a OBP mapping on VADDR in the prom_trans[] table at TL>0.
    298 * If no entry is found, FAIL_LABEL will be branched to.  On success
    299 * the resulting PTE value will be left in REG1.  VADDR is preserved
    300 * by this routine.
    301 */
    302#define OBP_TRANS_LOOKUP(VADDR, REG1, REG2, REG3, FAIL_LABEL) \
    303	sethi		%hi(prom_trans), REG1; \
    304	or		REG1, %lo(prom_trans), REG1; \
    30597:	ldx		[REG1 + 0x00], REG2; \
    306	brz,pn		REG2, FAIL_LABEL; \
    307	 nop; \
    308	ldx		[REG1 + 0x08], REG3; \
    309	add		REG2, REG3, REG3; \
    310	cmp		REG2, VADDR; \
    311	bgu,pt		%xcc, 98f; \
    312	 cmp		VADDR, REG3; \
    313	bgeu,pt		%xcc, 98f; \
    314	 ldx		[REG1 + 0x10], REG3; \
    315	sub		VADDR, REG2, REG2; \
    316	ba,pt		%xcc, 99f; \
    317	 add		REG3, REG2, REG1; \
    31898:	ba,pt		%xcc, 97b; \
    319	 add		REG1, (3 * 8), REG1; \
    32099:
    321
    322	/* We use a 32K TSB for the whole kernel, this allows to
    323	 * handle about 16MB of modules and vmalloc mappings without
    324	 * incurring many hash conflicts.
    325	 */
    326#define KERNEL_TSB_SIZE_BYTES	(32 * 1024)
    327#define KERNEL_TSB_NENTRIES	\
    328	(KERNEL_TSB_SIZE_BYTES / 16)
    329#define KERNEL_TSB4M_NENTRIES	4096
    330
    331	/* Do a kernel TSB lookup at tl>0 on VADDR+TAG, branch to OK_LABEL
    332	 * on TSB hit.  REG1, REG2, REG3, and REG4 are used as temporaries
    333	 * and the found TTE will be left in REG1.  REG3 and REG4 must
    334	 * be an even/odd pair of registers.
    335	 *
    336	 * VADDR and TAG will be preserved and not clobbered by this macro.
    337	 */
    338#define KERN_TSB_LOOKUP_TL1(VADDR, TAG, REG1, REG2, REG3, REG4, OK_LABEL) \
    339661:	sethi		%uhi(swapper_tsb), REG1; \
    340	sethi		%hi(swapper_tsb), REG2; \
    341	or		REG1, %ulo(swapper_tsb), REG1; \
    342	or		REG2, %lo(swapper_tsb), REG2; \
    343	.section	.swapper_tsb_phys_patch, "ax"; \
    344	.word		661b; \
    345	.previous; \
    346	sllx		REG1, 32, REG1; \
    347	or		REG1, REG2, REG1; \
    348	srlx		VADDR, PAGE_SHIFT, REG2; \
    349	and		REG2, (KERNEL_TSB_NENTRIES - 1), REG2; \
    350	sllx		REG2, 4, REG2; \
    351	add		REG1, REG2, REG2; \
    352	TSB_LOAD_QUAD(REG2, REG3); \
    353	cmp		REG3, TAG; \
    354	be,a,pt		%xcc, OK_LABEL; \
    355	 mov		REG4, REG1;
    356
    357#ifndef CONFIG_DEBUG_PAGEALLOC
    358	/* This version uses a trick, the TAG is already (VADDR >> 22) so
    359	 * we can make use of that for the index computation.
    360	 */
    361#define KERN_TSB4M_LOOKUP_TL1(TAG, REG1, REG2, REG3, REG4, OK_LABEL) \
    362661:	sethi		%uhi(swapper_4m_tsb), REG1; \
    363	sethi		%hi(swapper_4m_tsb), REG2; \
    364	or		REG1, %ulo(swapper_4m_tsb), REG1; \
    365	or		REG2, %lo(swapper_4m_tsb), REG2; \
    366	.section	.swapper_4m_tsb_phys_patch, "ax"; \
    367	.word		661b; \
    368	.previous; \
    369	sllx		REG1, 32, REG1; \
    370	or		REG1, REG2, REG1; \
    371	and		TAG, (KERNEL_TSB4M_NENTRIES - 1), REG2; \
    372	sllx		REG2, 4, REG2; \
    373	add		REG1, REG2, REG2; \
    374	TSB_LOAD_QUAD(REG2, REG3); \
    375	cmp		REG3, TAG; \
    376	be,a,pt		%xcc, OK_LABEL; \
    377	 mov		REG4, REG1;
    378#endif
    379
    380#endif /* !(_SPARC64_TSB_H) */