cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

kprobes.c (13018B)


      1// SPDX-License-Identifier: GPL-2.0
      2/* arch/sparc64/kernel/kprobes.c
      3 *
      4 * Copyright (C) 2004 David S. Miller <davem@davemloft.net>
      5 */
      6
      7#include <linux/kernel.h>
      8#include <linux/kprobes.h>
      9#include <linux/extable.h>
     10#include <linux/kdebug.h>
     11#include <linux/slab.h>
     12#include <linux/context_tracking.h>
     13#include <asm/signal.h>
     14#include <asm/cacheflush.h>
     15#include <linux/uaccess.h>
     16
     17/* We do not have hardware single-stepping on sparc64.
     18 * So we implement software single-stepping with breakpoint
     19 * traps.  The top-level scheme is similar to that used
     20 * in the x86 kprobes implementation.
     21 *
     22 * In the kprobe->ainsn.insn[] array we store the original
     23 * instruction at index zero and a break instruction at
     24 * index one.
     25 *
     26 * When we hit a kprobe we:
     27 * - Run the pre-handler
     28 * - Remember "regs->tnpc" and interrupt level stored in
     29 *   "regs->tstate" so we can restore them later
     30 * - Disable PIL interrupts
     31 * - Set regs->tpc to point to kprobe->ainsn.insn[0]
     32 * - Set regs->tnpc to point to kprobe->ainsn.insn[1]
     33 * - Mark that we are actively in a kprobe
     34 *
     35 * At this point we wait for the second breakpoint at
     36 * kprobe->ainsn.insn[1] to hit.  When it does we:
     37 * - Run the post-handler
     38 * - Set regs->tpc to "remembered" regs->tnpc stored above,
     39 *   restore the PIL interrupt level in "regs->tstate" as well
     40 * - Make any adjustments necessary to regs->tnpc in order
     41 *   to handle relative branches correctly.  See below.
     42 * - Mark that we are no longer actively in a kprobe.
     43 */
     44
     45DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
     46DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
     47
     48struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
     49
     50int __kprobes arch_prepare_kprobe(struct kprobe *p)
     51{
     52	if ((unsigned long) p->addr & 0x3UL)
     53		return -EILSEQ;
     54
     55	p->ainsn.insn[0] = *p->addr;
     56	flushi(&p->ainsn.insn[0]);
     57
     58	p->ainsn.insn[1] = BREAKPOINT_INSTRUCTION_2;
     59	flushi(&p->ainsn.insn[1]);
     60
     61	p->opcode = *p->addr;
     62	return 0;
     63}
     64
     65void __kprobes arch_arm_kprobe(struct kprobe *p)
     66{
     67	*p->addr = BREAKPOINT_INSTRUCTION;
     68	flushi(p->addr);
     69}
     70
     71void __kprobes arch_disarm_kprobe(struct kprobe *p)
     72{
     73	*p->addr = p->opcode;
     74	flushi(p->addr);
     75}
     76
     77static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
     78{
     79	kcb->prev_kprobe.kp = kprobe_running();
     80	kcb->prev_kprobe.status = kcb->kprobe_status;
     81	kcb->prev_kprobe.orig_tnpc = kcb->kprobe_orig_tnpc;
     82	kcb->prev_kprobe.orig_tstate_pil = kcb->kprobe_orig_tstate_pil;
     83}
     84
     85static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
     86{
     87	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
     88	kcb->kprobe_status = kcb->prev_kprobe.status;
     89	kcb->kprobe_orig_tnpc = kcb->prev_kprobe.orig_tnpc;
     90	kcb->kprobe_orig_tstate_pil = kcb->prev_kprobe.orig_tstate_pil;
     91}
     92
     93static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
     94				struct kprobe_ctlblk *kcb)
     95{
     96	__this_cpu_write(current_kprobe, p);
     97	kcb->kprobe_orig_tnpc = regs->tnpc;
     98	kcb->kprobe_orig_tstate_pil = (regs->tstate & TSTATE_PIL);
     99}
    100
    101static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
    102			struct kprobe_ctlblk *kcb)
    103{
    104	regs->tstate |= TSTATE_PIL;
    105
    106	/*single step inline, if it a breakpoint instruction*/
    107	if (p->opcode == BREAKPOINT_INSTRUCTION) {
    108		regs->tpc = (unsigned long) p->addr;
    109		regs->tnpc = kcb->kprobe_orig_tnpc;
    110	} else {
    111		regs->tpc = (unsigned long) &p->ainsn.insn[0];
    112		regs->tnpc = (unsigned long) &p->ainsn.insn[1];
    113	}
    114}
    115
    116static int __kprobes kprobe_handler(struct pt_regs *regs)
    117{
    118	struct kprobe *p;
    119	void *addr = (void *) regs->tpc;
    120	int ret = 0;
    121	struct kprobe_ctlblk *kcb;
    122
    123	/*
    124	 * We don't want to be preempted for the entire
    125	 * duration of kprobe processing
    126	 */
    127	preempt_disable();
    128	kcb = get_kprobe_ctlblk();
    129
    130	if (kprobe_running()) {
    131		p = get_kprobe(addr);
    132		if (p) {
    133			if (kcb->kprobe_status == KPROBE_HIT_SS) {
    134				regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
    135					kcb->kprobe_orig_tstate_pil);
    136				goto no_kprobe;
    137			}
    138			/* We have reentered the kprobe_handler(), since
    139			 * another probe was hit while within the handler.
    140			 * We here save the original kprobes variables and
    141			 * just single step on the instruction of the new probe
    142			 * without calling any user handlers.
    143			 */
    144			save_previous_kprobe(kcb);
    145			set_current_kprobe(p, regs, kcb);
    146			kprobes_inc_nmissed_count(p);
    147			kcb->kprobe_status = KPROBE_REENTER;
    148			prepare_singlestep(p, regs, kcb);
    149			return 1;
    150		} else if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
    151			/* The breakpoint instruction was removed by
    152			 * another cpu right after we hit, no further
    153			 * handling of this interrupt is appropriate
    154			 */
    155			ret = 1;
    156		}
    157		goto no_kprobe;
    158	}
    159
    160	p = get_kprobe(addr);
    161	if (!p) {
    162		if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
    163			/*
    164			 * The breakpoint instruction was removed right
    165			 * after we hit it.  Another cpu has removed
    166			 * either a probepoint or a debugger breakpoint
    167			 * at this address.  In either case, no further
    168			 * handling of this interrupt is appropriate.
    169			 */
    170			ret = 1;
    171		}
    172		/* Not one of ours: let kernel handle it */
    173		goto no_kprobe;
    174	}
    175
    176	set_current_kprobe(p, regs, kcb);
    177	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
    178	if (p->pre_handler && p->pre_handler(p, regs)) {
    179		reset_current_kprobe();
    180		preempt_enable_no_resched();
    181		return 1;
    182	}
    183
    184	prepare_singlestep(p, regs, kcb);
    185	kcb->kprobe_status = KPROBE_HIT_SS;
    186	return 1;
    187
    188no_kprobe:
    189	preempt_enable_no_resched();
    190	return ret;
    191}
    192
    193/* If INSN is a relative control transfer instruction,
    194 * return the corrected branch destination value.
    195 *
    196 * regs->tpc and regs->tnpc still hold the values of the
    197 * program counters at the time of trap due to the execution
    198 * of the BREAKPOINT_INSTRUCTION_2 at p->ainsn.insn[1]
    199 * 
    200 */
    201static unsigned long __kprobes relbranch_fixup(u32 insn, struct kprobe *p,
    202					       struct pt_regs *regs)
    203{
    204	unsigned long real_pc = (unsigned long) p->addr;
    205
    206	/* Branch not taken, no mods necessary.  */
    207	if (regs->tnpc == regs->tpc + 0x4UL)
    208		return real_pc + 0x8UL;
    209
    210	/* The three cases are call, branch w/prediction,
    211	 * and traditional branch.
    212	 */
    213	if ((insn & 0xc0000000) == 0x40000000 ||
    214	    (insn & 0xc1c00000) == 0x00400000 ||
    215	    (insn & 0xc1c00000) == 0x00800000) {
    216		unsigned long ainsn_addr;
    217
    218		ainsn_addr = (unsigned long) &p->ainsn.insn[0];
    219
    220		/* The instruction did all the work for us
    221		 * already, just apply the offset to the correct
    222		 * instruction location.
    223		 */
    224		return (real_pc + (regs->tnpc - ainsn_addr));
    225	}
    226
    227	/* It is jmpl or some other absolute PC modification instruction,
    228	 * leave NPC as-is.
    229	 */
    230	return regs->tnpc;
    231}
    232
    233/* If INSN is an instruction which writes it's PC location
    234 * into a destination register, fix that up.
    235 */
    236static void __kprobes retpc_fixup(struct pt_regs *regs, u32 insn,
    237				  unsigned long real_pc)
    238{
    239	unsigned long *slot = NULL;
    240
    241	/* Simplest case is 'call', which always uses %o7 */
    242	if ((insn & 0xc0000000) == 0x40000000) {
    243		slot = &regs->u_regs[UREG_I7];
    244	}
    245
    246	/* 'jmpl' encodes the register inside of the opcode */
    247	if ((insn & 0xc1f80000) == 0x81c00000) {
    248		unsigned long rd = ((insn >> 25) & 0x1f);
    249
    250		if (rd <= 15) {
    251			slot = &regs->u_regs[rd];
    252		} else {
    253			/* Hard case, it goes onto the stack. */
    254			flushw_all();
    255
    256			rd -= 16;
    257			slot = (unsigned long *)
    258				(regs->u_regs[UREG_FP] + STACK_BIAS);
    259			slot += rd;
    260		}
    261	}
    262	if (slot != NULL)
    263		*slot = real_pc;
    264}
    265
    266/*
    267 * Called after single-stepping.  p->addr is the address of the
    268 * instruction which has been replaced by the breakpoint
    269 * instruction.  To avoid the SMP problems that can occur when we
    270 * temporarily put back the original opcode to single-step, we
    271 * single-stepped a copy of the instruction.  The address of this
    272 * copy is &p->ainsn.insn[0].
    273 *
    274 * This function prepares to return from the post-single-step
    275 * breakpoint trap.
    276 */
    277static void __kprobes resume_execution(struct kprobe *p,
    278		struct pt_regs *regs, struct kprobe_ctlblk *kcb)
    279{
    280	u32 insn = p->ainsn.insn[0];
    281
    282	regs->tnpc = relbranch_fixup(insn, p, regs);
    283
    284	/* This assignment must occur after relbranch_fixup() */
    285	regs->tpc = kcb->kprobe_orig_tnpc;
    286
    287	retpc_fixup(regs, insn, (unsigned long) p->addr);
    288
    289	regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
    290			kcb->kprobe_orig_tstate_pil);
    291}
    292
    293static int __kprobes post_kprobe_handler(struct pt_regs *regs)
    294{
    295	struct kprobe *cur = kprobe_running();
    296	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
    297
    298	if (!cur)
    299		return 0;
    300
    301	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
    302		kcb->kprobe_status = KPROBE_HIT_SSDONE;
    303		cur->post_handler(cur, regs, 0);
    304	}
    305
    306	resume_execution(cur, regs, kcb);
    307
    308	/*Restore back the original saved kprobes variables and continue. */
    309	if (kcb->kprobe_status == KPROBE_REENTER) {
    310		restore_previous_kprobe(kcb);
    311		goto out;
    312	}
    313	reset_current_kprobe();
    314out:
    315	preempt_enable_no_resched();
    316
    317	return 1;
    318}
    319
    320int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
    321{
    322	struct kprobe *cur = kprobe_running();
    323	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
    324	const struct exception_table_entry *entry;
    325
    326	switch(kcb->kprobe_status) {
    327	case KPROBE_HIT_SS:
    328	case KPROBE_REENTER:
    329		/*
    330		 * We are here because the instruction being single
    331		 * stepped caused a page fault. We reset the current
    332		 * kprobe and the tpc points back to the probe address
    333		 * and allow the page fault handler to continue as a
    334		 * normal page fault.
    335		 */
    336		regs->tpc = (unsigned long)cur->addr;
    337		regs->tnpc = kcb->kprobe_orig_tnpc;
    338		regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
    339				kcb->kprobe_orig_tstate_pil);
    340		if (kcb->kprobe_status == KPROBE_REENTER)
    341			restore_previous_kprobe(kcb);
    342		else
    343			reset_current_kprobe();
    344		preempt_enable_no_resched();
    345		break;
    346	case KPROBE_HIT_ACTIVE:
    347	case KPROBE_HIT_SSDONE:
    348		/*
    349		 * In case the user-specified fault handler returned
    350		 * zero, try to fix up.
    351		 */
    352
    353		entry = search_exception_tables(regs->tpc);
    354		if (entry) {
    355			regs->tpc = entry->fixup;
    356			regs->tnpc = regs->tpc + 4;
    357			return 1;
    358		}
    359
    360		/*
    361		 * fixup_exception() could not handle it,
    362		 * Let do_page_fault() fix it.
    363		 */
    364		break;
    365	default:
    366		break;
    367	}
    368
    369	return 0;
    370}
    371
    372/*
    373 * Wrapper routine to for handling exceptions.
    374 */
    375int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
    376				       unsigned long val, void *data)
    377{
    378	struct die_args *args = (struct die_args *)data;
    379	int ret = NOTIFY_DONE;
    380
    381	if (args->regs && user_mode(args->regs))
    382		return ret;
    383
    384	switch (val) {
    385	case DIE_DEBUG:
    386		if (kprobe_handler(args->regs))
    387			ret = NOTIFY_STOP;
    388		break;
    389	case DIE_DEBUG_2:
    390		if (post_kprobe_handler(args->regs))
    391			ret = NOTIFY_STOP;
    392		break;
    393	default:
    394		break;
    395	}
    396	return ret;
    397}
    398
    399asmlinkage void __kprobes kprobe_trap(unsigned long trap_level,
    400				      struct pt_regs *regs)
    401{
    402	enum ctx_state prev_state = exception_enter();
    403
    404	BUG_ON(trap_level != 0x170 && trap_level != 0x171);
    405
    406	if (user_mode(regs)) {
    407		local_irq_enable();
    408		bad_trap(regs, trap_level);
    409		goto out;
    410	}
    411
    412	/* trap_level == 0x170 --> ta 0x70
    413	 * trap_level == 0x171 --> ta 0x71
    414	 */
    415	if (notify_die((trap_level == 0x170) ? DIE_DEBUG : DIE_DEBUG_2,
    416		       (trap_level == 0x170) ? "debug" : "debug_2",
    417		       regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP)
    418		bad_trap(regs, trap_level);
    419out:
    420	exception_exit(prev_state);
    421}
    422
    423/* The value stored in the return address register is actually 2
    424 * instructions before where the callee will return to.
    425 * Sequences usually look something like this
    426 *
    427 *		call	some_function	<--- return register points here
    428 *		 nop			<--- call delay slot
    429 *		whatever		<--- where callee returns to
    430 *
    431 * To keep trampoline_probe_handler logic simpler, we normalize the
    432 * value kept in ri->ret_addr so we don't need to keep adjusting it
    433 * back and forth.
    434 */
    435void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
    436				      struct pt_regs *regs)
    437{
    438	ri->ret_addr = (kprobe_opcode_t *)(regs->u_regs[UREG_RETPC] + 8);
    439	ri->fp = NULL;
    440
    441	/* Replace the return addr with trampoline addr */
    442	regs->u_regs[UREG_RETPC] =
    443		((unsigned long)__kretprobe_trampoline) - 8;
    444}
    445
    446/*
    447 * Called when the probe at kretprobe trampoline is hit
    448 */
    449static int __kprobes trampoline_probe_handler(struct kprobe *p,
    450					      struct pt_regs *regs)
    451{
    452	unsigned long orig_ret_address = 0;
    453
    454	orig_ret_address = __kretprobe_trampoline_handler(regs, NULL);
    455	regs->tpc = orig_ret_address;
    456	regs->tnpc = orig_ret_address + 4;
    457
    458	/*
    459	 * By returning a non-zero value, we are telling
    460	 * kprobe_handler() that we don't want the post_handler
    461	 * to run (and have re-enabled preemption)
    462	 */
    463	return 1;
    464}
    465
    466static void __used kretprobe_trampoline_holder(void)
    467{
    468	asm volatile(".global __kretprobe_trampoline\n"
    469		     "__kretprobe_trampoline:\n"
    470		     "\tnop\n"
    471		     "\tnop\n");
    472}
    473static struct kprobe trampoline_p = {
    474	.addr = (kprobe_opcode_t *) &__kretprobe_trampoline,
    475	.pre_handler = trampoline_probe_handler
    476};
    477
    478int __init arch_init_kprobes(void)
    479{
    480	return register_kprobe(&trampoline_p);
    481}
    482
    483int __kprobes arch_trampoline_kprobe(struct kprobe *p)
    484{
    485	if (p->addr == (kprobe_opcode_t *)&__kretprobe_trampoline)
    486		return 1;
    487
    488	return 0;
    489}