cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

perf_event.c (47308B)


      1// SPDX-License-Identifier: GPL-2.0
      2/* Performance event support for sparc64.
      3 *
      4 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
      5 *
      6 * This code is based almost entirely upon the x86 perf event
      7 * code, which is:
      8 *
      9 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
     10 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
     11 *  Copyright (C) 2009 Jaswinder Singh Rajput
     12 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
     13 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
     14 */
     15
     16#include <linux/perf_event.h>
     17#include <linux/kprobes.h>
     18#include <linux/ftrace.h>
     19#include <linux/kernel.h>
     20#include <linux/kdebug.h>
     21#include <linux/mutex.h>
     22
     23#include <asm/stacktrace.h>
     24#include <asm/cpudata.h>
     25#include <linux/uaccess.h>
     26#include <linux/atomic.h>
     27#include <linux/sched/clock.h>
     28#include <asm/nmi.h>
     29#include <asm/pcr.h>
     30#include <asm/cacheflush.h>
     31
     32#include "kernel.h"
     33#include "kstack.h"
     34
     35/* Two classes of sparc64 chips currently exist.  All of which have
     36 * 32-bit counters which can generate overflow interrupts on the
     37 * transition from 0xffffffff to 0.
     38 *
     39 * All chips upto and including SPARC-T3 have two performance
     40 * counters.  The two 32-bit counters are accessed in one go using a
     41 * single 64-bit register.
     42 *
     43 * On these older chips both counters are controlled using a single
     44 * control register.  The only way to stop all sampling is to clear
     45 * all of the context (user, supervisor, hypervisor) sampling enable
     46 * bits.  But these bits apply to both counters, thus the two counters
     47 * can't be enabled/disabled individually.
     48 *
     49 * Furthermore, the control register on these older chips have two
     50 * event fields, one for each of the two counters.  It's thus nearly
     51 * impossible to have one counter going while keeping the other one
     52 * stopped.  Therefore it is possible to get overflow interrupts for
     53 * counters not currently "in use" and that condition must be checked
     54 * in the overflow interrupt handler.
     55 *
     56 * So we use a hack, in that we program inactive counters with the
     57 * "sw_count0" and "sw_count1" events.  These count how many times
     58 * the instruction "sethi %hi(0xfc000), %g0" is executed.  It's an
     59 * unusual way to encode a NOP and therefore will not trigger in
     60 * normal code.
     61 *
     62 * Starting with SPARC-T4 we have one control register per counter.
     63 * And the counters are stored in individual registers.  The registers
     64 * for the counters are 64-bit but only a 32-bit counter is
     65 * implemented.  The event selections on SPARC-T4 lack any
     66 * restrictions, therefore we can elide all of the complicated
     67 * conflict resolution code we have for SPARC-T3 and earlier chips.
     68 */
     69
     70#define MAX_HWEVENTS			4
     71#define MAX_PCRS			4
     72#define MAX_PERIOD			((1UL << 32) - 1)
     73
     74#define PIC_UPPER_INDEX			0
     75#define PIC_LOWER_INDEX			1
     76#define PIC_NO_INDEX			-1
     77
     78struct cpu_hw_events {
     79	/* Number of events currently scheduled onto this cpu.
     80	 * This tells how many entries in the arrays below
     81	 * are valid.
     82	 */
     83	int			n_events;
     84
     85	/* Number of new events added since the last hw_perf_disable().
     86	 * This works because the perf event layer always adds new
     87	 * events inside of a perf_{disable,enable}() sequence.
     88	 */
     89	int			n_added;
     90
     91	/* Array of events current scheduled on this cpu.  */
     92	struct perf_event	*event[MAX_HWEVENTS];
     93
     94	/* Array of encoded longs, specifying the %pcr register
     95	 * encoding and the mask of PIC counters this even can
     96	 * be scheduled on.  See perf_event_encode() et al.
     97	 */
     98	unsigned long		events[MAX_HWEVENTS];
     99
    100	/* The current counter index assigned to an event.  When the
    101	 * event hasn't been programmed into the cpu yet, this will
    102	 * hold PIC_NO_INDEX.  The event->hw.idx value tells us where
    103	 * we ought to schedule the event.
    104	 */
    105	int			current_idx[MAX_HWEVENTS];
    106
    107	/* Software copy of %pcr register(s) on this cpu.  */
    108	u64			pcr[MAX_HWEVENTS];
    109
    110	/* Enabled/disable state.  */
    111	int			enabled;
    112
    113	unsigned int		txn_flags;
    114};
    115static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
    116
    117/* An event map describes the characteristics of a performance
    118 * counter event.  In particular it gives the encoding as well as
    119 * a mask telling which counters the event can be measured on.
    120 *
    121 * The mask is unused on SPARC-T4 and later.
    122 */
    123struct perf_event_map {
    124	u16	encoding;
    125	u8	pic_mask;
    126#define PIC_NONE	0x00
    127#define PIC_UPPER	0x01
    128#define PIC_LOWER	0x02
    129};
    130
    131/* Encode a perf_event_map entry into a long.  */
    132static unsigned long perf_event_encode(const struct perf_event_map *pmap)
    133{
    134	return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
    135}
    136
    137static u8 perf_event_get_msk(unsigned long val)
    138{
    139	return val & 0xff;
    140}
    141
    142static u64 perf_event_get_enc(unsigned long val)
    143{
    144	return val >> 16;
    145}
    146
    147#define C(x) PERF_COUNT_HW_CACHE_##x
    148
    149#define CACHE_OP_UNSUPPORTED	0xfffe
    150#define CACHE_OP_NONSENSE	0xffff
    151
    152typedef struct perf_event_map cache_map_t
    153				[PERF_COUNT_HW_CACHE_MAX]
    154				[PERF_COUNT_HW_CACHE_OP_MAX]
    155				[PERF_COUNT_HW_CACHE_RESULT_MAX];
    156
    157struct sparc_pmu {
    158	const struct perf_event_map	*(*event_map)(int);
    159	const cache_map_t		*cache_map;
    160	int				max_events;
    161	u32				(*read_pmc)(int);
    162	void				(*write_pmc)(int, u64);
    163	int				upper_shift;
    164	int				lower_shift;
    165	int				event_mask;
    166	int				user_bit;
    167	int				priv_bit;
    168	int				hv_bit;
    169	int				irq_bit;
    170	int				upper_nop;
    171	int				lower_nop;
    172	unsigned int			flags;
    173#define SPARC_PMU_ALL_EXCLUDES_SAME	0x00000001
    174#define SPARC_PMU_HAS_CONFLICTS		0x00000002
    175	int				max_hw_events;
    176	int				num_pcrs;
    177	int				num_pic_regs;
    178};
    179
    180static u32 sparc_default_read_pmc(int idx)
    181{
    182	u64 val;
    183
    184	val = pcr_ops->read_pic(0);
    185	if (idx == PIC_UPPER_INDEX)
    186		val >>= 32;
    187
    188	return val & 0xffffffff;
    189}
    190
    191static void sparc_default_write_pmc(int idx, u64 val)
    192{
    193	u64 shift, mask, pic;
    194
    195	shift = 0;
    196	if (idx == PIC_UPPER_INDEX)
    197		shift = 32;
    198
    199	mask = ((u64) 0xffffffff) << shift;
    200	val <<= shift;
    201
    202	pic = pcr_ops->read_pic(0);
    203	pic &= ~mask;
    204	pic |= val;
    205	pcr_ops->write_pic(0, pic);
    206}
    207
    208static const struct perf_event_map ultra3_perfmon_event_map[] = {
    209	[PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
    210	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
    211	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
    212	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
    213};
    214
    215static const struct perf_event_map *ultra3_event_map(int event_id)
    216{
    217	return &ultra3_perfmon_event_map[event_id];
    218}
    219
    220static const cache_map_t ultra3_cache_map = {
    221[C(L1D)] = {
    222	[C(OP_READ)] = {
    223		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
    224		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
    225	},
    226	[C(OP_WRITE)] = {
    227		[C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
    228		[C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
    229	},
    230	[C(OP_PREFETCH)] = {
    231		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
    232		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
    233	},
    234},
    235[C(L1I)] = {
    236	[C(OP_READ)] = {
    237		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
    238		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
    239	},
    240	[ C(OP_WRITE) ] = {
    241		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
    242		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
    243	},
    244	[ C(OP_PREFETCH) ] = {
    245		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
    246		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
    247	},
    248},
    249[C(LL)] = {
    250	[C(OP_READ)] = {
    251		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
    252		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
    253	},
    254	[C(OP_WRITE)] = {
    255		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
    256		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
    257	},
    258	[C(OP_PREFETCH)] = {
    259		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
    260		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
    261	},
    262},
    263[C(DTLB)] = {
    264	[C(OP_READ)] = {
    265		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
    266		[C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
    267	},
    268	[ C(OP_WRITE) ] = {
    269		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
    270		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
    271	},
    272	[ C(OP_PREFETCH) ] = {
    273		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
    274		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
    275	},
    276},
    277[C(ITLB)] = {
    278	[C(OP_READ)] = {
    279		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
    280		[C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
    281	},
    282	[ C(OP_WRITE) ] = {
    283		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
    284		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
    285	},
    286	[ C(OP_PREFETCH) ] = {
    287		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
    288		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
    289	},
    290},
    291[C(BPU)] = {
    292	[C(OP_READ)] = {
    293		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
    294		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
    295	},
    296	[ C(OP_WRITE) ] = {
    297		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
    298		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
    299	},
    300	[ C(OP_PREFETCH) ] = {
    301		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
    302		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
    303	},
    304},
    305[C(NODE)] = {
    306	[C(OP_READ)] = {
    307		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
    308		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
    309	},
    310	[ C(OP_WRITE) ] = {
    311		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
    312		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
    313	},
    314	[ C(OP_PREFETCH) ] = {
    315		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
    316		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
    317	},
    318},
    319};
    320
    321static const struct sparc_pmu ultra3_pmu = {
    322	.event_map	= ultra3_event_map,
    323	.cache_map	= &ultra3_cache_map,
    324	.max_events	= ARRAY_SIZE(ultra3_perfmon_event_map),
    325	.read_pmc	= sparc_default_read_pmc,
    326	.write_pmc	= sparc_default_write_pmc,
    327	.upper_shift	= 11,
    328	.lower_shift	= 4,
    329	.event_mask	= 0x3f,
    330	.user_bit	= PCR_UTRACE,
    331	.priv_bit	= PCR_STRACE,
    332	.upper_nop	= 0x1c,
    333	.lower_nop	= 0x14,
    334	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
    335			   SPARC_PMU_HAS_CONFLICTS),
    336	.max_hw_events	= 2,
    337	.num_pcrs	= 1,
    338	.num_pic_regs	= 1,
    339};
    340
    341/* Niagara1 is very limited.  The upper PIC is hard-locked to count
    342 * only instructions, so it is free running which creates all kinds of
    343 * problems.  Some hardware designs make one wonder if the creator
    344 * even looked at how this stuff gets used by software.
    345 */
    346static const struct perf_event_map niagara1_perfmon_event_map[] = {
    347	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
    348	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
    349	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
    350	[PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
    351};
    352
    353static const struct perf_event_map *niagara1_event_map(int event_id)
    354{
    355	return &niagara1_perfmon_event_map[event_id];
    356}
    357
    358static const cache_map_t niagara1_cache_map = {
    359[C(L1D)] = {
    360	[C(OP_READ)] = {
    361		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
    362		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
    363	},
    364	[C(OP_WRITE)] = {
    365		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
    366		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
    367	},
    368	[C(OP_PREFETCH)] = {
    369		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
    370		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
    371	},
    372},
    373[C(L1I)] = {
    374	[C(OP_READ)] = {
    375		[C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
    376		[C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
    377	},
    378	[ C(OP_WRITE) ] = {
    379		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
    380		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
    381	},
    382	[ C(OP_PREFETCH) ] = {
    383		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
    384		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
    385	},
    386},
    387[C(LL)] = {
    388	[C(OP_READ)] = {
    389		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
    390		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
    391	},
    392	[C(OP_WRITE)] = {
    393		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
    394		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
    395	},
    396	[C(OP_PREFETCH)] = {
    397		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
    398		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
    399	},
    400},
    401[C(DTLB)] = {
    402	[C(OP_READ)] = {
    403		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
    404		[C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
    405	},
    406	[ C(OP_WRITE) ] = {
    407		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
    408		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
    409	},
    410	[ C(OP_PREFETCH) ] = {
    411		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
    412		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
    413	},
    414},
    415[C(ITLB)] = {
    416	[C(OP_READ)] = {
    417		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
    418		[C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
    419	},
    420	[ C(OP_WRITE) ] = {
    421		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
    422		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
    423	},
    424	[ C(OP_PREFETCH) ] = {
    425		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
    426		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
    427	},
    428},
    429[C(BPU)] = {
    430	[C(OP_READ)] = {
    431		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
    432		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
    433	},
    434	[ C(OP_WRITE) ] = {
    435		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
    436		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
    437	},
    438	[ C(OP_PREFETCH) ] = {
    439		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
    440		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
    441	},
    442},
    443[C(NODE)] = {
    444	[C(OP_READ)] = {
    445		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
    446		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
    447	},
    448	[ C(OP_WRITE) ] = {
    449		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
    450		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
    451	},
    452	[ C(OP_PREFETCH) ] = {
    453		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
    454		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
    455	},
    456},
    457};
    458
    459static const struct sparc_pmu niagara1_pmu = {
    460	.event_map	= niagara1_event_map,
    461	.cache_map	= &niagara1_cache_map,
    462	.max_events	= ARRAY_SIZE(niagara1_perfmon_event_map),
    463	.read_pmc	= sparc_default_read_pmc,
    464	.write_pmc	= sparc_default_write_pmc,
    465	.upper_shift	= 0,
    466	.lower_shift	= 4,
    467	.event_mask	= 0x7,
    468	.user_bit	= PCR_UTRACE,
    469	.priv_bit	= PCR_STRACE,
    470	.upper_nop	= 0x0,
    471	.lower_nop	= 0x0,
    472	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
    473			   SPARC_PMU_HAS_CONFLICTS),
    474	.max_hw_events	= 2,
    475	.num_pcrs	= 1,
    476	.num_pic_regs	= 1,
    477};
    478
    479static const struct perf_event_map niagara2_perfmon_event_map[] = {
    480	[PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
    481	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
    482	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
    483	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
    484	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
    485	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
    486};
    487
    488static const struct perf_event_map *niagara2_event_map(int event_id)
    489{
    490	return &niagara2_perfmon_event_map[event_id];
    491}
    492
    493static const cache_map_t niagara2_cache_map = {
    494[C(L1D)] = {
    495	[C(OP_READ)] = {
    496		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
    497		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
    498	},
    499	[C(OP_WRITE)] = {
    500		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
    501		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
    502	},
    503	[C(OP_PREFETCH)] = {
    504		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
    505		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
    506	},
    507},
    508[C(L1I)] = {
    509	[C(OP_READ)] = {
    510		[C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
    511		[C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
    512	},
    513	[ C(OP_WRITE) ] = {
    514		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
    515		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
    516	},
    517	[ C(OP_PREFETCH) ] = {
    518		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
    519		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
    520	},
    521},
    522[C(LL)] = {
    523	[C(OP_READ)] = {
    524		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
    525		[C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
    526	},
    527	[C(OP_WRITE)] = {
    528		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
    529		[C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
    530	},
    531	[C(OP_PREFETCH)] = {
    532		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
    533		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
    534	},
    535},
    536[C(DTLB)] = {
    537	[C(OP_READ)] = {
    538		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
    539		[C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
    540	},
    541	[ C(OP_WRITE) ] = {
    542		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
    543		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
    544	},
    545	[ C(OP_PREFETCH) ] = {
    546		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
    547		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
    548	},
    549},
    550[C(ITLB)] = {
    551	[C(OP_READ)] = {
    552		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
    553		[C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
    554	},
    555	[ C(OP_WRITE) ] = {
    556		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
    557		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
    558	},
    559	[ C(OP_PREFETCH) ] = {
    560		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
    561		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
    562	},
    563},
    564[C(BPU)] = {
    565	[C(OP_READ)] = {
    566		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
    567		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
    568	},
    569	[ C(OP_WRITE) ] = {
    570		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
    571		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
    572	},
    573	[ C(OP_PREFETCH) ] = {
    574		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
    575		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
    576	},
    577},
    578[C(NODE)] = {
    579	[C(OP_READ)] = {
    580		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
    581		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
    582	},
    583	[ C(OP_WRITE) ] = {
    584		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
    585		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
    586	},
    587	[ C(OP_PREFETCH) ] = {
    588		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
    589		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
    590	},
    591},
    592};
    593
    594static const struct sparc_pmu niagara2_pmu = {
    595	.event_map	= niagara2_event_map,
    596	.cache_map	= &niagara2_cache_map,
    597	.max_events	= ARRAY_SIZE(niagara2_perfmon_event_map),
    598	.read_pmc	= sparc_default_read_pmc,
    599	.write_pmc	= sparc_default_write_pmc,
    600	.upper_shift	= 19,
    601	.lower_shift	= 6,
    602	.event_mask	= 0xfff,
    603	.user_bit	= PCR_UTRACE,
    604	.priv_bit	= PCR_STRACE,
    605	.hv_bit		= PCR_N2_HTRACE,
    606	.irq_bit	= 0x30,
    607	.upper_nop	= 0x220,
    608	.lower_nop	= 0x220,
    609	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
    610			   SPARC_PMU_HAS_CONFLICTS),
    611	.max_hw_events	= 2,
    612	.num_pcrs	= 1,
    613	.num_pic_regs	= 1,
    614};
    615
    616static const struct perf_event_map niagara4_perfmon_event_map[] = {
    617	[PERF_COUNT_HW_CPU_CYCLES] = { (26 << 6) },
    618	[PERF_COUNT_HW_INSTRUCTIONS] = { (3 << 6) | 0x3f },
    619	[PERF_COUNT_HW_CACHE_REFERENCES] = { (3 << 6) | 0x04 },
    620	[PERF_COUNT_HW_CACHE_MISSES] = { (16 << 6) | 0x07 },
    621	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { (4 << 6) | 0x01 },
    622	[PERF_COUNT_HW_BRANCH_MISSES] = { (25 << 6) | 0x0f },
    623};
    624
    625static const struct perf_event_map *niagara4_event_map(int event_id)
    626{
    627	return &niagara4_perfmon_event_map[event_id];
    628}
    629
    630static const cache_map_t niagara4_cache_map = {
    631[C(L1D)] = {
    632	[C(OP_READ)] = {
    633		[C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
    634		[C(RESULT_MISS)] = { (16 << 6) | 0x07 },
    635	},
    636	[C(OP_WRITE)] = {
    637		[C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
    638		[C(RESULT_MISS)] = { (16 << 6) | 0x07 },
    639	},
    640	[C(OP_PREFETCH)] = {
    641		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
    642		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
    643	},
    644},
    645[C(L1I)] = {
    646	[C(OP_READ)] = {
    647		[C(RESULT_ACCESS)] = { (3 << 6) | 0x3f },
    648		[C(RESULT_MISS)] = { (11 << 6) | 0x03 },
    649	},
    650	[ C(OP_WRITE) ] = {
    651		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
    652		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
    653	},
    654	[ C(OP_PREFETCH) ] = {
    655		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
    656		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
    657	},
    658},
    659[C(LL)] = {
    660	[C(OP_READ)] = {
    661		[C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
    662		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
    663	},
    664	[C(OP_WRITE)] = {
    665		[C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
    666		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
    667	},
    668	[C(OP_PREFETCH)] = {
    669		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
    670		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
    671	},
    672},
    673[C(DTLB)] = {
    674	[C(OP_READ)] = {
    675		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
    676		[C(RESULT_MISS)] = { (17 << 6) | 0x3f },
    677	},
    678	[ C(OP_WRITE) ] = {
    679		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
    680		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
    681	},
    682	[ C(OP_PREFETCH) ] = {
    683		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
    684		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
    685	},
    686},
    687[C(ITLB)] = {
    688	[C(OP_READ)] = {
    689		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
    690		[C(RESULT_MISS)] = { (6 << 6) | 0x3f },
    691	},
    692	[ C(OP_WRITE) ] = {
    693		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
    694		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
    695	},
    696	[ C(OP_PREFETCH) ] = {
    697		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
    698		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
    699	},
    700},
    701[C(BPU)] = {
    702	[C(OP_READ)] = {
    703		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
    704		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
    705	},
    706	[ C(OP_WRITE) ] = {
    707		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
    708		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
    709	},
    710	[ C(OP_PREFETCH) ] = {
    711		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
    712		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
    713	},
    714},
    715[C(NODE)] = {
    716	[C(OP_READ)] = {
    717		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
    718		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
    719	},
    720	[ C(OP_WRITE) ] = {
    721		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
    722		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
    723	},
    724	[ C(OP_PREFETCH) ] = {
    725		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
    726		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
    727	},
    728},
    729};
    730
    731static u32 sparc_vt_read_pmc(int idx)
    732{
    733	u64 val = pcr_ops->read_pic(idx);
    734
    735	return val & 0xffffffff;
    736}
    737
    738static void sparc_vt_write_pmc(int idx, u64 val)
    739{
    740	u64 pcr;
    741
    742	pcr = pcr_ops->read_pcr(idx);
    743	/* ensure ov and ntc are reset */
    744	pcr &= ~(PCR_N4_OV | PCR_N4_NTC);
    745
    746	pcr_ops->write_pic(idx, val & 0xffffffff);
    747
    748	pcr_ops->write_pcr(idx, pcr);
    749}
    750
    751static const struct sparc_pmu niagara4_pmu = {
    752	.event_map	= niagara4_event_map,
    753	.cache_map	= &niagara4_cache_map,
    754	.max_events	= ARRAY_SIZE(niagara4_perfmon_event_map),
    755	.read_pmc	= sparc_vt_read_pmc,
    756	.write_pmc	= sparc_vt_write_pmc,
    757	.upper_shift	= 5,
    758	.lower_shift	= 5,
    759	.event_mask	= 0x7ff,
    760	.user_bit	= PCR_N4_UTRACE,
    761	.priv_bit	= PCR_N4_STRACE,
    762
    763	/* We explicitly don't support hypervisor tracing.  The T4
    764	 * generates the overflow event for precise events via a trap
    765	 * which will not be generated (ie. it's completely lost) if
    766	 * we happen to be in the hypervisor when the event triggers.
    767	 * Essentially, the overflow event reporting is completely
    768	 * unusable when you have hypervisor mode tracing enabled.
    769	 */
    770	.hv_bit		= 0,
    771
    772	.irq_bit	= PCR_N4_TOE,
    773	.upper_nop	= 0,
    774	.lower_nop	= 0,
    775	.flags		= 0,
    776	.max_hw_events	= 4,
    777	.num_pcrs	= 4,
    778	.num_pic_regs	= 4,
    779};
    780
    781static const struct sparc_pmu sparc_m7_pmu = {
    782	.event_map	= niagara4_event_map,
    783	.cache_map	= &niagara4_cache_map,
    784	.max_events	= ARRAY_SIZE(niagara4_perfmon_event_map),
    785	.read_pmc	= sparc_vt_read_pmc,
    786	.write_pmc	= sparc_vt_write_pmc,
    787	.upper_shift	= 5,
    788	.lower_shift	= 5,
    789	.event_mask	= 0x7ff,
    790	.user_bit	= PCR_N4_UTRACE,
    791	.priv_bit	= PCR_N4_STRACE,
    792
    793	/* We explicitly don't support hypervisor tracing. */
    794	.hv_bit		= 0,
    795
    796	.irq_bit	= PCR_N4_TOE,
    797	.upper_nop	= 0,
    798	.lower_nop	= 0,
    799	.flags		= 0,
    800	.max_hw_events	= 4,
    801	.num_pcrs	= 4,
    802	.num_pic_regs	= 4,
    803};
    804static const struct sparc_pmu *sparc_pmu __read_mostly;
    805
    806static u64 event_encoding(u64 event_id, int idx)
    807{
    808	if (idx == PIC_UPPER_INDEX)
    809		event_id <<= sparc_pmu->upper_shift;
    810	else
    811		event_id <<= sparc_pmu->lower_shift;
    812	return event_id;
    813}
    814
    815static u64 mask_for_index(int idx)
    816{
    817	return event_encoding(sparc_pmu->event_mask, idx);
    818}
    819
    820static u64 nop_for_index(int idx)
    821{
    822	return event_encoding(idx == PIC_UPPER_INDEX ?
    823			      sparc_pmu->upper_nop :
    824			      sparc_pmu->lower_nop, idx);
    825}
    826
    827static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
    828{
    829	u64 enc, val, mask = mask_for_index(idx);
    830	int pcr_index = 0;
    831
    832	if (sparc_pmu->num_pcrs > 1)
    833		pcr_index = idx;
    834
    835	enc = perf_event_get_enc(cpuc->events[idx]);
    836
    837	val = cpuc->pcr[pcr_index];
    838	val &= ~mask;
    839	val |= event_encoding(enc, idx);
    840	cpuc->pcr[pcr_index] = val;
    841
    842	pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
    843}
    844
    845static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
    846{
    847	u64 mask = mask_for_index(idx);
    848	u64 nop = nop_for_index(idx);
    849	int pcr_index = 0;
    850	u64 val;
    851
    852	if (sparc_pmu->num_pcrs > 1)
    853		pcr_index = idx;
    854
    855	val = cpuc->pcr[pcr_index];
    856	val &= ~mask;
    857	val |= nop;
    858	cpuc->pcr[pcr_index] = val;
    859
    860	pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
    861}
    862
    863static u64 sparc_perf_event_update(struct perf_event *event,
    864				   struct hw_perf_event *hwc, int idx)
    865{
    866	int shift = 64 - 32;
    867	u64 prev_raw_count, new_raw_count;
    868	s64 delta;
    869
    870again:
    871	prev_raw_count = local64_read(&hwc->prev_count);
    872	new_raw_count = sparc_pmu->read_pmc(idx);
    873
    874	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
    875			     new_raw_count) != prev_raw_count)
    876		goto again;
    877
    878	delta = (new_raw_count << shift) - (prev_raw_count << shift);
    879	delta >>= shift;
    880
    881	local64_add(delta, &event->count);
    882	local64_sub(delta, &hwc->period_left);
    883
    884	return new_raw_count;
    885}
    886
    887static int sparc_perf_event_set_period(struct perf_event *event,
    888				       struct hw_perf_event *hwc, int idx)
    889{
    890	s64 left = local64_read(&hwc->period_left);
    891	s64 period = hwc->sample_period;
    892	int ret = 0;
    893
    894	/* The period may have been changed by PERF_EVENT_IOC_PERIOD */
    895	if (unlikely(period != hwc->last_period))
    896		left = period - (hwc->last_period - left);
    897
    898	if (unlikely(left <= -period)) {
    899		left = period;
    900		local64_set(&hwc->period_left, left);
    901		hwc->last_period = period;
    902		ret = 1;
    903	}
    904
    905	if (unlikely(left <= 0)) {
    906		left += period;
    907		local64_set(&hwc->period_left, left);
    908		hwc->last_period = period;
    909		ret = 1;
    910	}
    911	if (left > MAX_PERIOD)
    912		left = MAX_PERIOD;
    913
    914	local64_set(&hwc->prev_count, (u64)-left);
    915
    916	sparc_pmu->write_pmc(idx, (u64)(-left) & 0xffffffff);
    917
    918	perf_event_update_userpage(event);
    919
    920	return ret;
    921}
    922
    923static void read_in_all_counters(struct cpu_hw_events *cpuc)
    924{
    925	int i;
    926
    927	for (i = 0; i < cpuc->n_events; i++) {
    928		struct perf_event *cp = cpuc->event[i];
    929
    930		if (cpuc->current_idx[i] != PIC_NO_INDEX &&
    931		    cpuc->current_idx[i] != cp->hw.idx) {
    932			sparc_perf_event_update(cp, &cp->hw,
    933						cpuc->current_idx[i]);
    934			cpuc->current_idx[i] = PIC_NO_INDEX;
    935			if (cp->hw.state & PERF_HES_STOPPED)
    936				cp->hw.state |= PERF_HES_ARCH;
    937		}
    938	}
    939}
    940
    941/* On this PMU all PICs are programmed using a single PCR.  Calculate
    942 * the combined control register value.
    943 *
    944 * For such chips we require that all of the events have the same
    945 * configuration, so just fetch the settings from the first entry.
    946 */
    947static void calculate_single_pcr(struct cpu_hw_events *cpuc)
    948{
    949	int i;
    950
    951	if (!cpuc->n_added)
    952		goto out;
    953
    954	/* Assign to counters all unassigned events.  */
    955	for (i = 0; i < cpuc->n_events; i++) {
    956		struct perf_event *cp = cpuc->event[i];
    957		struct hw_perf_event *hwc = &cp->hw;
    958		int idx = hwc->idx;
    959		u64 enc;
    960
    961		if (cpuc->current_idx[i] != PIC_NO_INDEX)
    962			continue;
    963
    964		sparc_perf_event_set_period(cp, hwc, idx);
    965		cpuc->current_idx[i] = idx;
    966
    967		enc = perf_event_get_enc(cpuc->events[i]);
    968		cpuc->pcr[0] &= ~mask_for_index(idx);
    969		if (hwc->state & PERF_HES_ARCH) {
    970			cpuc->pcr[0] |= nop_for_index(idx);
    971		} else {
    972			cpuc->pcr[0] |= event_encoding(enc, idx);
    973			hwc->state = 0;
    974		}
    975	}
    976out:
    977	cpuc->pcr[0] |= cpuc->event[0]->hw.config_base;
    978}
    979
    980static void sparc_pmu_start(struct perf_event *event, int flags);
    981
    982/* On this PMU each PIC has it's own PCR control register.  */
    983static void calculate_multiple_pcrs(struct cpu_hw_events *cpuc)
    984{
    985	int i;
    986
    987	if (!cpuc->n_added)
    988		goto out;
    989
    990	for (i = 0; i < cpuc->n_events; i++) {
    991		struct perf_event *cp = cpuc->event[i];
    992		struct hw_perf_event *hwc = &cp->hw;
    993		int idx = hwc->idx;
    994
    995		if (cpuc->current_idx[i] != PIC_NO_INDEX)
    996			continue;
    997
    998		cpuc->current_idx[i] = idx;
    999
   1000		if (cp->hw.state & PERF_HES_ARCH)
   1001			continue;
   1002
   1003		sparc_pmu_start(cp, PERF_EF_RELOAD);
   1004	}
   1005out:
   1006	for (i = 0; i < cpuc->n_events; i++) {
   1007		struct perf_event *cp = cpuc->event[i];
   1008		int idx = cp->hw.idx;
   1009
   1010		cpuc->pcr[idx] |= cp->hw.config_base;
   1011	}
   1012}
   1013
   1014/* If performance event entries have been added, move existing events
   1015 * around (if necessary) and then assign new entries to counters.
   1016 */
   1017static void update_pcrs_for_enable(struct cpu_hw_events *cpuc)
   1018{
   1019	if (cpuc->n_added)
   1020		read_in_all_counters(cpuc);
   1021
   1022	if (sparc_pmu->num_pcrs == 1) {
   1023		calculate_single_pcr(cpuc);
   1024	} else {
   1025		calculate_multiple_pcrs(cpuc);
   1026	}
   1027}
   1028
   1029static void sparc_pmu_enable(struct pmu *pmu)
   1030{
   1031	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
   1032	int i;
   1033
   1034	if (cpuc->enabled)
   1035		return;
   1036
   1037	cpuc->enabled = 1;
   1038	barrier();
   1039
   1040	if (cpuc->n_events)
   1041		update_pcrs_for_enable(cpuc);
   1042
   1043	for (i = 0; i < sparc_pmu->num_pcrs; i++)
   1044		pcr_ops->write_pcr(i, cpuc->pcr[i]);
   1045}
   1046
   1047static void sparc_pmu_disable(struct pmu *pmu)
   1048{
   1049	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
   1050	int i;
   1051
   1052	if (!cpuc->enabled)
   1053		return;
   1054
   1055	cpuc->enabled = 0;
   1056	cpuc->n_added = 0;
   1057
   1058	for (i = 0; i < sparc_pmu->num_pcrs; i++) {
   1059		u64 val = cpuc->pcr[i];
   1060
   1061		val &= ~(sparc_pmu->user_bit | sparc_pmu->priv_bit |
   1062			 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
   1063		cpuc->pcr[i] = val;
   1064		pcr_ops->write_pcr(i, cpuc->pcr[i]);
   1065	}
   1066}
   1067
   1068static int active_event_index(struct cpu_hw_events *cpuc,
   1069			      struct perf_event *event)
   1070{
   1071	int i;
   1072
   1073	for (i = 0; i < cpuc->n_events; i++) {
   1074		if (cpuc->event[i] == event)
   1075			break;
   1076	}
   1077	BUG_ON(i == cpuc->n_events);
   1078	return cpuc->current_idx[i];
   1079}
   1080
   1081static void sparc_pmu_start(struct perf_event *event, int flags)
   1082{
   1083	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
   1084	int idx = active_event_index(cpuc, event);
   1085
   1086	if (flags & PERF_EF_RELOAD) {
   1087		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
   1088		sparc_perf_event_set_period(event, &event->hw, idx);
   1089	}
   1090
   1091	event->hw.state = 0;
   1092
   1093	sparc_pmu_enable_event(cpuc, &event->hw, idx);
   1094
   1095	perf_event_update_userpage(event);
   1096}
   1097
   1098static void sparc_pmu_stop(struct perf_event *event, int flags)
   1099{
   1100	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
   1101	int idx = active_event_index(cpuc, event);
   1102
   1103	if (!(event->hw.state & PERF_HES_STOPPED)) {
   1104		sparc_pmu_disable_event(cpuc, &event->hw, idx);
   1105		event->hw.state |= PERF_HES_STOPPED;
   1106	}
   1107
   1108	if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
   1109		sparc_perf_event_update(event, &event->hw, idx);
   1110		event->hw.state |= PERF_HES_UPTODATE;
   1111	}
   1112}
   1113
   1114static void sparc_pmu_del(struct perf_event *event, int _flags)
   1115{
   1116	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
   1117	unsigned long flags;
   1118	int i;
   1119
   1120	local_irq_save(flags);
   1121
   1122	for (i = 0; i < cpuc->n_events; i++) {
   1123		if (event == cpuc->event[i]) {
   1124			/* Absorb the final count and turn off the
   1125			 * event.
   1126			 */
   1127			sparc_pmu_stop(event, PERF_EF_UPDATE);
   1128
   1129			/* Shift remaining entries down into
   1130			 * the existing slot.
   1131			 */
   1132			while (++i < cpuc->n_events) {
   1133				cpuc->event[i - 1] = cpuc->event[i];
   1134				cpuc->events[i - 1] = cpuc->events[i];
   1135				cpuc->current_idx[i - 1] =
   1136					cpuc->current_idx[i];
   1137			}
   1138
   1139			perf_event_update_userpage(event);
   1140
   1141			cpuc->n_events--;
   1142			break;
   1143		}
   1144	}
   1145
   1146	local_irq_restore(flags);
   1147}
   1148
   1149static void sparc_pmu_read(struct perf_event *event)
   1150{
   1151	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
   1152	int idx = active_event_index(cpuc, event);
   1153	struct hw_perf_event *hwc = &event->hw;
   1154
   1155	sparc_perf_event_update(event, hwc, idx);
   1156}
   1157
   1158static atomic_t active_events = ATOMIC_INIT(0);
   1159static DEFINE_MUTEX(pmc_grab_mutex);
   1160
   1161static void perf_stop_nmi_watchdog(void *unused)
   1162{
   1163	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
   1164	int i;
   1165
   1166	stop_nmi_watchdog(NULL);
   1167	for (i = 0; i < sparc_pmu->num_pcrs; i++)
   1168		cpuc->pcr[i] = pcr_ops->read_pcr(i);
   1169}
   1170
   1171static void perf_event_grab_pmc(void)
   1172{
   1173	if (atomic_inc_not_zero(&active_events))
   1174		return;
   1175
   1176	mutex_lock(&pmc_grab_mutex);
   1177	if (atomic_read(&active_events) == 0) {
   1178		if (atomic_read(&nmi_active) > 0) {
   1179			on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
   1180			BUG_ON(atomic_read(&nmi_active) != 0);
   1181		}
   1182		atomic_inc(&active_events);
   1183	}
   1184	mutex_unlock(&pmc_grab_mutex);
   1185}
   1186
   1187static void perf_event_release_pmc(void)
   1188{
   1189	if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
   1190		if (atomic_read(&nmi_active) == 0)
   1191			on_each_cpu(start_nmi_watchdog, NULL, 1);
   1192		mutex_unlock(&pmc_grab_mutex);
   1193	}
   1194}
   1195
   1196static const struct perf_event_map *sparc_map_cache_event(u64 config)
   1197{
   1198	unsigned int cache_type, cache_op, cache_result;
   1199	const struct perf_event_map *pmap;
   1200
   1201	if (!sparc_pmu->cache_map)
   1202		return ERR_PTR(-ENOENT);
   1203
   1204	cache_type = (config >>  0) & 0xff;
   1205	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
   1206		return ERR_PTR(-EINVAL);
   1207
   1208	cache_op = (config >>  8) & 0xff;
   1209	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
   1210		return ERR_PTR(-EINVAL);
   1211
   1212	cache_result = (config >> 16) & 0xff;
   1213	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
   1214		return ERR_PTR(-EINVAL);
   1215
   1216	pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
   1217
   1218	if (pmap->encoding == CACHE_OP_UNSUPPORTED)
   1219		return ERR_PTR(-ENOENT);
   1220
   1221	if (pmap->encoding == CACHE_OP_NONSENSE)
   1222		return ERR_PTR(-EINVAL);
   1223
   1224	return pmap;
   1225}
   1226
   1227static void hw_perf_event_destroy(struct perf_event *event)
   1228{
   1229	perf_event_release_pmc();
   1230}
   1231
   1232/* Make sure all events can be scheduled into the hardware at
   1233 * the same time.  This is simplified by the fact that we only
   1234 * need to support 2 simultaneous HW events.
   1235 *
   1236 * As a side effect, the evts[]->hw.idx values will be assigned
   1237 * on success.  These are pending indexes.  When the events are
   1238 * actually programmed into the chip, these values will propagate
   1239 * to the per-cpu cpuc->current_idx[] slots, see the code in
   1240 * maybe_change_configuration() for details.
   1241 */
   1242static int sparc_check_constraints(struct perf_event **evts,
   1243				   unsigned long *events, int n_ev)
   1244{
   1245	u8 msk0 = 0, msk1 = 0;
   1246	int idx0 = 0;
   1247
   1248	/* This case is possible when we are invoked from
   1249	 * hw_perf_group_sched_in().
   1250	 */
   1251	if (!n_ev)
   1252		return 0;
   1253
   1254	if (n_ev > sparc_pmu->max_hw_events)
   1255		return -1;
   1256
   1257	if (!(sparc_pmu->flags & SPARC_PMU_HAS_CONFLICTS)) {
   1258		int i;
   1259
   1260		for (i = 0; i < n_ev; i++)
   1261			evts[i]->hw.idx = i;
   1262		return 0;
   1263	}
   1264
   1265	msk0 = perf_event_get_msk(events[0]);
   1266	if (n_ev == 1) {
   1267		if (msk0 & PIC_LOWER)
   1268			idx0 = 1;
   1269		goto success;
   1270	}
   1271	BUG_ON(n_ev != 2);
   1272	msk1 = perf_event_get_msk(events[1]);
   1273
   1274	/* If both events can go on any counter, OK.  */
   1275	if (msk0 == (PIC_UPPER | PIC_LOWER) &&
   1276	    msk1 == (PIC_UPPER | PIC_LOWER))
   1277		goto success;
   1278
   1279	/* If one event is limited to a specific counter,
   1280	 * and the other can go on both, OK.
   1281	 */
   1282	if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
   1283	    msk1 == (PIC_UPPER | PIC_LOWER)) {
   1284		if (msk0 & PIC_LOWER)
   1285			idx0 = 1;
   1286		goto success;
   1287	}
   1288
   1289	if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
   1290	    msk0 == (PIC_UPPER | PIC_LOWER)) {
   1291		if (msk1 & PIC_UPPER)
   1292			idx0 = 1;
   1293		goto success;
   1294	}
   1295
   1296	/* If the events are fixed to different counters, OK.  */
   1297	if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
   1298	    (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
   1299		if (msk0 & PIC_LOWER)
   1300			idx0 = 1;
   1301		goto success;
   1302	}
   1303
   1304	/* Otherwise, there is a conflict.  */
   1305	return -1;
   1306
   1307success:
   1308	evts[0]->hw.idx = idx0;
   1309	if (n_ev == 2)
   1310		evts[1]->hw.idx = idx0 ^ 1;
   1311	return 0;
   1312}
   1313
   1314static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
   1315{
   1316	int eu = 0, ek = 0, eh = 0;
   1317	struct perf_event *event;
   1318	int i, n, first;
   1319
   1320	if (!(sparc_pmu->flags & SPARC_PMU_ALL_EXCLUDES_SAME))
   1321		return 0;
   1322
   1323	n = n_prev + n_new;
   1324	if (n <= 1)
   1325		return 0;
   1326
   1327	first = 1;
   1328	for (i = 0; i < n; i++) {
   1329		event = evts[i];
   1330		if (first) {
   1331			eu = event->attr.exclude_user;
   1332			ek = event->attr.exclude_kernel;
   1333			eh = event->attr.exclude_hv;
   1334			first = 0;
   1335		} else if (event->attr.exclude_user != eu ||
   1336			   event->attr.exclude_kernel != ek ||
   1337			   event->attr.exclude_hv != eh) {
   1338			return -EAGAIN;
   1339		}
   1340	}
   1341
   1342	return 0;
   1343}
   1344
   1345static int collect_events(struct perf_event *group, int max_count,
   1346			  struct perf_event *evts[], unsigned long *events,
   1347			  int *current_idx)
   1348{
   1349	struct perf_event *event;
   1350	int n = 0;
   1351
   1352	if (!is_software_event(group)) {
   1353		if (n >= max_count)
   1354			return -1;
   1355		evts[n] = group;
   1356		events[n] = group->hw.event_base;
   1357		current_idx[n++] = PIC_NO_INDEX;
   1358	}
   1359	for_each_sibling_event(event, group) {
   1360		if (!is_software_event(event) &&
   1361		    event->state != PERF_EVENT_STATE_OFF) {
   1362			if (n >= max_count)
   1363				return -1;
   1364			evts[n] = event;
   1365			events[n] = event->hw.event_base;
   1366			current_idx[n++] = PIC_NO_INDEX;
   1367		}
   1368	}
   1369	return n;
   1370}
   1371
   1372static int sparc_pmu_add(struct perf_event *event, int ef_flags)
   1373{
   1374	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
   1375	int n0, ret = -EAGAIN;
   1376	unsigned long flags;
   1377
   1378	local_irq_save(flags);
   1379
   1380	n0 = cpuc->n_events;
   1381	if (n0 >= sparc_pmu->max_hw_events)
   1382		goto out;
   1383
   1384	cpuc->event[n0] = event;
   1385	cpuc->events[n0] = event->hw.event_base;
   1386	cpuc->current_idx[n0] = PIC_NO_INDEX;
   1387
   1388	event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
   1389	if (!(ef_flags & PERF_EF_START))
   1390		event->hw.state |= PERF_HES_ARCH;
   1391
   1392	/*
   1393	 * If group events scheduling transaction was started,
   1394	 * skip the schedulability test here, it will be performed
   1395	 * at commit time(->commit_txn) as a whole
   1396	 */
   1397	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
   1398		goto nocheck;
   1399
   1400	if (check_excludes(cpuc->event, n0, 1))
   1401		goto out;
   1402	if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
   1403		goto out;
   1404
   1405nocheck:
   1406	cpuc->n_events++;
   1407	cpuc->n_added++;
   1408
   1409	ret = 0;
   1410out:
   1411	local_irq_restore(flags);
   1412	return ret;
   1413}
   1414
   1415static int sparc_pmu_event_init(struct perf_event *event)
   1416{
   1417	struct perf_event_attr *attr = &event->attr;
   1418	struct perf_event *evts[MAX_HWEVENTS];
   1419	struct hw_perf_event *hwc = &event->hw;
   1420	unsigned long events[MAX_HWEVENTS];
   1421	int current_idx_dmy[MAX_HWEVENTS];
   1422	const struct perf_event_map *pmap;
   1423	int n;
   1424
   1425	if (atomic_read(&nmi_active) < 0)
   1426		return -ENODEV;
   1427
   1428	/* does not support taken branch sampling */
   1429	if (has_branch_stack(event))
   1430		return -EOPNOTSUPP;
   1431
   1432	switch (attr->type) {
   1433	case PERF_TYPE_HARDWARE:
   1434		if (attr->config >= sparc_pmu->max_events)
   1435			return -EINVAL;
   1436		pmap = sparc_pmu->event_map(attr->config);
   1437		break;
   1438
   1439	case PERF_TYPE_HW_CACHE:
   1440		pmap = sparc_map_cache_event(attr->config);
   1441		if (IS_ERR(pmap))
   1442			return PTR_ERR(pmap);
   1443		break;
   1444
   1445	case PERF_TYPE_RAW:
   1446		pmap = NULL;
   1447		break;
   1448
   1449	default:
   1450		return -ENOENT;
   1451
   1452	}
   1453
   1454	if (pmap) {
   1455		hwc->event_base = perf_event_encode(pmap);
   1456	} else {
   1457		/*
   1458		 * User gives us "(encoding << 16) | pic_mask" for
   1459		 * PERF_TYPE_RAW events.
   1460		 */
   1461		hwc->event_base = attr->config;
   1462	}
   1463
   1464	/* We save the enable bits in the config_base.  */
   1465	hwc->config_base = sparc_pmu->irq_bit;
   1466	if (!attr->exclude_user)
   1467		hwc->config_base |= sparc_pmu->user_bit;
   1468	if (!attr->exclude_kernel)
   1469		hwc->config_base |= sparc_pmu->priv_bit;
   1470	if (!attr->exclude_hv)
   1471		hwc->config_base |= sparc_pmu->hv_bit;
   1472
   1473	n = 0;
   1474	if (event->group_leader != event) {
   1475		n = collect_events(event->group_leader,
   1476				   sparc_pmu->max_hw_events - 1,
   1477				   evts, events, current_idx_dmy);
   1478		if (n < 0)
   1479			return -EINVAL;
   1480	}
   1481	events[n] = hwc->event_base;
   1482	evts[n] = event;
   1483
   1484	if (check_excludes(evts, n, 1))
   1485		return -EINVAL;
   1486
   1487	if (sparc_check_constraints(evts, events, n + 1))
   1488		return -EINVAL;
   1489
   1490	hwc->idx = PIC_NO_INDEX;
   1491
   1492	/* Try to do all error checking before this point, as unwinding
   1493	 * state after grabbing the PMC is difficult.
   1494	 */
   1495	perf_event_grab_pmc();
   1496	event->destroy = hw_perf_event_destroy;
   1497
   1498	if (!hwc->sample_period) {
   1499		hwc->sample_period = MAX_PERIOD;
   1500		hwc->last_period = hwc->sample_period;
   1501		local64_set(&hwc->period_left, hwc->sample_period);
   1502	}
   1503
   1504	return 0;
   1505}
   1506
   1507/*
   1508 * Start group events scheduling transaction
   1509 * Set the flag to make pmu::enable() not perform the
   1510 * schedulability test, it will be performed at commit time
   1511 */
   1512static void sparc_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
   1513{
   1514	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
   1515
   1516	WARN_ON_ONCE(cpuhw->txn_flags);		/* txn already in flight */
   1517
   1518	cpuhw->txn_flags = txn_flags;
   1519	if (txn_flags & ~PERF_PMU_TXN_ADD)
   1520		return;
   1521
   1522	perf_pmu_disable(pmu);
   1523}
   1524
   1525/*
   1526 * Stop group events scheduling transaction
   1527 * Clear the flag and pmu::enable() will perform the
   1528 * schedulability test.
   1529 */
   1530static void sparc_pmu_cancel_txn(struct pmu *pmu)
   1531{
   1532	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
   1533	unsigned int txn_flags;
   1534
   1535	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */
   1536
   1537	txn_flags = cpuhw->txn_flags;
   1538	cpuhw->txn_flags = 0;
   1539	if (txn_flags & ~PERF_PMU_TXN_ADD)
   1540		return;
   1541
   1542	perf_pmu_enable(pmu);
   1543}
   1544
   1545/*
   1546 * Commit group events scheduling transaction
   1547 * Perform the group schedulability test as a whole
   1548 * Return 0 if success
   1549 */
   1550static int sparc_pmu_commit_txn(struct pmu *pmu)
   1551{
   1552	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
   1553	int n;
   1554
   1555	if (!sparc_pmu)
   1556		return -EINVAL;
   1557
   1558	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
   1559
   1560	if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
   1561		cpuc->txn_flags = 0;
   1562		return 0;
   1563	}
   1564
   1565	n = cpuc->n_events;
   1566	if (check_excludes(cpuc->event, 0, n))
   1567		return -EINVAL;
   1568	if (sparc_check_constraints(cpuc->event, cpuc->events, n))
   1569		return -EAGAIN;
   1570
   1571	cpuc->txn_flags = 0;
   1572	perf_pmu_enable(pmu);
   1573	return 0;
   1574}
   1575
   1576static struct pmu pmu = {
   1577	.pmu_enable	= sparc_pmu_enable,
   1578	.pmu_disable	= sparc_pmu_disable,
   1579	.event_init	= sparc_pmu_event_init,
   1580	.add		= sparc_pmu_add,
   1581	.del		= sparc_pmu_del,
   1582	.start		= sparc_pmu_start,
   1583	.stop		= sparc_pmu_stop,
   1584	.read		= sparc_pmu_read,
   1585	.start_txn	= sparc_pmu_start_txn,
   1586	.cancel_txn	= sparc_pmu_cancel_txn,
   1587	.commit_txn	= sparc_pmu_commit_txn,
   1588};
   1589
   1590void perf_event_print_debug(void)
   1591{
   1592	unsigned long flags;
   1593	int cpu, i;
   1594
   1595	if (!sparc_pmu)
   1596		return;
   1597
   1598	local_irq_save(flags);
   1599
   1600	cpu = smp_processor_id();
   1601
   1602	pr_info("\n");
   1603	for (i = 0; i < sparc_pmu->num_pcrs; i++)
   1604		pr_info("CPU#%d: PCR%d[%016llx]\n",
   1605			cpu, i, pcr_ops->read_pcr(i));
   1606	for (i = 0; i < sparc_pmu->num_pic_regs; i++)
   1607		pr_info("CPU#%d: PIC%d[%016llx]\n",
   1608			cpu, i, pcr_ops->read_pic(i));
   1609
   1610	local_irq_restore(flags);
   1611}
   1612
   1613static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
   1614					    unsigned long cmd, void *__args)
   1615{
   1616	struct die_args *args = __args;
   1617	struct perf_sample_data data;
   1618	struct cpu_hw_events *cpuc;
   1619	struct pt_regs *regs;
   1620	u64 finish_clock;
   1621	u64 start_clock;
   1622	int i;
   1623
   1624	if (!atomic_read(&active_events))
   1625		return NOTIFY_DONE;
   1626
   1627	switch (cmd) {
   1628	case DIE_NMI:
   1629		break;
   1630
   1631	default:
   1632		return NOTIFY_DONE;
   1633	}
   1634
   1635	start_clock = sched_clock();
   1636
   1637	regs = args->regs;
   1638
   1639	cpuc = this_cpu_ptr(&cpu_hw_events);
   1640
   1641	/* If the PMU has the TOE IRQ enable bits, we need to do a
   1642	 * dummy write to the %pcr to clear the overflow bits and thus
   1643	 * the interrupt.
   1644	 *
   1645	 * Do this before we peek at the counters to determine
   1646	 * overflow so we don't lose any events.
   1647	 */
   1648	if (sparc_pmu->irq_bit &&
   1649	    sparc_pmu->num_pcrs == 1)
   1650		pcr_ops->write_pcr(0, cpuc->pcr[0]);
   1651
   1652	for (i = 0; i < cpuc->n_events; i++) {
   1653		struct perf_event *event = cpuc->event[i];
   1654		int idx = cpuc->current_idx[i];
   1655		struct hw_perf_event *hwc;
   1656		u64 val;
   1657
   1658		if (sparc_pmu->irq_bit &&
   1659		    sparc_pmu->num_pcrs > 1)
   1660			pcr_ops->write_pcr(idx, cpuc->pcr[idx]);
   1661
   1662		hwc = &event->hw;
   1663		val = sparc_perf_event_update(event, hwc, idx);
   1664		if (val & (1ULL << 31))
   1665			continue;
   1666
   1667		perf_sample_data_init(&data, 0, hwc->last_period);
   1668		if (!sparc_perf_event_set_period(event, hwc, idx))
   1669			continue;
   1670
   1671		if (perf_event_overflow(event, &data, regs))
   1672			sparc_pmu_stop(event, 0);
   1673	}
   1674
   1675	finish_clock = sched_clock();
   1676
   1677	perf_sample_event_took(finish_clock - start_clock);
   1678
   1679	return NOTIFY_STOP;
   1680}
   1681
   1682static __read_mostly struct notifier_block perf_event_nmi_notifier = {
   1683	.notifier_call		= perf_event_nmi_handler,
   1684};
   1685
   1686static bool __init supported_pmu(void)
   1687{
   1688	if (!strcmp(sparc_pmu_type, "ultra3") ||
   1689	    !strcmp(sparc_pmu_type, "ultra3+") ||
   1690	    !strcmp(sparc_pmu_type, "ultra3i") ||
   1691	    !strcmp(sparc_pmu_type, "ultra4+")) {
   1692		sparc_pmu = &ultra3_pmu;
   1693		return true;
   1694	}
   1695	if (!strcmp(sparc_pmu_type, "niagara")) {
   1696		sparc_pmu = &niagara1_pmu;
   1697		return true;
   1698	}
   1699	if (!strcmp(sparc_pmu_type, "niagara2") ||
   1700	    !strcmp(sparc_pmu_type, "niagara3")) {
   1701		sparc_pmu = &niagara2_pmu;
   1702		return true;
   1703	}
   1704	if (!strcmp(sparc_pmu_type, "niagara4") ||
   1705	    !strcmp(sparc_pmu_type, "niagara5")) {
   1706		sparc_pmu = &niagara4_pmu;
   1707		return true;
   1708	}
   1709	if (!strcmp(sparc_pmu_type, "sparc-m7")) {
   1710		sparc_pmu = &sparc_m7_pmu;
   1711		return true;
   1712	}
   1713	return false;
   1714}
   1715
   1716static int __init init_hw_perf_events(void)
   1717{
   1718	int err;
   1719
   1720	pr_info("Performance events: ");
   1721
   1722	err = pcr_arch_init();
   1723	if (err || !supported_pmu()) {
   1724		pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
   1725		return 0;
   1726	}
   1727
   1728	pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
   1729
   1730	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
   1731	register_die_notifier(&perf_event_nmi_notifier);
   1732
   1733	return 0;
   1734}
   1735pure_initcall(init_hw_perf_events);
   1736
   1737void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry,
   1738			   struct pt_regs *regs)
   1739{
   1740	unsigned long ksp, fp;
   1741#ifdef CONFIG_FUNCTION_GRAPH_TRACER
   1742	int graph = 0;
   1743#endif
   1744
   1745	stack_trace_flush();
   1746
   1747	perf_callchain_store(entry, regs->tpc);
   1748
   1749	ksp = regs->u_regs[UREG_I6];
   1750	fp = ksp + STACK_BIAS;
   1751	do {
   1752		struct sparc_stackf *sf;
   1753		struct pt_regs *regs;
   1754		unsigned long pc;
   1755
   1756		if (!kstack_valid(current_thread_info(), fp))
   1757			break;
   1758
   1759		sf = (struct sparc_stackf *) fp;
   1760		regs = (struct pt_regs *) (sf + 1);
   1761
   1762		if (kstack_is_trap_frame(current_thread_info(), regs)) {
   1763			if (user_mode(regs))
   1764				break;
   1765			pc = regs->tpc;
   1766			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
   1767		} else {
   1768			pc = sf->callers_pc;
   1769			fp = (unsigned long)sf->fp + STACK_BIAS;
   1770		}
   1771		perf_callchain_store(entry, pc);
   1772#ifdef CONFIG_FUNCTION_GRAPH_TRACER
   1773		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
   1774			struct ftrace_ret_stack *ret_stack;
   1775			ret_stack = ftrace_graph_get_ret_stack(current,
   1776							       graph);
   1777			if (ret_stack) {
   1778				pc = ret_stack->ret;
   1779				perf_callchain_store(entry, pc);
   1780				graph++;
   1781			}
   1782		}
   1783#endif
   1784	} while (entry->nr < entry->max_stack);
   1785}
   1786
   1787static inline int
   1788valid_user_frame(const void __user *fp, unsigned long size)
   1789{
   1790	/* addresses should be at least 4-byte aligned */
   1791	if (((unsigned long) fp) & 3)
   1792		return 0;
   1793
   1794	return (__range_not_ok(fp, size, TASK_SIZE) == 0);
   1795}
   1796
   1797static void perf_callchain_user_64(struct perf_callchain_entry_ctx *entry,
   1798				   struct pt_regs *regs)
   1799{
   1800	unsigned long ufp;
   1801
   1802	ufp = regs->u_regs[UREG_FP] + STACK_BIAS;
   1803	do {
   1804		struct sparc_stackf __user *usf;
   1805		struct sparc_stackf sf;
   1806		unsigned long pc;
   1807
   1808		usf = (struct sparc_stackf __user *)ufp;
   1809		if (!valid_user_frame(usf, sizeof(sf)))
   1810			break;
   1811
   1812		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
   1813			break;
   1814
   1815		pc = sf.callers_pc;
   1816		ufp = (unsigned long)sf.fp + STACK_BIAS;
   1817		perf_callchain_store(entry, pc);
   1818	} while (entry->nr < entry->max_stack);
   1819}
   1820
   1821static void perf_callchain_user_32(struct perf_callchain_entry_ctx *entry,
   1822				   struct pt_regs *regs)
   1823{
   1824	unsigned long ufp;
   1825
   1826	ufp = regs->u_regs[UREG_FP] & 0xffffffffUL;
   1827	do {
   1828		unsigned long pc;
   1829
   1830		if (thread32_stack_is_64bit(ufp)) {
   1831			struct sparc_stackf __user *usf;
   1832			struct sparc_stackf sf;
   1833
   1834			ufp += STACK_BIAS;
   1835			usf = (struct sparc_stackf __user *)ufp;
   1836			if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
   1837				break;
   1838			pc = sf.callers_pc & 0xffffffff;
   1839			ufp = ((unsigned long) sf.fp) & 0xffffffff;
   1840		} else {
   1841			struct sparc_stackf32 __user *usf;
   1842			struct sparc_stackf32 sf;
   1843			usf = (struct sparc_stackf32 __user *)ufp;
   1844			if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
   1845				break;
   1846			pc = sf.callers_pc;
   1847			ufp = (unsigned long)sf.fp;
   1848		}
   1849		perf_callchain_store(entry, pc);
   1850	} while (entry->nr < entry->max_stack);
   1851}
   1852
   1853void
   1854perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
   1855{
   1856	u64 saved_fault_address = current_thread_info()->fault_address;
   1857	u8 saved_fault_code = get_thread_fault_code();
   1858
   1859	perf_callchain_store(entry, regs->tpc);
   1860
   1861	if (!current->mm)
   1862		return;
   1863
   1864	flushw_user();
   1865
   1866	pagefault_disable();
   1867
   1868	if (test_thread_flag(TIF_32BIT))
   1869		perf_callchain_user_32(entry, regs);
   1870	else
   1871		perf_callchain_user_64(entry, regs);
   1872
   1873	pagefault_enable();
   1874
   1875	set_thread_fault_code(saved_fault_code);
   1876	current_thread_info()->fault_address = saved_fault_address;
   1877}