cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

sun4d_irq.c (12460B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * SS1000/SC2000 interrupt handling.
      4 *
      5 *  Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
      6 *  Heavily based on arch/sparc/kernel/irq.c.
      7 */
      8
      9#include <linux/kernel_stat.h>
     10#include <linux/slab.h>
     11#include <linux/seq_file.h>
     12
     13#include <asm/timer.h>
     14#include <asm/traps.h>
     15#include <asm/irq.h>
     16#include <asm/io.h>
     17#include <asm/sbi.h>
     18#include <asm/cacheflush.h>
     19#include <asm/setup.h>
     20#include <asm/oplib.h>
     21
     22#include "kernel.h"
     23#include "irq.h"
     24
     25/* Sun4d interrupts fall roughly into two categories.  SBUS and
     26 * cpu local.  CPU local interrupts cover the timer interrupts
     27 * and whatnot, and we encode those as normal PILs between
     28 * 0 and 15.
     29 * SBUS interrupts are encodes as a combination of board, level and slot.
     30 */
     31
     32struct sun4d_handler_data {
     33	unsigned int cpuid;    /* target cpu */
     34	unsigned int real_irq; /* interrupt level */
     35};
     36
     37
     38static unsigned int sun4d_encode_irq(int board, int lvl, int slot)
     39{
     40	return (board + 1) << 5 | (lvl << 2) | slot;
     41}
     42
     43struct sun4d_timer_regs {
     44	u32	l10_timer_limit;
     45	u32	l10_cur_countx;
     46	u32	l10_limit_noclear;
     47	u32	ctrl;
     48	u32	l10_cur_count;
     49};
     50
     51static struct sun4d_timer_regs __iomem *sun4d_timers;
     52
     53#define SUN4D_TIMER_IRQ        10
     54
     55/* Specify which cpu handle interrupts from which board.
     56 * Index is board - value is cpu.
     57 */
     58static unsigned char board_to_cpu[32];
     59
     60static int pil_to_sbus[] = {
     61	0,
     62	0,
     63	1,
     64	2,
     65	0,
     66	3,
     67	0,
     68	4,
     69	0,
     70	5,
     71	0,
     72	6,
     73	0,
     74	7,
     75	0,
     76	0,
     77};
     78
     79/* Exported for sun4d_smp.c */
     80DEFINE_SPINLOCK(sun4d_imsk_lock);
     81
     82/* SBUS interrupts are encoded integers including the board number
     83 * (plus one), the SBUS level, and the SBUS slot number.  Sun4D
     84 * IRQ dispatch is done by:
     85 *
     86 * 1) Reading the BW local interrupt table in order to get the bus
     87 *    interrupt mask.
     88 *
     89 *    This table is indexed by SBUS interrupt level which can be
     90 *    derived from the PIL we got interrupted on.
     91 *
     92 * 2) For each bus showing interrupt pending from #1, read the
     93 *    SBI interrupt state register.  This will indicate which slots
     94 *    have interrupts pending for that SBUS interrupt level.
     95 *
     96 * 3) Call the genreric IRQ support.
     97 */
     98static void sun4d_sbus_handler_irq(int sbusl)
     99{
    100	unsigned int bus_mask;
    101	unsigned int sbino, slot;
    102	unsigned int sbil;
    103
    104	bus_mask = bw_get_intr_mask(sbusl) & 0x3ffff;
    105	bw_clear_intr_mask(sbusl, bus_mask);
    106
    107	sbil = (sbusl << 2);
    108	/* Loop for each pending SBI */
    109	for (sbino = 0; bus_mask; sbino++, bus_mask >>= 1) {
    110		unsigned int idx, mask;
    111
    112		if (!(bus_mask & 1))
    113			continue;
    114		/* XXX This seems to ACK the irq twice.  acquire_sbi()
    115		 * XXX uses swap, therefore this writes 0xf << sbil,
    116		 * XXX then later release_sbi() will write the individual
    117		 * XXX bits which were set again.
    118		 */
    119		mask = acquire_sbi(SBI2DEVID(sbino), 0xf << sbil);
    120		mask &= (0xf << sbil);
    121
    122		/* Loop for each pending SBI slot */
    123		slot = (1 << sbil);
    124		for (idx = 0; mask != 0; idx++, slot <<= 1) {
    125			unsigned int pil;
    126			struct irq_bucket *p;
    127
    128			if (!(mask & slot))
    129				continue;
    130
    131			mask &= ~slot;
    132			pil = sun4d_encode_irq(sbino, sbusl, idx);
    133
    134			p = irq_map[pil];
    135			while (p) {
    136				struct irq_bucket *next;
    137
    138				next = p->next;
    139				generic_handle_irq(p->irq);
    140				p = next;
    141			}
    142			release_sbi(SBI2DEVID(sbino), slot);
    143		}
    144	}
    145}
    146
    147void sun4d_handler_irq(unsigned int pil, struct pt_regs *regs)
    148{
    149	struct pt_regs *old_regs;
    150	/* SBUS IRQ level (1 - 7) */
    151	int sbusl = pil_to_sbus[pil];
    152
    153	/* FIXME: Is this necessary?? */
    154	cc_get_ipen();
    155
    156	cc_set_iclr(1 << pil);
    157
    158#ifdef CONFIG_SMP
    159	/*
    160	 * Check IPI data structures after IRQ has been cleared. Hard and Soft
    161	 * IRQ can happen at the same time, so both cases are always handled.
    162	 */
    163	if (pil == SUN4D_IPI_IRQ)
    164		sun4d_ipi_interrupt();
    165#endif
    166
    167	old_regs = set_irq_regs(regs);
    168	irq_enter();
    169	if (sbusl == 0) {
    170		/* cpu interrupt */
    171		struct irq_bucket *p;
    172
    173		p = irq_map[pil];
    174		while (p) {
    175			struct irq_bucket *next;
    176
    177			next = p->next;
    178			generic_handle_irq(p->irq);
    179			p = next;
    180		}
    181	} else {
    182		/* SBUS interrupt */
    183		sun4d_sbus_handler_irq(sbusl);
    184	}
    185	irq_exit();
    186	set_irq_regs(old_regs);
    187}
    188
    189
    190static void sun4d_mask_irq(struct irq_data *data)
    191{
    192	struct sun4d_handler_data *handler_data = irq_data_get_irq_handler_data(data);
    193	unsigned int real_irq;
    194#ifdef CONFIG_SMP
    195	int cpuid = handler_data->cpuid;
    196	unsigned long flags;
    197#endif
    198	real_irq = handler_data->real_irq;
    199#ifdef CONFIG_SMP
    200	spin_lock_irqsave(&sun4d_imsk_lock, flags);
    201	cc_set_imsk_other(cpuid, cc_get_imsk_other(cpuid) | (1 << real_irq));
    202	spin_unlock_irqrestore(&sun4d_imsk_lock, flags);
    203#else
    204	cc_set_imsk(cc_get_imsk() | (1 << real_irq));
    205#endif
    206}
    207
    208static void sun4d_unmask_irq(struct irq_data *data)
    209{
    210	struct sun4d_handler_data *handler_data = irq_data_get_irq_handler_data(data);
    211	unsigned int real_irq;
    212#ifdef CONFIG_SMP
    213	int cpuid = handler_data->cpuid;
    214	unsigned long flags;
    215#endif
    216	real_irq = handler_data->real_irq;
    217
    218#ifdef CONFIG_SMP
    219	spin_lock_irqsave(&sun4d_imsk_lock, flags);
    220	cc_set_imsk_other(cpuid, cc_get_imsk_other(cpuid) & ~(1 << real_irq));
    221	spin_unlock_irqrestore(&sun4d_imsk_lock, flags);
    222#else
    223	cc_set_imsk(cc_get_imsk() & ~(1 << real_irq));
    224#endif
    225}
    226
    227static unsigned int sun4d_startup_irq(struct irq_data *data)
    228{
    229	irq_link(data->irq);
    230	sun4d_unmask_irq(data);
    231	return 0;
    232}
    233
    234static void sun4d_shutdown_irq(struct irq_data *data)
    235{
    236	sun4d_mask_irq(data);
    237	irq_unlink(data->irq);
    238}
    239
    240static struct irq_chip sun4d_irq = {
    241	.name		= "sun4d",
    242	.irq_startup	= sun4d_startup_irq,
    243	.irq_shutdown	= sun4d_shutdown_irq,
    244	.irq_unmask	= sun4d_unmask_irq,
    245	.irq_mask	= sun4d_mask_irq,
    246};
    247
    248#ifdef CONFIG_SMP
    249/* Setup IRQ distribution scheme. */
    250void __init sun4d_distribute_irqs(void)
    251{
    252	struct device_node *dp;
    253
    254	int cpuid = cpu_logical_map(1);
    255
    256	if (cpuid == -1)
    257		cpuid = cpu_logical_map(0);
    258	for_each_node_by_name(dp, "sbi") {
    259		int devid = of_getintprop_default(dp, "device-id", 0);
    260		int board = of_getintprop_default(dp, "board#", 0);
    261		board_to_cpu[board] = cpuid;
    262		set_sbi_tid(devid, cpuid << 3);
    263	}
    264	printk(KERN_ERR "All sbus IRQs directed to CPU%d\n", cpuid);
    265}
    266#endif
    267
    268static void sun4d_clear_clock_irq(void)
    269{
    270	sbus_readl(&sun4d_timers->l10_timer_limit);
    271}
    272
    273static void sun4d_load_profile_irq(int cpu, unsigned int limit)
    274{
    275	unsigned int value = limit ? timer_value(limit) : 0;
    276	bw_set_prof_limit(cpu, value);
    277}
    278
    279static void __init sun4d_load_profile_irqs(void)
    280{
    281	int cpu = 0, mid;
    282
    283	while (!cpu_find_by_instance(cpu, NULL, &mid)) {
    284		sun4d_load_profile_irq(mid >> 3, 0);
    285		cpu++;
    286	}
    287}
    288
    289static unsigned int _sun4d_build_device_irq(unsigned int real_irq,
    290                                            unsigned int pil,
    291                                            unsigned int board)
    292{
    293	struct sun4d_handler_data *handler_data;
    294	unsigned int irq;
    295
    296	irq = irq_alloc(real_irq, pil);
    297	if (irq == 0) {
    298		prom_printf("IRQ: allocate for %d %d %d failed\n",
    299			real_irq, pil, board);
    300		goto err_out;
    301	}
    302
    303	handler_data = irq_get_handler_data(irq);
    304	if (unlikely(handler_data))
    305		goto err_out;
    306
    307	handler_data = kzalloc(sizeof(struct sun4d_handler_data), GFP_ATOMIC);
    308	if (unlikely(!handler_data)) {
    309		prom_printf("IRQ: kzalloc(sun4d_handler_data) failed.\n");
    310		prom_halt();
    311	}
    312	handler_data->cpuid    = board_to_cpu[board];
    313	handler_data->real_irq = real_irq;
    314	irq_set_chip_and_handler_name(irq, &sun4d_irq,
    315	                              handle_level_irq, "level");
    316	irq_set_handler_data(irq, handler_data);
    317
    318err_out:
    319	return irq;
    320}
    321
    322
    323
    324static unsigned int sun4d_build_device_irq(struct platform_device *op,
    325                                           unsigned int real_irq)
    326{
    327	struct device_node *dp = op->dev.of_node;
    328	struct device_node *board_parent, *bus = dp->parent;
    329	char *bus_connection;
    330	const struct linux_prom_registers *regs;
    331	unsigned int pil;
    332	unsigned int irq;
    333	int board, slot;
    334	int sbusl;
    335
    336	irq = real_irq;
    337	while (bus) {
    338		if (of_node_name_eq(bus, "sbi")) {
    339			bus_connection = "io-unit";
    340			break;
    341		}
    342
    343		if (of_node_name_eq(bus, "bootbus")) {
    344			bus_connection = "cpu-unit";
    345			break;
    346		}
    347
    348		bus = bus->parent;
    349	}
    350	if (!bus)
    351		goto err_out;
    352
    353	regs = of_get_property(dp, "reg", NULL);
    354	if (!regs)
    355		goto err_out;
    356
    357	slot = regs->which_io;
    358
    359	/*
    360	 * If Bus nodes parent is not io-unit/cpu-unit or the io-unit/cpu-unit
    361	 * lacks a "board#" property, something is very wrong.
    362	 */
    363	if (!of_node_name_eq(bus->parent, bus_connection)) {
    364		printk(KERN_ERR "%pOF: Error, parent is not %s.\n",
    365			bus, bus_connection);
    366		goto err_out;
    367	}
    368	board_parent = bus->parent;
    369	board = of_getintprop_default(board_parent, "board#", -1);
    370	if (board == -1) {
    371		printk(KERN_ERR "%pOF: Error, lacks board# property.\n",
    372			board_parent);
    373		goto err_out;
    374	}
    375
    376	sbusl = pil_to_sbus[real_irq];
    377	if (sbusl)
    378		pil = sun4d_encode_irq(board, sbusl, slot);
    379	else
    380		pil = real_irq;
    381
    382	irq = _sun4d_build_device_irq(real_irq, pil, board);
    383err_out:
    384	return irq;
    385}
    386
    387static unsigned int sun4d_build_timer_irq(unsigned int board,
    388                                          unsigned int real_irq)
    389{
    390	return _sun4d_build_device_irq(real_irq, real_irq, board);
    391}
    392
    393
    394static void __init sun4d_fixup_trap_table(void)
    395{
    396#ifdef CONFIG_SMP
    397	unsigned long flags;
    398	struct tt_entry *trap_table = &sparc_ttable[SP_TRAP_IRQ1 + (14 - 1)];
    399
    400	/* Adjust so that we jump directly to smp4d_ticker */
    401	lvl14_save[2] += smp4d_ticker - real_irq_entry;
    402
    403	/* For SMP we use the level 14 ticker, however the bootup code
    404	 * has copied the firmware's level 14 vector into the boot cpu's
    405	 * trap table, we must fix this now or we get squashed.
    406	 */
    407	local_irq_save(flags);
    408	patchme_maybe_smp_msg[0] = 0x01000000; /* NOP out the branch */
    409	trap_table->inst_one = lvl14_save[0];
    410	trap_table->inst_two = lvl14_save[1];
    411	trap_table->inst_three = lvl14_save[2];
    412	trap_table->inst_four = lvl14_save[3];
    413	local_ops->cache_all();
    414	local_irq_restore(flags);
    415#endif
    416}
    417
    418static void __init sun4d_init_timers(void)
    419{
    420	struct device_node *dp;
    421	struct resource res;
    422	unsigned int irq;
    423	const u32 *reg;
    424	int err;
    425	int board;
    426
    427	dp = of_find_node_by_name(NULL, "cpu-unit");
    428	if (!dp) {
    429		prom_printf("sun4d_init_timers: Unable to find cpu-unit\n");
    430		prom_halt();
    431	}
    432
    433	/* Which cpu-unit we use is arbitrary, we can view the bootbus timer
    434	 * registers via any cpu's mapping.  The first 'reg' property is the
    435	 * bootbus.
    436	 */
    437	reg = of_get_property(dp, "reg", NULL);
    438	if (!reg) {
    439		prom_printf("sun4d_init_timers: No reg property\n");
    440		prom_halt();
    441	}
    442
    443	board = of_getintprop_default(dp, "board#", -1);
    444	if (board == -1) {
    445		prom_printf("sun4d_init_timers: No board# property on cpu-unit\n");
    446		prom_halt();
    447	}
    448
    449	of_node_put(dp);
    450
    451	res.start = reg[1];
    452	res.end = reg[2] - 1;
    453	res.flags = reg[0] & 0xff;
    454	sun4d_timers = of_ioremap(&res, BW_TIMER_LIMIT,
    455				  sizeof(struct sun4d_timer_regs), "user timer");
    456	if (!sun4d_timers) {
    457		prom_printf("sun4d_init_timers: Can't map timer regs\n");
    458		prom_halt();
    459	}
    460
    461#ifdef CONFIG_SMP
    462	sparc_config.cs_period = SBUS_CLOCK_RATE * 2;  /* 2 seconds */
    463#else
    464	sparc_config.cs_period = SBUS_CLOCK_RATE / HZ; /* 1/HZ sec  */
    465	sparc_config.features |= FEAT_L10_CLOCKEVENT;
    466#endif
    467	sparc_config.features |= FEAT_L10_CLOCKSOURCE;
    468	sbus_writel(timer_value(sparc_config.cs_period),
    469		    &sun4d_timers->l10_timer_limit);
    470
    471	master_l10_counter = &sun4d_timers->l10_cur_count;
    472
    473	irq = sun4d_build_timer_irq(board, SUN4D_TIMER_IRQ);
    474	err = request_irq(irq, timer_interrupt, IRQF_TIMER, "timer", NULL);
    475	if (err) {
    476		prom_printf("sun4d_init_timers: request_irq() failed with %d\n",
    477		             err);
    478		prom_halt();
    479	}
    480	sun4d_load_profile_irqs();
    481	sun4d_fixup_trap_table();
    482}
    483
    484void __init sun4d_init_sbi_irq(void)
    485{
    486	struct device_node *dp;
    487	int target_cpu;
    488
    489	target_cpu = boot_cpu_id;
    490	for_each_node_by_name(dp, "sbi") {
    491		int devid = of_getintprop_default(dp, "device-id", 0);
    492		int board = of_getintprop_default(dp, "board#", 0);
    493		unsigned int mask;
    494
    495		set_sbi_tid(devid, target_cpu << 3);
    496		board_to_cpu[board] = target_cpu;
    497
    498		/* Get rid of pending irqs from PROM */
    499		mask = acquire_sbi(devid, 0xffffffff);
    500		if (mask) {
    501			printk(KERN_ERR "Clearing pending IRQs %08x on SBI %d\n",
    502			       mask, board);
    503			release_sbi(devid, mask);
    504		}
    505	}
    506}
    507
    508void __init sun4d_init_IRQ(void)
    509{
    510	local_irq_disable();
    511
    512	sparc_config.init_timers      = sun4d_init_timers;
    513	sparc_config.build_device_irq = sun4d_build_device_irq;
    514	sparc_config.clock_rate       = SBUS_CLOCK_RATE;
    515	sparc_config.clear_clock_irq  = sun4d_clear_clock_irq;
    516	sparc_config.load_profile_irq = sun4d_load_profile_irq;
    517
    518	/* Cannot enable interrupts until OBP ticker is disabled. */
    519}