cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

time_32.c (8674B)


      1// SPDX-License-Identifier: GPL-2.0
      2/* linux/arch/sparc/kernel/time.c
      3 *
      4 * Copyright (C) 1995 David S. Miller (davem@davemloft.net)
      5 * Copyright (C) 1996 Thomas K. Dyas (tdyas@eden.rutgers.edu)
      6 *
      7 * Chris Davis (cdavis@cois.on.ca) 03/27/1998
      8 * Added support for the intersil on the sun4/4200
      9 *
     10 * Gleb Raiko (rajko@mech.math.msu.su) 08/18/1998
     11 * Support for MicroSPARC-IIep, PCI CPU.
     12 *
     13 * This file handles the Sparc specific time handling details.
     14 *
     15 * 1997-09-10	Updated NTP code according to technical memorandum Jan '96
     16 *		"A Kernel Model for Precision Timekeeping" by Dave Mills
     17 */
     18#include <linux/errno.h>
     19#include <linux/module.h>
     20#include <linux/sched.h>
     21#include <linux/kernel.h>
     22#include <linux/param.h>
     23#include <linux/string.h>
     24#include <linux/mm.h>
     25#include <linux/interrupt.h>
     26#include <linux/time.h>
     27#include <linux/rtc/m48t59.h>
     28#include <linux/timex.h>
     29#include <linux/clocksource.h>
     30#include <linux/clockchips.h>
     31#include <linux/init.h>
     32#include <linux/pci.h>
     33#include <linux/ioport.h>
     34#include <linux/profile.h>
     35#include <linux/of.h>
     36#include <linux/of_device.h>
     37#include <linux/platform_device.h>
     38
     39#include <asm/mc146818rtc.h>
     40#include <asm/oplib.h>
     41#include <asm/timex.h>
     42#include <asm/timer.h>
     43#include <asm/irq.h>
     44#include <asm/io.h>
     45#include <asm/idprom.h>
     46#include <asm/page.h>
     47#include <asm/pcic.h>
     48#include <asm/irq_regs.h>
     49#include <asm/setup.h>
     50
     51#include "kernel.h"
     52#include "irq.h"
     53
     54static __cacheline_aligned_in_smp DEFINE_SEQLOCK(timer_cs_lock);
     55static __volatile__ u64 timer_cs_internal_counter = 0;
     56static char timer_cs_enabled = 0;
     57
     58static struct clock_event_device timer_ce;
     59static char timer_ce_enabled = 0;
     60
     61#ifdef CONFIG_SMP
     62DEFINE_PER_CPU(struct clock_event_device, sparc32_clockevent);
     63#endif
     64
     65DEFINE_SPINLOCK(rtc_lock);
     66EXPORT_SYMBOL(rtc_lock);
     67
     68unsigned long profile_pc(struct pt_regs *regs)
     69{
     70	extern char __copy_user_begin[], __copy_user_end[];
     71	extern char __bzero_begin[], __bzero_end[];
     72
     73	unsigned long pc = regs->pc;
     74
     75	if (in_lock_functions(pc) ||
     76	    (pc >= (unsigned long) __copy_user_begin &&
     77	     pc < (unsigned long) __copy_user_end) ||
     78	    (pc >= (unsigned long) __bzero_begin &&
     79	     pc < (unsigned long) __bzero_end))
     80		pc = regs->u_regs[UREG_RETPC];
     81	return pc;
     82}
     83
     84EXPORT_SYMBOL(profile_pc);
     85
     86volatile u32 __iomem *master_l10_counter;
     87
     88irqreturn_t notrace timer_interrupt(int dummy, void *dev_id)
     89{
     90	if (timer_cs_enabled) {
     91		write_seqlock(&timer_cs_lock);
     92		timer_cs_internal_counter++;
     93		sparc_config.clear_clock_irq();
     94		write_sequnlock(&timer_cs_lock);
     95	} else {
     96		sparc_config.clear_clock_irq();
     97	}
     98
     99	if (timer_ce_enabled)
    100		timer_ce.event_handler(&timer_ce);
    101
    102	return IRQ_HANDLED;
    103}
    104
    105static int timer_ce_shutdown(struct clock_event_device *evt)
    106{
    107	timer_ce_enabled = 0;
    108	smp_mb();
    109	return 0;
    110}
    111
    112static int timer_ce_set_periodic(struct clock_event_device *evt)
    113{
    114	timer_ce_enabled = 1;
    115	smp_mb();
    116	return 0;
    117}
    118
    119static __init void setup_timer_ce(void)
    120{
    121	struct clock_event_device *ce = &timer_ce;
    122
    123	BUG_ON(smp_processor_id() != boot_cpu_id);
    124
    125	ce->name     = "timer_ce";
    126	ce->rating   = 100;
    127	ce->features = CLOCK_EVT_FEAT_PERIODIC;
    128	ce->set_state_shutdown = timer_ce_shutdown;
    129	ce->set_state_periodic = timer_ce_set_periodic;
    130	ce->tick_resume = timer_ce_set_periodic;
    131	ce->cpumask  = cpu_possible_mask;
    132	ce->shift    = 32;
    133	ce->mult     = div_sc(sparc_config.clock_rate, NSEC_PER_SEC,
    134	                      ce->shift);
    135	clockevents_register_device(ce);
    136}
    137
    138static unsigned int sbus_cycles_offset(void)
    139{
    140	u32 val, offset;
    141
    142	val = sbus_readl(master_l10_counter);
    143	offset = (val >> TIMER_VALUE_SHIFT) & TIMER_VALUE_MASK;
    144
    145	/* Limit hit? */
    146	if (val & TIMER_LIMIT_BIT)
    147		offset += sparc_config.cs_period;
    148
    149	return offset;
    150}
    151
    152static u64 timer_cs_read(struct clocksource *cs)
    153{
    154	unsigned int seq, offset;
    155	u64 cycles;
    156
    157	do {
    158		seq = read_seqbegin(&timer_cs_lock);
    159
    160		cycles = timer_cs_internal_counter;
    161		offset = sparc_config.get_cycles_offset();
    162	} while (read_seqretry(&timer_cs_lock, seq));
    163
    164	/* Count absolute cycles */
    165	cycles *= sparc_config.cs_period;
    166	cycles += offset;
    167
    168	return cycles;
    169}
    170
    171static struct clocksource timer_cs = {
    172	.name	= "timer_cs",
    173	.rating	= 100,
    174	.read	= timer_cs_read,
    175	.mask	= CLOCKSOURCE_MASK(64),
    176	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
    177};
    178
    179static __init int setup_timer_cs(void)
    180{
    181	timer_cs_enabled = 1;
    182	return clocksource_register_hz(&timer_cs, sparc_config.clock_rate);
    183}
    184
    185#ifdef CONFIG_SMP
    186static int percpu_ce_shutdown(struct clock_event_device *evt)
    187{
    188	int cpu = cpumask_first(evt->cpumask);
    189
    190	sparc_config.load_profile_irq(cpu, 0);
    191	return 0;
    192}
    193
    194static int percpu_ce_set_periodic(struct clock_event_device *evt)
    195{
    196	int cpu = cpumask_first(evt->cpumask);
    197
    198	sparc_config.load_profile_irq(cpu, SBUS_CLOCK_RATE / HZ);
    199	return 0;
    200}
    201
    202static int percpu_ce_set_next_event(unsigned long delta,
    203				    struct clock_event_device *evt)
    204{
    205	int cpu = cpumask_first(evt->cpumask);
    206	unsigned int next = (unsigned int)delta;
    207
    208	sparc_config.load_profile_irq(cpu, next);
    209	return 0;
    210}
    211
    212void register_percpu_ce(int cpu)
    213{
    214	struct clock_event_device *ce = &per_cpu(sparc32_clockevent, cpu);
    215	unsigned int features = CLOCK_EVT_FEAT_PERIODIC;
    216
    217	if (sparc_config.features & FEAT_L14_ONESHOT)
    218		features |= CLOCK_EVT_FEAT_ONESHOT;
    219
    220	ce->name           = "percpu_ce";
    221	ce->rating         = 200;
    222	ce->features       = features;
    223	ce->set_state_shutdown = percpu_ce_shutdown;
    224	ce->set_state_periodic = percpu_ce_set_periodic;
    225	ce->set_state_oneshot = percpu_ce_shutdown;
    226	ce->set_next_event = percpu_ce_set_next_event;
    227	ce->cpumask        = cpumask_of(cpu);
    228	ce->shift          = 32;
    229	ce->mult           = div_sc(sparc_config.clock_rate, NSEC_PER_SEC,
    230	                            ce->shift);
    231	ce->max_delta_ns   = clockevent_delta2ns(sparc_config.clock_rate, ce);
    232	ce->max_delta_ticks = (unsigned long)sparc_config.clock_rate;
    233	ce->min_delta_ns   = clockevent_delta2ns(100, ce);
    234	ce->min_delta_ticks = 100;
    235
    236	clockevents_register_device(ce);
    237}
    238#endif
    239
    240static unsigned char mostek_read_byte(struct device *dev, u32 ofs)
    241{
    242	struct platform_device *pdev = to_platform_device(dev);
    243	struct m48t59_plat_data *pdata = pdev->dev.platform_data;
    244
    245	return readb(pdata->ioaddr + ofs);
    246}
    247
    248static void mostek_write_byte(struct device *dev, u32 ofs, u8 val)
    249{
    250	struct platform_device *pdev = to_platform_device(dev);
    251	struct m48t59_plat_data *pdata = pdev->dev.platform_data;
    252
    253	writeb(val, pdata->ioaddr + ofs);
    254}
    255
    256static struct m48t59_plat_data m48t59_data = {
    257	.read_byte = mostek_read_byte,
    258	.write_byte = mostek_write_byte,
    259};
    260
    261/* resource is set at runtime */
    262static struct platform_device m48t59_rtc = {
    263	.name		= "rtc-m48t59",
    264	.id		= 0,
    265	.num_resources	= 1,
    266	.dev	= {
    267		.platform_data = &m48t59_data,
    268	},
    269};
    270
    271static int clock_probe(struct platform_device *op)
    272{
    273	struct device_node *dp = op->dev.of_node;
    274	const char *model = of_get_property(dp, "model", NULL);
    275
    276	if (!model)
    277		return -ENODEV;
    278
    279	/* Only the primary RTC has an address property */
    280	if (!of_find_property(dp, "address", NULL))
    281		return -ENODEV;
    282
    283	m48t59_rtc.resource = &op->resource[0];
    284	if (!strcmp(model, "mk48t02")) {
    285		/* Map the clock register io area read-only */
    286		m48t59_data.ioaddr = of_ioremap(&op->resource[0], 0,
    287						2048, "rtc-m48t59");
    288		m48t59_data.type = M48T59RTC_TYPE_M48T02;
    289	} else if (!strcmp(model, "mk48t08")) {
    290		m48t59_data.ioaddr = of_ioremap(&op->resource[0], 0,
    291						8192, "rtc-m48t59");
    292		m48t59_data.type = M48T59RTC_TYPE_M48T08;
    293	} else
    294		return -ENODEV;
    295
    296	if (platform_device_register(&m48t59_rtc) < 0)
    297		printk(KERN_ERR "Registering RTC device failed\n");
    298
    299	return 0;
    300}
    301
    302static const struct of_device_id clock_match[] = {
    303	{
    304		.name = "eeprom",
    305	},
    306	{},
    307};
    308
    309static struct platform_driver clock_driver = {
    310	.probe		= clock_probe,
    311	.driver = {
    312		.name = "rtc",
    313		.of_match_table = clock_match,
    314	},
    315};
    316
    317
    318/* Probe for the mostek real time clock chip. */
    319static int __init clock_init(void)
    320{
    321	return platform_driver_register(&clock_driver);
    322}
    323/* Must be after subsys_initcall() so that busses are probed.  Must
    324 * be before device_initcall() because things like the RTC driver
    325 * need to see the clock registers.
    326 */
    327fs_initcall(clock_init);
    328
    329static void __init sparc32_late_time_init(void)
    330{
    331	if (sparc_config.features & FEAT_L10_CLOCKEVENT)
    332		setup_timer_ce();
    333	if (sparc_config.features & FEAT_L10_CLOCKSOURCE)
    334		setup_timer_cs();
    335#ifdef CONFIG_SMP
    336	register_percpu_ce(smp_processor_id());
    337#endif
    338}
    339
    340static void __init sbus_time_init(void)
    341{
    342	sparc_config.get_cycles_offset = sbus_cycles_offset;
    343	sparc_config.init_timers();
    344}
    345
    346void __init time_init(void)
    347{
    348	sparc_config.features = 0;
    349	late_time_init = sparc32_late_time_init;
    350
    351	if (pcic_present())
    352		pci_time_init();
    353	else
    354		sbus_time_init();
    355}
    356