unaligned_64.c (18042B)
1// SPDX-License-Identifier: GPL-2.0 2/* 3 * unaligned.c: Unaligned load/store trap handling with special 4 * cases for the kernel to do them more quickly. 5 * 6 * Copyright (C) 1996,2008 David S. Miller (davem@davemloft.net) 7 * Copyright (C) 1996,1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz) 8 */ 9 10 11#include <linux/jiffies.h> 12#include <linux/kernel.h> 13#include <linux/sched.h> 14#include <linux/mm.h> 15#include <linux/extable.h> 16#include <asm/asi.h> 17#include <asm/ptrace.h> 18#include <asm/pstate.h> 19#include <asm/processor.h> 20#include <linux/uaccess.h> 21#include <linux/smp.h> 22#include <linux/bitops.h> 23#include <linux/perf_event.h> 24#include <linux/ratelimit.h> 25#include <linux/context_tracking.h> 26#include <asm/fpumacro.h> 27#include <asm/cacheflush.h> 28#include <asm/setup.h> 29 30#include "entry.h" 31#include "kernel.h" 32 33enum direction { 34 load, /* ld, ldd, ldh, ldsh */ 35 store, /* st, std, sth, stsh */ 36 both, /* Swap, ldstub, cas, ... */ 37 fpld, 38 fpst, 39 invalid, 40}; 41 42static inline enum direction decode_direction(unsigned int insn) 43{ 44 unsigned long tmp = (insn >> 21) & 1; 45 46 if (!tmp) 47 return load; 48 else { 49 switch ((insn>>19)&0xf) { 50 case 15: /* swap* */ 51 return both; 52 default: 53 return store; 54 } 55 } 56} 57 58/* 16 = double-word, 8 = extra-word, 4 = word, 2 = half-word */ 59static inline int decode_access_size(struct pt_regs *regs, unsigned int insn) 60{ 61 unsigned int tmp; 62 63 tmp = ((insn >> 19) & 0xf); 64 if (tmp == 11 || tmp == 14) /* ldx/stx */ 65 return 8; 66 tmp &= 3; 67 if (!tmp) 68 return 4; 69 else if (tmp == 3) 70 return 16; /* ldd/std - Although it is actually 8 */ 71 else if (tmp == 2) 72 return 2; 73 else { 74 printk("Impossible unaligned trap. insn=%08x\n", insn); 75 die_if_kernel("Byte sized unaligned access?!?!", regs); 76 77 /* GCC should never warn that control reaches the end 78 * of this function without returning a value because 79 * die_if_kernel() is marked with attribute 'noreturn'. 80 * Alas, some versions do... 81 */ 82 83 return 0; 84 } 85} 86 87static inline int decode_asi(unsigned int insn, struct pt_regs *regs) 88{ 89 if (insn & 0x800000) { 90 if (insn & 0x2000) 91 return (unsigned char)(regs->tstate >> 24); /* %asi */ 92 else 93 return (unsigned char)(insn >> 5); /* imm_asi */ 94 } else 95 return ASI_P; 96} 97 98/* 0x400000 = signed, 0 = unsigned */ 99static inline int decode_signedness(unsigned int insn) 100{ 101 return (insn & 0x400000); 102} 103 104static inline void maybe_flush_windows(unsigned int rs1, unsigned int rs2, 105 unsigned int rd, int from_kernel) 106{ 107 if (rs2 >= 16 || rs1 >= 16 || rd >= 16) { 108 if (from_kernel != 0) 109 __asm__ __volatile__("flushw"); 110 else 111 flushw_user(); 112 } 113} 114 115static inline long sign_extend_imm13(long imm) 116{ 117 return imm << 51 >> 51; 118} 119 120static unsigned long fetch_reg(unsigned int reg, struct pt_regs *regs) 121{ 122 unsigned long value, fp; 123 124 if (reg < 16) 125 return (!reg ? 0 : regs->u_regs[reg]); 126 127 fp = regs->u_regs[UREG_FP]; 128 129 if (regs->tstate & TSTATE_PRIV) { 130 struct reg_window *win; 131 win = (struct reg_window *)(fp + STACK_BIAS); 132 value = win->locals[reg - 16]; 133 } else if (!test_thread_64bit_stack(fp)) { 134 struct reg_window32 __user *win32; 135 win32 = (struct reg_window32 __user *)((unsigned long)((u32)fp)); 136 get_user(value, &win32->locals[reg - 16]); 137 } else { 138 struct reg_window __user *win; 139 win = (struct reg_window __user *)(fp + STACK_BIAS); 140 get_user(value, &win->locals[reg - 16]); 141 } 142 return value; 143} 144 145static unsigned long *fetch_reg_addr(unsigned int reg, struct pt_regs *regs) 146{ 147 unsigned long fp; 148 149 if (reg < 16) 150 return ®s->u_regs[reg]; 151 152 fp = regs->u_regs[UREG_FP]; 153 154 if (regs->tstate & TSTATE_PRIV) { 155 struct reg_window *win; 156 win = (struct reg_window *)(fp + STACK_BIAS); 157 return &win->locals[reg - 16]; 158 } else if (!test_thread_64bit_stack(fp)) { 159 struct reg_window32 *win32; 160 win32 = (struct reg_window32 *)((unsigned long)((u32)fp)); 161 return (unsigned long *)&win32->locals[reg - 16]; 162 } else { 163 struct reg_window *win; 164 win = (struct reg_window *)(fp + STACK_BIAS); 165 return &win->locals[reg - 16]; 166 } 167} 168 169unsigned long compute_effective_address(struct pt_regs *regs, 170 unsigned int insn, unsigned int rd) 171{ 172 int from_kernel = (regs->tstate & TSTATE_PRIV) != 0; 173 unsigned int rs1 = (insn >> 14) & 0x1f; 174 unsigned int rs2 = insn & 0x1f; 175 unsigned long addr; 176 177 if (insn & 0x2000) { 178 maybe_flush_windows(rs1, 0, rd, from_kernel); 179 addr = (fetch_reg(rs1, regs) + sign_extend_imm13(insn)); 180 } else { 181 maybe_flush_windows(rs1, rs2, rd, from_kernel); 182 addr = (fetch_reg(rs1, regs) + fetch_reg(rs2, regs)); 183 } 184 185 if (!from_kernel && test_thread_flag(TIF_32BIT)) 186 addr &= 0xffffffff; 187 188 return addr; 189} 190 191/* This is just to make gcc think die_if_kernel does return... */ 192static void __used unaligned_panic(char *str, struct pt_regs *regs) 193{ 194 die_if_kernel(str, regs); 195} 196 197extern int do_int_load(unsigned long *dest_reg, int size, 198 unsigned long *saddr, int is_signed, int asi); 199 200extern int __do_int_store(unsigned long *dst_addr, int size, 201 unsigned long src_val, int asi); 202 203static inline int do_int_store(int reg_num, int size, unsigned long *dst_addr, 204 struct pt_regs *regs, int asi, int orig_asi) 205{ 206 unsigned long zero = 0; 207 unsigned long *src_val_p = &zero; 208 unsigned long src_val; 209 210 if (size == 16) { 211 size = 8; 212 zero = (((long)(reg_num ? 213 (unsigned int)fetch_reg(reg_num, regs) : 0)) << 32) | 214 (unsigned int)fetch_reg(reg_num + 1, regs); 215 } else if (reg_num) { 216 src_val_p = fetch_reg_addr(reg_num, regs); 217 } 218 src_val = *src_val_p; 219 if (unlikely(asi != orig_asi)) { 220 switch (size) { 221 case 2: 222 src_val = swab16(src_val); 223 break; 224 case 4: 225 src_val = swab32(src_val); 226 break; 227 case 8: 228 src_val = swab64(src_val); 229 break; 230 case 16: 231 default: 232 BUG(); 233 break; 234 } 235 } 236 return __do_int_store(dst_addr, size, src_val, asi); 237} 238 239static inline void advance(struct pt_regs *regs) 240{ 241 regs->tpc = regs->tnpc; 242 regs->tnpc += 4; 243 if (test_thread_flag(TIF_32BIT)) { 244 regs->tpc &= 0xffffffff; 245 regs->tnpc &= 0xffffffff; 246 } 247} 248 249static inline int floating_point_load_or_store_p(unsigned int insn) 250{ 251 return (insn >> 24) & 1; 252} 253 254static inline int ok_for_kernel(unsigned int insn) 255{ 256 return !floating_point_load_or_store_p(insn); 257} 258 259static void kernel_mna_trap_fault(int fixup_tstate_asi) 260{ 261 struct pt_regs *regs = current_thread_info()->kern_una_regs; 262 unsigned int insn = current_thread_info()->kern_una_insn; 263 const struct exception_table_entry *entry; 264 265 entry = search_exception_tables(regs->tpc); 266 if (!entry) { 267 unsigned long address; 268 269 address = compute_effective_address(regs, insn, 270 ((insn >> 25) & 0x1f)); 271 if (address < PAGE_SIZE) { 272 printk(KERN_ALERT "Unable to handle kernel NULL " 273 "pointer dereference in mna handler"); 274 } else 275 printk(KERN_ALERT "Unable to handle kernel paging " 276 "request in mna handler"); 277 printk(KERN_ALERT " at virtual address %016lx\n",address); 278 printk(KERN_ALERT "current->{active_,}mm->context = %016lx\n", 279 (current->mm ? CTX_HWBITS(current->mm->context) : 280 CTX_HWBITS(current->active_mm->context))); 281 printk(KERN_ALERT "current->{active_,}mm->pgd = %016lx\n", 282 (current->mm ? (unsigned long) current->mm->pgd : 283 (unsigned long) current->active_mm->pgd)); 284 die_if_kernel("Oops", regs); 285 /* Not reached */ 286 } 287 regs->tpc = entry->fixup; 288 regs->tnpc = regs->tpc + 4; 289 290 if (fixup_tstate_asi) { 291 regs->tstate &= ~TSTATE_ASI; 292 regs->tstate |= (ASI_AIUS << 24UL); 293 } 294} 295 296static void log_unaligned(struct pt_regs *regs) 297{ 298 static DEFINE_RATELIMIT_STATE(ratelimit, 5 * HZ, 5); 299 300 if (__ratelimit(&ratelimit)) { 301 printk("Kernel unaligned access at TPC[%lx] %pS\n", 302 regs->tpc, (void *) regs->tpc); 303 } 304} 305 306asmlinkage void kernel_unaligned_trap(struct pt_regs *regs, unsigned int insn) 307{ 308 enum direction dir = decode_direction(insn); 309 int size = decode_access_size(regs, insn); 310 int orig_asi, asi; 311 312 current_thread_info()->kern_una_regs = regs; 313 current_thread_info()->kern_una_insn = insn; 314 315 orig_asi = asi = decode_asi(insn, regs); 316 317 /* If this is a {get,put}_user() on an unaligned userspace pointer, 318 * just signal a fault and do not log the event. 319 */ 320 if (asi == ASI_AIUS) { 321 kernel_mna_trap_fault(0); 322 return; 323 } 324 325 log_unaligned(regs); 326 327 if (!ok_for_kernel(insn) || dir == both) { 328 printk("Unsupported unaligned load/store trap for kernel " 329 "at <%016lx>.\n", regs->tpc); 330 unaligned_panic("Kernel does fpu/atomic " 331 "unaligned load/store.", regs); 332 333 kernel_mna_trap_fault(0); 334 } else { 335 unsigned long addr, *reg_addr; 336 int err; 337 338 addr = compute_effective_address(regs, insn, 339 ((insn >> 25) & 0x1f)); 340 perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, addr); 341 switch (asi) { 342 case ASI_NL: 343 case ASI_AIUPL: 344 case ASI_AIUSL: 345 case ASI_PL: 346 case ASI_SL: 347 case ASI_PNFL: 348 case ASI_SNFL: 349 asi &= ~0x08; 350 break; 351 } 352 switch (dir) { 353 case load: 354 reg_addr = fetch_reg_addr(((insn>>25)&0x1f), regs); 355 err = do_int_load(reg_addr, size, 356 (unsigned long *) addr, 357 decode_signedness(insn), asi); 358 if (likely(!err) && unlikely(asi != orig_asi)) { 359 unsigned long val_in = *reg_addr; 360 switch (size) { 361 case 2: 362 val_in = swab16(val_in); 363 break; 364 case 4: 365 val_in = swab32(val_in); 366 break; 367 case 8: 368 val_in = swab64(val_in); 369 break; 370 case 16: 371 default: 372 BUG(); 373 break; 374 } 375 *reg_addr = val_in; 376 } 377 break; 378 379 case store: 380 err = do_int_store(((insn>>25)&0x1f), size, 381 (unsigned long *) addr, regs, 382 asi, orig_asi); 383 break; 384 385 default: 386 panic("Impossible kernel unaligned trap."); 387 /* Not reached... */ 388 } 389 if (unlikely(err)) 390 kernel_mna_trap_fault(1); 391 else 392 advance(regs); 393 } 394} 395 396int handle_popc(u32 insn, struct pt_regs *regs) 397{ 398 int from_kernel = (regs->tstate & TSTATE_PRIV) != 0; 399 int ret, rd = ((insn >> 25) & 0x1f); 400 u64 value; 401 402 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0); 403 if (insn & 0x2000) { 404 maybe_flush_windows(0, 0, rd, from_kernel); 405 value = sign_extend_imm13(insn); 406 } else { 407 maybe_flush_windows(0, insn & 0x1f, rd, from_kernel); 408 value = fetch_reg(insn & 0x1f, regs); 409 } 410 ret = hweight64(value); 411 if (rd < 16) { 412 if (rd) 413 regs->u_regs[rd] = ret; 414 } else { 415 unsigned long fp = regs->u_regs[UREG_FP]; 416 417 if (!test_thread_64bit_stack(fp)) { 418 struct reg_window32 __user *win32; 419 win32 = (struct reg_window32 __user *)((unsigned long)((u32)fp)); 420 put_user(ret, &win32->locals[rd - 16]); 421 } else { 422 struct reg_window __user *win; 423 win = (struct reg_window __user *)(fp + STACK_BIAS); 424 put_user(ret, &win->locals[rd - 16]); 425 } 426 } 427 advance(regs); 428 return 1; 429} 430 431extern void do_fpother(struct pt_regs *regs); 432extern void do_privact(struct pt_regs *regs); 433extern void sun4v_data_access_exception(struct pt_regs *regs, 434 unsigned long addr, 435 unsigned long type_ctx); 436 437int handle_ldf_stq(u32 insn, struct pt_regs *regs) 438{ 439 unsigned long addr = compute_effective_address(regs, insn, 0); 440 int freg; 441 struct fpustate *f = FPUSTATE; 442 int asi = decode_asi(insn, regs); 443 int flag; 444 445 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0); 446 447 save_and_clear_fpu(); 448 current_thread_info()->xfsr[0] &= ~0x1c000; 449 if (insn & 0x200000) { 450 /* STQ */ 451 u64 first = 0, second = 0; 452 453 freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20); 454 flag = (freg < 32) ? FPRS_DL : FPRS_DU; 455 if (freg & 3) { 456 current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */; 457 do_fpother(regs); 458 return 0; 459 } 460 if (current_thread_info()->fpsaved[0] & flag) { 461 first = *(u64 *)&f->regs[freg]; 462 second = *(u64 *)&f->regs[freg+2]; 463 } 464 if (asi < 0x80) { 465 do_privact(regs); 466 return 1; 467 } 468 switch (asi) { 469 case ASI_P: 470 case ASI_S: break; 471 case ASI_PL: 472 case ASI_SL: 473 { 474 /* Need to convert endians */ 475 u64 tmp = __swab64p(&first); 476 477 first = __swab64p(&second); 478 second = tmp; 479 break; 480 } 481 default: 482 if (tlb_type == hypervisor) 483 sun4v_data_access_exception(regs, addr, 0); 484 else 485 spitfire_data_access_exception(regs, 0, addr); 486 return 1; 487 } 488 if (put_user (first >> 32, (u32 __user *)addr) || 489 __put_user ((u32)first, (u32 __user *)(addr + 4)) || 490 __put_user (second >> 32, (u32 __user *)(addr + 8)) || 491 __put_user ((u32)second, (u32 __user *)(addr + 12))) { 492 if (tlb_type == hypervisor) 493 sun4v_data_access_exception(regs, addr, 0); 494 else 495 spitfire_data_access_exception(regs, 0, addr); 496 return 1; 497 } 498 } else { 499 /* LDF, LDDF, LDQF */ 500 u32 data[4] __attribute__ ((aligned(8))); 501 int size, i; 502 int err; 503 504 if (asi < 0x80) { 505 do_privact(regs); 506 return 1; 507 } else if (asi > ASI_SNFL) { 508 if (tlb_type == hypervisor) 509 sun4v_data_access_exception(regs, addr, 0); 510 else 511 spitfire_data_access_exception(regs, 0, addr); 512 return 1; 513 } 514 switch (insn & 0x180000) { 515 case 0x000000: size = 1; break; 516 case 0x100000: size = 4; break; 517 default: size = 2; break; 518 } 519 if (size == 1) 520 freg = (insn >> 25) & 0x1f; 521 else 522 freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20); 523 flag = (freg < 32) ? FPRS_DL : FPRS_DU; 524 525 for (i = 0; i < size; i++) 526 data[i] = 0; 527 528 err = get_user (data[0], (u32 __user *) addr); 529 if (!err) { 530 for (i = 1; i < size; i++) 531 err |= __get_user (data[i], (u32 __user *)(addr + 4*i)); 532 } 533 if (err && !(asi & 0x2 /* NF */)) { 534 if (tlb_type == hypervisor) 535 sun4v_data_access_exception(regs, addr, 0); 536 else 537 spitfire_data_access_exception(regs, 0, addr); 538 return 1; 539 } 540 if (asi & 0x8) /* Little */ { 541 u64 tmp; 542 543 switch (size) { 544 case 1: data[0] = le32_to_cpup(data + 0); break; 545 default:*(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 0)); 546 break; 547 case 4: tmp = le64_to_cpup((u64 *)(data + 0)); 548 *(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 2)); 549 *(u64 *)(data + 2) = tmp; 550 break; 551 } 552 } 553 if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) { 554 current_thread_info()->fpsaved[0] = FPRS_FEF; 555 current_thread_info()->gsr[0] = 0; 556 } 557 if (!(current_thread_info()->fpsaved[0] & flag)) { 558 if (freg < 32) 559 memset(f->regs, 0, 32*sizeof(u32)); 560 else 561 memset(f->regs+32, 0, 32*sizeof(u32)); 562 } 563 memcpy(f->regs + freg, data, size * 4); 564 current_thread_info()->fpsaved[0] |= flag; 565 } 566 advance(regs); 567 return 1; 568} 569 570void handle_ld_nf(u32 insn, struct pt_regs *regs) 571{ 572 int rd = ((insn >> 25) & 0x1f); 573 int from_kernel = (regs->tstate & TSTATE_PRIV) != 0; 574 unsigned long *reg; 575 576 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0); 577 578 maybe_flush_windows(0, 0, rd, from_kernel); 579 reg = fetch_reg_addr(rd, regs); 580 if (from_kernel || rd < 16) { 581 reg[0] = 0; 582 if ((insn & 0x780000) == 0x180000) 583 reg[1] = 0; 584 } else if (!test_thread_64bit_stack(regs->u_regs[UREG_FP])) { 585 put_user(0, (int __user *) reg); 586 if ((insn & 0x780000) == 0x180000) 587 put_user(0, ((int __user *) reg) + 1); 588 } else { 589 put_user(0, (unsigned long __user *) reg); 590 if ((insn & 0x780000) == 0x180000) 591 put_user(0, (unsigned long __user *) reg + 1); 592 } 593 advance(regs); 594} 595 596void handle_lddfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr) 597{ 598 enum ctx_state prev_state = exception_enter(); 599 unsigned long pc = regs->tpc; 600 unsigned long tstate = regs->tstate; 601 u32 insn; 602 u64 value; 603 u8 freg; 604 int flag; 605 struct fpustate *f = FPUSTATE; 606 607 if (tstate & TSTATE_PRIV) 608 die_if_kernel("lddfmna from kernel", regs); 609 perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, sfar); 610 if (test_thread_flag(TIF_32BIT)) 611 pc = (u32)pc; 612 if (get_user(insn, (u32 __user *) pc) != -EFAULT) { 613 int asi = decode_asi(insn, regs); 614 u32 first, second; 615 int err; 616 617 if ((asi > ASI_SNFL) || 618 (asi < ASI_P)) 619 goto daex; 620 first = second = 0; 621 err = get_user(first, (u32 __user *)sfar); 622 if (!err) 623 err = get_user(second, (u32 __user *)(sfar + 4)); 624 if (err) { 625 if (!(asi & 0x2)) 626 goto daex; 627 first = second = 0; 628 } 629 save_and_clear_fpu(); 630 freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20); 631 value = (((u64)first) << 32) | second; 632 if (asi & 0x8) /* Little */ 633 value = __swab64p(&value); 634 flag = (freg < 32) ? FPRS_DL : FPRS_DU; 635 if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) { 636 current_thread_info()->fpsaved[0] = FPRS_FEF; 637 current_thread_info()->gsr[0] = 0; 638 } 639 if (!(current_thread_info()->fpsaved[0] & flag)) { 640 if (freg < 32) 641 memset(f->regs, 0, 32*sizeof(u32)); 642 else 643 memset(f->regs+32, 0, 32*sizeof(u32)); 644 } 645 *(u64 *)(f->regs + freg) = value; 646 current_thread_info()->fpsaved[0] |= flag; 647 } else { 648daex: 649 if (tlb_type == hypervisor) 650 sun4v_data_access_exception(regs, sfar, sfsr); 651 else 652 spitfire_data_access_exception(regs, sfsr, sfar); 653 goto out; 654 } 655 advance(regs); 656out: 657 exception_exit(prev_state); 658} 659 660void handle_stdfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr) 661{ 662 enum ctx_state prev_state = exception_enter(); 663 unsigned long pc = regs->tpc; 664 unsigned long tstate = regs->tstate; 665 u32 insn; 666 u64 value; 667 u8 freg; 668 int flag; 669 struct fpustate *f = FPUSTATE; 670 671 if (tstate & TSTATE_PRIV) 672 die_if_kernel("stdfmna from kernel", regs); 673 perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, sfar); 674 if (test_thread_flag(TIF_32BIT)) 675 pc = (u32)pc; 676 if (get_user(insn, (u32 __user *) pc) != -EFAULT) { 677 int asi = decode_asi(insn, regs); 678 freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20); 679 value = 0; 680 flag = (freg < 32) ? FPRS_DL : FPRS_DU; 681 if ((asi > ASI_SNFL) || 682 (asi < ASI_P)) 683 goto daex; 684 save_and_clear_fpu(); 685 if (current_thread_info()->fpsaved[0] & flag) 686 value = *(u64 *)&f->regs[freg]; 687 switch (asi) { 688 case ASI_P: 689 case ASI_S: break; 690 case ASI_PL: 691 case ASI_SL: 692 value = __swab64p(&value); break; 693 default: goto daex; 694 } 695 if (put_user (value >> 32, (u32 __user *) sfar) || 696 __put_user ((u32)value, (u32 __user *)(sfar + 4))) 697 goto daex; 698 } else { 699daex: 700 if (tlb_type == hypervisor) 701 sun4v_data_access_exception(regs, sfar, sfsr); 702 else 703 spitfire_data_access_exception(regs, sfsr, sfar); 704 goto out; 705 } 706 advance(regs); 707out: 708 exception_exit(prev_state); 709}